xref: /linux/arch/x86/crypto/aesni-intel_glue.c (revision 3503d56cc7233ced602e38a4c13caa64f00ab2aa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support for Intel AES-NI instructions. This file contains glue
4  * code, the real AES implementation is in intel-aes_asm.S.
5  *
6  * Copyright (C) 2008, Intel Corp.
7  *    Author: Huang Ying <ying.huang@intel.com>
8  *
9  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
10  * interface for 64-bit kernels.
11  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
12  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
13  *             Tadeusz Struk (tadeusz.struk@intel.com)
14  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
15  *    Copyright (c) 2010, Intel Corporation.
16  */
17 
18 #include <linux/hardirq.h>
19 #include <linux/types.h>
20 #include <linux/module.h>
21 #include <linux/err.h>
22 #include <crypto/algapi.h>
23 #include <crypto/aes.h>
24 #include <crypto/ctr.h>
25 #include <crypto/b128ops.h>
26 #include <crypto/gcm.h>
27 #include <crypto/xts.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/simd.h>
30 #include <crypto/scatterwalk.h>
31 #include <crypto/internal/aead.h>
32 #include <crypto/internal/simd.h>
33 #include <crypto/internal/skcipher.h>
34 #include <linux/workqueue.h>
35 #include <linux/spinlock.h>
36 #ifdef CONFIG_X86_64
37 #include <asm/crypto/glue_helper.h>
38 #endif
39 
40 
41 #define AESNI_ALIGN	16
42 #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
43 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
44 #define RFC4106_HASH_SUBKEY_SIZE 16
45 #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
46 #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
47 #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
48 
49 /* This data is stored at the end of the crypto_tfm struct.
50  * It's a type of per "session" data storage location.
51  * This needs to be 16 byte aligned.
52  */
53 struct aesni_rfc4106_gcm_ctx {
54 	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
55 	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
56 	u8 nonce[4];
57 };
58 
59 struct generic_gcmaes_ctx {
60 	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
61 	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
62 };
63 
64 struct aesni_xts_ctx {
65 	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
66 	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
67 };
68 
69 #define GCM_BLOCK_LEN 16
70 
71 struct gcm_context_data {
72 	/* init, update and finalize context data */
73 	u8 aad_hash[GCM_BLOCK_LEN];
74 	u64 aad_length;
75 	u64 in_length;
76 	u8 partial_block_enc_key[GCM_BLOCK_LEN];
77 	u8 orig_IV[GCM_BLOCK_LEN];
78 	u8 current_counter[GCM_BLOCK_LEN];
79 	u64 partial_block_len;
80 	u64 unused;
81 	u8 hash_keys[GCM_BLOCK_LEN * 16];
82 };
83 
84 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
85 			     unsigned int key_len);
86 asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
87 asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
88 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
89 			      const u8 *in, unsigned int len);
90 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
91 			      const u8 *in, unsigned int len);
92 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
93 			      const u8 *in, unsigned int len, u8 *iv);
94 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
95 			      const u8 *in, unsigned int len, u8 *iv);
96 
97 #define AVX_GEN2_OPTSIZE 640
98 #define AVX_GEN4_OPTSIZE 4096
99 
100 #ifdef CONFIG_X86_64
101 
102 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
103 			      const u8 *in, unsigned int len, u8 *iv);
104 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
105 			      const u8 *in, unsigned int len, u8 *iv);
106 
107 asmlinkage void aesni_xts_crypt8(const struct crypto_aes_ctx *ctx, u8 *out,
108 				 const u8 *in, bool enc, le128 *iv);
109 
110 /* asmlinkage void aesni_gcm_enc()
111  * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
112  * struct gcm_context_data.  May be uninitialized.
113  * u8 *out, Ciphertext output. Encrypt in-place is allowed.
114  * const u8 *in, Plaintext input
115  * unsigned long plaintext_len, Length of data in bytes for encryption.
116  * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
117  *         16-byte aligned pointer.
118  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
119  * const u8 *aad, Additional Authentication Data (AAD)
120  * unsigned long aad_len, Length of AAD in bytes.
121  * u8 *auth_tag, Authenticated Tag output.
122  * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
123  *          Valid values are 16 (most likely), 12 or 8.
124  */
125 asmlinkage void aesni_gcm_enc(void *ctx,
126 			struct gcm_context_data *gdata, u8 *out,
127 			const u8 *in, unsigned long plaintext_len, u8 *iv,
128 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
129 			u8 *auth_tag, unsigned long auth_tag_len);
130 
131 /* asmlinkage void aesni_gcm_dec()
132  * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
133  * struct gcm_context_data.  May be uninitialized.
134  * u8 *out, Plaintext output. Decrypt in-place is allowed.
135  * const u8 *in, Ciphertext input
136  * unsigned long ciphertext_len, Length of data in bytes for decryption.
