xref: /linux/arch/x86/crypto/aesni-intel_glue.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Support for Intel AES-NI instructions. This file contains glue
3  * code, the real AES implementation is in intel-aes_asm.S.
4  *
5  * Copyright (C) 2008, Intel Corp.
6  *    Author: Huang Ying <ying.huang@intel.com>
7  *
8  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
9  * interface for 64-bit kernels.
10  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
11  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
12  *             Tadeusz Struk (tadeusz.struk@intel.com)
13  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
14  *    Copyright (c) 2010, Intel Corporation.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * (at your option) any later version.
20  */
21 
22 #include <linux/hardirq.h>
23 #include <linux/types.h>
24 #include <linux/crypto.h>
25 #include <linux/module.h>
26 #include <linux/err.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aes.h>
29 #include <crypto/cryptd.h>
30 #include <crypto/ctr.h>
31 #include <crypto/b128ops.h>
32 #include <crypto/lrw.h>
33 #include <crypto/xts.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/fpu/api.h>
36 #include <asm/crypto/aes.h>
37 #include <crypto/ablk_helper.h>
38 #include <crypto/scatterwalk.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/workqueue.h>
41 #include <linux/spinlock.h>
42 #ifdef CONFIG_X86_64
43 #include <asm/crypto/glue_helper.h>
44 #endif
45 
46 
47 #define AESNI_ALIGN	16
48 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
49 #define RFC4106_HASH_SUBKEY_SIZE 16
50 
51 /* This data is stored at the end of the crypto_tfm