137  * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
138  *         16-byte aligned pointer.
139  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
140  * const u8 *aad, Additional Authentication Data (AAD)
141  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
142  * to be 8 or 12 bytes
143  * u8 *auth_tag, Authenticated Tag output.
144  * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
145  * Valid values are 16 (most likely), 12 or 8.
146  */
147 asmlinkage void aesni_gcm_dec(void *ctx,
148 			struct gcm_context_data *gdata, u8 *out,
149 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
150 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
151 			u8 *auth_tag, unsigned long auth_tag_len);
152 
153 /* Scatter / Gather routines, with args similar to above */
154 asmlinkage void aesni_gcm_init(void *ctx,
155 			       struct gcm_context_data *gdata,
156 			       u8 *iv,
157 			       u8 *hash_subkey, const u8 *aad,
158 			       unsigned long aad_len);
159 asmlinkage void aesni_gcm_enc_update(void *ctx,
160 				     struct gcm_context_data *gdata, u8 *out,
161 				     const u8 *in, unsigned long plaintext_len);
162 asmlinkage void aesni_gcm_dec_update(void *ctx,
163 				     struct gcm_context_data *gdata, u8 *out,
164 				     const u8 *in,
165 				     unsigned long ciphertext_len);
166 asmlinkage void aesni_gcm_finalize(void *ctx,
167 				   struct gcm_context_data *gdata,
168 				   u8 *auth_tag, unsigned long auth_tag_len);
169 
170 static const struct aesni_gcm_tfm_s {
171 	void (*init)(void *ctx, struct gcm_context_data *gdata, u8 *iv,
172 		     u8 *hash_subkey, const u8 *aad, unsigned long aad_len);
173 	void (*enc_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
174 			   const u8 *in, unsigned long plaintext_len);
175 	void (*dec_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
176 			   const u8 *in, unsigned long ciphertext_len);
177 	void (*finalize)(void *ctx, struct gcm_context_data *gdata,
178 			 u8 *auth_tag, unsigned long auth_tag_len);
179 } *aesni_gcm_tfm;
180 
181 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_sse = {
182 	.init = &aesni_gcm_init,
183 	.enc_update = &aesni_gcm_enc_update,
184 	.dec_update = &aesni_gcm_dec_update,
185 	.finalize = &aesni_gcm_finalize,
186 };
187 
188 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
189 		void *keys, u8 *out, unsigned int num_bytes);
190 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
191 		void *keys, u8 *out, unsigned int num_bytes);
192 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
193 		void *keys, u8 *out, unsigned int num_bytes);
194 /*
195  * asmlinkage void aesni_gcm_init_avx_gen2()
196  * gcm_data *my_ctx_data, context data
197  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
198  */
199 asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data,
200 					struct gcm_context_data *gdata,
201 					u8 *iv,
202 					u8 *hash_subkey,
203 					const u8 *aad,
204 					unsigned long aad_len);
205 
206 asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx,
207 				     struct gcm_context_data *gdata, u8 *out,
208 				     const u8 *in, unsigned long plaintext_len);
209 asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx,
210 				     struct gcm_context_data *gdata, u8 *out,
211 				     const u8 *in,
212 				     unsigned long ciphertext_len);
213 asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx,
214 				   struct gcm_context_data *gdata,
215 				   u8 *auth_tag, unsigned long auth_tag_len);
216 
217 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx,
218 				struct gcm_context_data *gdata, u8 *out,
219 			const u8 *in, unsigned long plaintext_len, u8 *iv,
220 			const u8 *aad, unsigned long aad_len,
221 			u8 *auth_tag, unsigned long auth_tag_len);
222 
223 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx,
224 				struct gcm_context_data *gdata, u8 *out,
225 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
226 			const u8 *aad, unsigned long aad_len,
227 			u8 *auth_tag, unsigned long auth_tag_len);
228 
229 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen2 = {
230 	.init = &aesni_gcm_init_avx_gen2,
231 	.enc_update = &aesni_gcm_enc_update_avx_gen2,
232 	.dec_update = &aesni_gcm_dec_update_avx_gen2,
233 	.finalize = &aesni_gcm_finalize_avx_gen2,
234 };
235 
236 /*
237  * asmlinkage void aesni_gcm_init_avx_gen4()
238  * gcm_data *my_ctx_data, context data
239  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
240  */
241 asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data,
242 					struct gcm_context_data *gdata,
243 					u8 *iv,
244 					u8 *hash_subkey,
245 					const u8 *aad,
246 					unsigned long aad_len);
247 
248 asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx,
249 				     struct gcm_context_data *gdata, u8 *out,
250 				     const u8 *in, unsigned long plaintext_len);
251 asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx,
252 				     struct gcm_context_data *gdata, u8 *out,
253 				     const u8 *in,
254 				     unsigned long ciphertext_len);
255 asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx,
256 				   struct gcm_context_data *gdata,
257 				   u8 *auth_tag, unsigned long auth_tag_len);
258 
259 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx,
260 				struct gcm_context_data *gdata, u8 *out,
261 			const u8 *in, unsigned long plaintext_len, u8 *iv,
262 			const u8 *aad, unsigned long aad_len,
263 			u8 *auth_tag, unsigned long auth_tag_len);
264 
265 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx,
266 				struct gcm_context_data *gdata, u8 *out,
267 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
268 			const u8 *aad, unsigned long aad_len,
269 			u8 *auth_tag, unsigned long auth_tag_len);
270 
271 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen4 = {
272 	.init = &aesni_gcm_init_avx_gen4,
273 	.enc_update = &aesni_gcm_enc_update_avx_gen4,
274 	.dec_update = &aesni_gcm_dec_update_avx_gen4,
275 	.finalize = &aesni_gcm_finalize_avx_gen4,
276 };
277 
278 static inline struct
279 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
280 {
281 	unsigned long align = AESNI_ALIGN;
282 
283 	if (align <= crypto_tfm_ctx_alignment())
284 		align = 1;
285 	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
286 }
287 
288 static inline struct
289 generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
290 {
291 	unsigned long align = AESNI_ALIGN;
292 
293 	if (align <= crypto_tfm_ctx_alignment())
294 		align = 1;
295 	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
296 }
297 #endif
298 
299 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
300 {
301 	unsigned long addr = (unsigned long)raw_ctx;
302 	unsigned long align = AESNI_ALIGN;
303 
304 	if (align <= crypto_tfm_ctx_alignment())
305 		align = 1;
306 	return (struct crypto_aes_ctx *)ALIGN(addr, align);
307 }
308 
309 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
310 			      const u8 *in_key, unsigned int key_len)
311 {
312 	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
313 	int err;
314 
315 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
316 	    key_len != AES_KEYSIZE_256)
317 		return -EINVAL;
318 
319 	if (!crypto_simd_usable())
320 		err = aes_expandkey(ctx, in_key, key_len);
321 	else {
322 		kernel_fpu_begin();
323 		err = aesni_set_key(ctx, in_key, key_len);
324 		kernel_fpu_end();
325 	}
326 
327 	return err;
328 }
329 
330 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
331 		       unsigned int key_len)
332 {
333 	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
334 }
335 
336 static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
337 {
338 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
339 
340 	if (!crypto_simd_usable()) {
341 		aes_encrypt(ctx, dst, src);
342 	} else {
343 		kernel_fpu_begin();
344 		aesni_enc(ctx, dst, src);
345 		kernel_fpu_end();
346 	}
347 }
348 
349 static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
350 {
351 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
352 
353 	if (!crypto_simd_usable()) {
354 		aes_decrypt(ctx, dst, src);
355 	} else {
356 		kernel_fpu_begin();
357 		aesni_dec(ctx, dst, src);
358 		kernel_fpu_end();
359 	}
360 }
361 
362 static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
363 			         unsigned int len)
364 {
365 	return aes_set_key_common(crypto_skcipher_tfm(tfm),
366 				  crypto_skcipher_ctx(tfm), key, len);
367 }
368 
369 static int ecb_encrypt(struct skcipher_request *req)
370 {
371 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
372 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
373 	struct skcipher_walk walk;
374 	unsigned int nbytes;
375 	int err;
376 
377 	err = skcipher_walk_virt(&walk, req, true);
378 
379 	kernel_fpu_begin();
380 	while ((nbytes = walk.nbytes)) {
381 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
382 			      nbytes & AES_BLOCK_MASK);
383 		nbytes &= AES_BLOCK_SIZE - 1;
384 		err = skcipher_walk_done(&walk, nbytes);
385 	}
386 	kernel_fpu_end();
387 
388 	return err;
389 }
390 
391 static int ecb_decrypt(struct skcipher_request *req)
392 {
393 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
394 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
395 	struct skcipher_walk walk;
396 	unsigned int nbytes;
397 	int err;
398 
399 	err = skcipher_walk_virt(&walk, req, true);
400 
401 	kernel_fpu_begin();
402 	while ((nbytes = walk.nbytes)) {
403 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
404 			      nbytes & AES_BLOCK_MASK);
405 		nbytes &= AES_BLOCK_SIZE - 1;
406 		err = skcipher_walk_done(&walk, nbytes);
407 	}
408 	kernel_fpu_end();
409 
410 	return err;
411 }
412 
413 static int cbc_encrypt(struct skcipher_request *req)
414 {
415 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
416 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
417 	struct skcipher_walk walk;
418 	unsigned int nbytes;
419 	int err;
420 
421 	err = skcipher_walk_virt(&walk, req, true);
422 
423 	kernel_fpu_begin();
424 	while ((nbytes = walk.nbytes)) {
425 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
426 			      nbytes & AES_BLOCK_MASK, walk.iv);
427 		nbytes &= AES_BLOCK_SIZE - 1;
428 		err = skcipher_walk_done(&walk, nbytes);
429 	}
430 	kernel_fpu_end();
431 
432 	return err;
433 }
434 
435 static int cbc_decrypt(struct skcipher_request *req)
436 {
437 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
438 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
439 	struct skcipher_walk walk;
440 	unsigned int nbytes;
441 	int err;
442 
443 	err = skcipher_walk_virt(&walk, req, true);
444 
445 	kernel_fpu_begin();
446 	while ((nbytes = walk.nbytes)) {
447 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
448 			      nbytes & AES_BLOCK_MASK, walk.iv);
449 		nbytes &= AES_BLOCK_SIZE - 1;
450 		err = skcipher_walk_done(&walk, nbytes);
451 	}
452 	kernel_fpu_end();
453 
454 	return err;
455 }
456 
457 #ifdef CONFIG_X86_64
458 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
459 			    struct skcipher_walk *walk)
460 {
461 	u8 *ctrblk = walk->iv;
462 	u8 keystream[AES_BLOCK_SIZE];
463 	u8 *src = walk->src.virt.addr;
464 	u8 *dst = walk->dst.virt.addr;
465 	unsigned int nbytes = walk->nbytes;
466 
467 	aesni_enc(ctx, keystream, ctrblk);
468 	crypto_xor_cpy(dst, keystream, src, nbytes);
469 
470 	crypto_inc(ctrblk, AES_BLOCK_SIZE);
471 }
472 
473 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
474 			      const u8 *in, unsigned int len, u8 *iv)
475 {
476 	/*
477 	 * based on key length, override with the by8 version
478 	 * of ctr mode encryption/decryption for improved performance
479 	 * aes_set_key_common() ensures that key length is one of
480 	 * {128,192,256}
481 	 */
482 	if (ctx->key_length == AES_KEYSIZE_128)
483 		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
484 	else if (ctx->key_length == AES_KEYSIZE_192)
485 		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
486 	else
487 		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
488 }
489 
490 static int ctr_crypt(struct skcipher_request *req)
491 {
492 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
493 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
494 	struct skcipher_walk walk;
495 	unsigned int nbytes;
496 	int err;
497 
498 	err = skcipher_walk_virt(&walk, req, true);
499 
500 	kernel_fpu_begin();
501 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
502 		aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
503 			              nbytes & AES_BLOCK_MASK, walk.iv);
504 		nbytes &= AES_BLOCK_SIZE - 1;
505 		err = skcipher_walk_done(&walk, nbytes);
506 	}
507 	if (walk.nbytes) {
508 		ctr_crypt_final(ctx, &walk);
509 		err = skcipher_walk_done(&walk, 0);
510 	}
511 	kernel_fpu_end();
512 
513 	return err;
514 }
515 
516 static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
517 			    unsigned int keylen)
518 {
519 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
520 	int err;
521 
522 	err = xts_verify_key(tfm, key, keylen);
523 	if (err)
524 		return err;
525 
526 	keylen /= 2;
527 
528 	/* first half of xts-key is for crypt */
529 	err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
530 				 key, keylen);
531 	if (err)
532 		return err;
533 
534 	/* second half of xts-key is for tweak */
535 	return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
536 				  key + keylen, keylen);
537 }
538 
539 
540 static void aesni_xts_enc(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
541 {
542 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, aesni_enc);
543 }
544 
545 static void aesni_xts_dec(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
546 {
547 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, aesni_dec);
548 }
549 
550 static void aesni_xts_enc8(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
551 {
552 	aesni_xts_crypt8(ctx, dst, src, true, iv);
553 }
554 
555 static void aesni_xts_dec8(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
556 {
557 	aesni_xts_crypt8(ctx, dst, src, false, iv);
558 }
559 
560 static const struct common_glue_ctx aesni_enc_xts = {
561 	.num_funcs = 2,
562 	.fpu_blocks_limit = 1,
563 
564 	.funcs = { {
565 		.num_blocks = 8,
566 		.fn_u = { .xts = aesni_xts_enc8 }
567 	}, {
568 		.num_blocks = 1,
569 		.fn_u = { .xts = aesni_xts_enc }
570 	} }
571 };
572 
573 static const struct common_glue_ctx aesni_dec_xts = {
574 	.num_funcs = 2,
575 	.fpu_blocks_limit = 1,
576 
577 	.funcs = { {
578 		.num_blocks = 8,
579 		.fn_u = { .xts = aesni_xts_dec8 }
580 	}, {
581 		.num_blocks = 1,
582 		.fn_u = { .xts = aesni_xts_dec }
583 	} }
584 };
585 
586 static int xts_encrypt(struct skcipher_request *req)
587 {
588 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
589 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
590 
591 	return glue_xts_req_128bit(&aesni_enc_xts, req, aesni_enc,
592 				   aes_ctx(ctx->raw_tweak_ctx),
593 				   aes_ctx(ctx->raw_crypt_ctx),
594 				   false);
595 }
596 
597 static int xts_decrypt(struct skcipher_request *req)
598 {
599 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
600 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
601 
602 	return glue_xts_req_128bit(&aesni_dec_xts, req, aesni_enc,
603 				   aes_ctx(ctx->raw_tweak_ctx),
604 				   aes_ctx(ctx->raw_crypt_ctx),
605 				   true);
606 }
607 
608 static int
609 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
610 {
611 	struct crypto_aes_ctx ctx;
612 	int ret;
613 
614 	ret = aes_expandkey(&ctx, key, key_len);
615 	if (ret)
616 		return ret;
617 
618 	/* Clear the data in the hash sub key container to zero.*/
619 	/* We want to cipher all zeros to create the hash sub key. */
620 	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
621 
622 	aes_encrypt(&ctx, hash_subkey, hash_subkey);
623 
624 	memzero_explicit(&ctx, sizeof(ctx));
625 	return 0;
626 }
627 
628 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
629 				  unsigned int key_len)
630 {
631 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
632 
633 	if (key_len < 4)
634 		return -EINVAL;
635 
636 	/*Account for 4 byte nonce at the end.*/
637 	key_len -= 4;
638 
639 	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
640 
641 	return aes_set_key_common(crypto_aead_tfm(aead),
642 				  &ctx->aes_key_expanded, key, key_len) ?:
643 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
644 }
645 
646 /* This is the Integrity Check Value (aka the authentication tag) length and can
647  * be 8, 12 or 16 bytes long. */
648 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
649 				       unsigned int authsize)
650 {
651 	switch (authsize) {
652 	case 8:
653 	case 12:
654 	case 16:
655 		break;
656 	default:
657 		return -EINVAL;
658 	}
659 
660 	return 0;
661 }
662 
663 static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
664 				       unsigned int authsize)
665 {
666 	switch (authsize) {
667 	case 4:
668 	case 8:
669 	case 12:
670 	case 13:
671 	case 14:
672 	case 15:
673 	case 16:
674 		break;
675 	default:
676 		return -EINVAL;
677 	}
678 
679 	return 0;
680 }
681 
682 static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
683 			      unsigned int assoclen, u8 *hash_subkey,
684 			      u8 *iv, void *aes_ctx)
685 {
686 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
687 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
688 	const struct aesni_gcm_tfm_s *gcm_tfm = aesni_gcm_tfm;
689 	struct gcm_context_data data AESNI_ALIGN_ATTR;
690 	struct scatter_walk dst_sg_walk = {};
691 	unsigned long left = req->cryptlen;
692 	unsigned long len, srclen, dstlen;
693 	struct scatter_walk assoc_sg_walk;
694 	struct scatter_walk src_sg_walk;
695 	struct scatterlist src_start[2];
696 	struct scatterlist dst_start[2];
697 	struct scatterlist *src_sg;
698 	struct scatterlist *dst_sg;
699 	u8 *src, *dst, *assoc;
700 	u8 *assocmem = NULL;
701 	u8 authTag[16];
702 
703 	if (!enc)
704 		left -= auth_tag_len;
705 
706 	if (left < AVX_GEN4_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen4)
707 		gcm_tfm = &aesni_gcm_tfm_avx_gen2;
708 	if (left < AVX_GEN2_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen2)
709 		gcm_tfm = &aesni_gcm_tfm_sse;
710 
711 	/* Linearize assoc, if not already linear */
712 	if (req->src->length >= assoclen && req->src->length &&
713 		(!PageHighMem(sg_page(req->src)) ||
714 			req->src->offset + req->src->length <= PAGE_SIZE)) {
715 		scatterwalk_start(&assoc_sg_walk, req->src);
716 		assoc = scatterwalk_map(&assoc_sg_walk);
717 	} else {
718 		/* assoc can be any length, so must be on heap */
719 		assocmem = kmalloc(assoclen, GFP_ATOMIC);
720 		if (unlikely(!assocmem))
721 			return -ENOMEM;
722 		assoc = assocmem;
723 
724 		scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
725 	}
726 
727 	if (left) {
728 		src_sg = scatterwalk_ffwd(src_start, req->src, req->assoclen);
729 		scatterwalk_start(&src_sg_walk, src_sg);
730 		if (req->src != req->dst) {
731 			dst_sg = scatterwalk_ffwd(dst_start, req->dst,
732 						  req->assoclen);
733 			scatterwalk_start(&dst_sg_walk, dst_sg);
734 		}
735 	}
736 
737 	kernel_fpu_begin();
738 	gcm_tfm->init(aes_ctx, &data, iv,
739 		hash_subkey, assoc, assoclen);
740 	if (req->src != req->dst) {
741 		while (left) {
742 			src = scatterwalk_map(&src_sg_walk);
743 			dst = scatterwalk_map(&dst_sg_walk);
744 			srclen = scatterwalk_clamp(&src_sg_walk, left);
745 			dstlen = scatterwalk_clamp(&dst_sg_walk, left);
746 			len = min(srclen, dstlen);
747 			if (len) {
748 				if (enc)
749 					gcm_tfm->enc_update(aes_ctx, &data,
750 							     dst, src, len);
751 				else
752 					gcm_tfm->dec_update(aes_ctx, &data,
753 							     dst, src, len);
754 			}
755 			left -= len;
756 
757 			scatterwalk_unmap(src);
758 			scatterwalk_unmap(dst);
759 			scatterwalk_advance(&src_sg_walk, len);
760 			scatterwalk_advance(&dst_sg_walk, len);
761 			scatterwalk_done(&src_sg_walk, 0, left);
762 			scatterwalk_done(&dst_sg_walk, 1, left);
763 		}
764 	} else {
765 		while (left) {
766 			dst = src = scatterwalk_map(&src_sg_walk);
767 			len = scatterwalk_clamp(&src_sg_walk, left);
768 			if (len) {
769 				if (enc)
770 					gcm_tfm->enc_update(aes_ctx, &data,
771 							     src, src, len);
772 				else
773 					gcm_tfm->dec_update(aes_ctx, &data,
774 							     src, src, len);
775 			}
776 			left -= len;
777 			scatterwalk_unmap(src);
778 			scatterwalk_advance(&src_sg_walk, len);
779 			scatterwalk_done(&src_sg_walk, 1, left);
780 		}
781 	}
782 	gcm_tfm->finalize(aes_ctx, &data, authTag, auth_tag_len);
783 	kernel_fpu_end();
784 
785 	if (!assocmem)
786 		scatterwalk_unmap(assoc);
787 	else
788 		kfree(assocmem);
789 
790 	if (!enc) {
791 		u8 authTagMsg[16];
792 
793 		/* Copy out original authTag */
794 		scatterwalk_map_and_copy(authTagMsg, req->src,
795 					 req->assoclen + req->cryptlen -
796 					 auth_tag_len,
797 					 auth_tag_len, 0);
798 
799 		/* Compare generated tag with passed in tag. */
800 		return crypto_memneq(authTagMsg, authTag, auth_tag_len) ?
801 			-EBADMSG : 0;
802 	}
803 
804 	/* Copy in the authTag */
805 	scatterwalk_map_and_copy(authTag, req->dst,
806 				 req->assoclen + req->cryptlen,
807 				 auth_tag_len, 1);
808 
809 	return 0;
810 }
811 
812 static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
813 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
814 {
815 	return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv,
816 				aes_ctx);
817 }
818 
819 static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
820 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
821 {
822 	return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv,
823 				aes_ctx);
824 }
825 
826 static int helper_rfc4106_encrypt(struct aead_request *req)
827 {
828 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
829 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
830 	void *aes_ctx = &(ctx->aes_key_expanded);
831 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
832 	unsigned int i;
833 	__be32 counter = cpu_to_be32(1);
834 
835 	/* Assuming we are supporting rfc4106 64-bit extended */
836 	/* sequence numbers We need to have the AAD length equal */
837 	/* to 16 or 20 bytes */
838 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
839 		return -EINVAL;
840 
841 	/* IV below built */
842 	for (i = 0; i < 4; i++)
843 		*(iv+i) = ctx->nonce[i];
844 	for (i = 0; i < 8; i++)
845 		*(iv+4+i) = req->iv[i];
846 	*((__be32 *)(iv+12)) = counter;
847 
848 	return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
849 			      aes_ctx);
850 }
851 
852 static int helper_rfc4106_decrypt(struct aead_request *req)
853 {
854 	__be32 counter = cpu_to_be32(1);
855 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
856 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
857 	void *aes_ctx = &(ctx->aes_key_expanded);
858 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
859 	unsigned int i;
860 
861 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
862 		return -EINVAL;
863 
864 	/* Assuming we are supporting rfc4106 64-bit extended */
865 	/* sequence numbers We need to have the AAD length */
866 	/* equal to 16 or 20 bytes */
867 
868 	/* IV below built */
869 	for (i = 0; i < 4; i++)
870 		*(iv+i) = ctx->nonce[i];
871 	for (i = 0; i < 8; i++)
872 		*(iv+4+i) = req->iv[i];
873 	*((__be32 *)(iv+12)) = counter;
874 
875 	return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
876 			      aes_ctx);
877 }
878 #endif
879 
880 static struct crypto_alg aesni_cipher_alg = {
881 	.cra_name		= "aes",
882 	.cra_driver_name	= "aes-aesni",
883 	.cra_priority		= 300,
884 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
885 	.cra_blocksize		= AES_BLOCK_SIZE,
886 	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
887 	.cra_module		= THIS_MODULE,
888 	.cra_u	= {
889 		.cipher	= {
890 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
891 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
892 			.cia_setkey		= aes_set_key,
893 			.cia_encrypt		= aesni_encrypt,
894 			.cia_decrypt		= aesni_decrypt
895 		}
896 	}
897 };
898 
899 static struct skcipher_alg aesni_skciphers[] = {
900 	{
901 		.base = {
902 			.cra_name		= "__ecb(aes)",
903 			.cra_driver_name	= "__ecb-aes-aesni",
904 			.cra_priority		= 400,
905 			.cra_flags		= CRYPTO_ALG_INTERNAL,
906 			.cra_blocksize		= AES_BLOCK_SIZE,
907 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
908 			.cra_module		= THIS_MODULE,
909 		},
910 		.min_keysize	= AES_MIN_KEY_SIZE,
911 		.max_keysize	= AES_MAX_KEY_SIZE,
912 		.setkey		= aesni_skcipher_setkey,
913 		.encrypt	= ecb_encrypt,
914 		.decrypt	= ecb_decrypt,
915 	}, {
916 		.base = {
917 			.cra_name		= "__cbc(aes)",
918 			.cra_driver_name	= "__cbc-aes-aesni",
919 			.cra_priority		= 400,
920 			.cra_flags		= CRYPTO_ALG_INTERNAL,
921 			.cra_blocksize		= AES_BLOCK_SIZE,
922 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
923 			.cra_module		= THIS_MODULE,
924 		},
925 		.min_keysize	= AES_MIN_KEY_SIZE,
926 		.max_keysize	= AES_MAX_KEY_SIZE,
927 		.ivsize		= AES_BLOCK_SIZE,
928 		.setkey		= aesni_skcipher_setkey,
929 		.encrypt	= cbc_encrypt,
930 		.decrypt	= cbc_decrypt,
931 #ifdef CONFIG_X86_64
932 	}, {
933 		.base = {
934 			.cra_name		= "__ctr(aes)",
935 			.cra_driver_name	= "__ctr-aes-aesni",
936 			.cra_priority		= 400,
937 			.cra_flags		= CRYPTO_ALG_INTERNAL,
938 			.cra_blocksize		= 1,
939 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
940 			.cra_module		= THIS_MODULE,
941 		},
942 		.min_keysize	= AES_MIN_KEY_SIZE,
943 		.max_keysize	= AES_MAX_KEY_SIZE,
944 		.ivsize		= AES_BLOCK_SIZE,
945 		.chunksize	= AES_BLOCK_SIZE,
946 		.setkey		= aesni_skcipher_setkey,
947 		.encrypt	= ctr_crypt,
948 		.decrypt	= ctr_crypt,
949 	}, {
950 		.base = {
951 			.cra_name		= "__xts(aes)",
952 			.cra_driver_name	= "__xts-aes-aesni",
953 			.cra_priority		= 401,
954 			.cra_flags		= CRYPTO_ALG_INTERNAL,
955 			.cra_blocksize		= AES_BLOCK_SIZE,
956 			.cra_ctxsize		= XTS_AES_CTX_SIZE,
957 			.cra_module		= THIS_MODULE,
958 		},
959 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
960 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
961 		.ivsize		= AES_BLOCK_SIZE,
962 		.setkey		= xts_aesni_setkey,
963 		.encrypt	= xts_encrypt,
964 		.decrypt	= xts_decrypt,
965 #endif
966 	}
967 };
968 
969 static
970 struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
971 
972 #ifdef CONFIG_X86_64
973 static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
974 				  unsigned int key_len)
975 {
976 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);
977 
978 	return aes_set_key_common(crypto_aead_tfm(aead),
979 				  &ctx->aes_key_expanded, key, key_len) ?:
980 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
981 }
982 
983 static int generic_gcmaes_encrypt(struct aead_request *req)
984 {
985 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
986 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
987 	void *aes_ctx = &(ctx->aes_key_expanded);
988 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
989 	__be32 counter = cpu_to_be32(1);
990 
991 	memcpy(iv, req->iv, 12);
992 	*((__be32 *)(iv+12)) = counter;
993 
994 	return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
995 			      aes_ctx);
996 }
997 
998 static int generic_gcmaes_decrypt(struct aead_request *req)
999 {
1000 	__be32 counter = cpu_to_be32(1);
1001 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1002 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1003 	void *aes_ctx = &(ctx->aes_key_expanded);
1004 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1005 
1006 	memcpy(iv, req->iv, 12);
1007 	*((__be32 *)(iv+12)) = counter;
1008 
1009 	return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
1010 			      aes_ctx);
1011 }
1012 
1013 static struct aead_alg aesni_aeads[] = { {
1014 	.setkey			= common_rfc4106_set_key,
1015 	.setauthsize		= common_rfc4106_set_authsize,
1016 	.encrypt		= helper_rfc4106_encrypt,
1017 	.decrypt		= helper_rfc4106_decrypt,
1018 	.ivsize			= GCM_RFC4106_IV_SIZE,
1019 	.maxauthsize		= 16,
1020 	.base = {
1021 		.cra_name		= "__rfc4106(gcm(aes))",
1022 		.cra_driver_name	= "__rfc4106-gcm-aesni",
1023 		.cra_priority		= 400,
1024 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1025 		.cra_blocksize		= 1,
1026 		.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx),
1027 		.cra_alignmask		= AESNI_ALIGN - 1,
1028 		.cra_module		= THIS_MODULE,
1029 	},
1030 }, {
1031 	.setkey			= generic_gcmaes_set_key,
1032 	.setauthsize		= generic_gcmaes_set_authsize,
1033 	.encrypt		= generic_gcmaes_encrypt,
1034 	.decrypt		= generic_gcmaes_decrypt,
1035 	.ivsize			= GCM_AES_IV_SIZE,
1036 	.maxauthsize		= 16,
1037 	.base = {
1038 		.cra_name		= "__gcm(aes)",
1039 		.cra_driver_name	= "__generic-gcm-aesni",
1040 		.cra_priority		= 400,
1041 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1042 		.cra_blocksize		= 1,
1043 		.cra_ctxsize		= sizeof(struct generic_gcmaes_ctx),
1044 		.cra_alignmask		= AESNI_ALIGN - 1,
1045 		.cra_module		= THIS_MODULE,
1046 	},
1047 } };
1048 #else
1049 static struct aead_alg aesni_aeads[0];
1050 #endif
1051 
1052 static struct simd_aead_alg *aesni_simd_aeads[ARRAY_SIZE(aesni_aeads)];
1053 
1054 static const struct x86_cpu_id aesni_cpu_id[] = {
1055 	X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
1056 	{}
1057 };
1058 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1059 
1060 static int __init aesni_init(void)
1061 {
1062 	int err;
1063 
1064 	if (!x86_match_cpu(aesni_cpu_id))
1065 		return -ENODEV;
1066 #ifdef CONFIG_X86_64
1067 	if (boot_cpu_has(X86_FEATURE_AVX2)) {
1068 		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1069 		aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen4;
1070 	} else
1071 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1072 		pr_info("AVX version of gcm_enc/dec engaged.\n");
1073 		aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen2;
1074 	} else {
1075 		pr_info("SSE version of gcm_enc/dec engaged.\n");
1076 		aesni_gcm_tfm = &aesni_gcm_tfm_sse;
1077 	}
1078 	aesni_ctr_enc_tfm = aesni_ctr_enc;
1079 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1080 		/* optimize performance of ctr mode encryption transform */
1081 		aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1082 		pr_info("AES CTR mode by8 optimization enabled\n");
1083 	}
1084 #endif
1085 
1086 	err = crypto_register_alg(&aesni_cipher_alg);
1087 	if (err)
1088 		return err;
1089 
1090 	err = simd_register_skciphers_compat(aesni_skciphers,
1091 					     ARRAY_SIZE(aesni_skciphers),
1092 					     aesni_simd_skciphers);
1093 	if (err)
1094 		goto unregister_cipher;
1095 
1096 	err = simd_register_aeads_compat(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1097 					 aesni_simd_aeads);
1098 	if (err)
1099 		goto unregister_skciphers;
1100 
1101 	return 0;
1102 
1103 unregister_skciphers:
1104 	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1105 				  aesni_simd_skciphers);
1106 unregister_cipher:
1107 	crypto_unregister_alg(&aesni_cipher_alg);
1108 	return err;
1109 }
1110 
1111 static void __exit aesni_exit(void)
1112 {
1113 	simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1114 			      aesni_simd_aeads);
1115 	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1116 				  aesni_simd_skciphers);
1117 	crypto_unregister_alg(&aesni_cipher_alg);
1118 }
1119 
1120 late_initcall(aesni_init);
1121 module_exit(aesni_exit);
1122 
1123 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1124 MODULE_LICENSE("GPL");
1125 MODULE_ALIAS_CRYPTO("aes");
1126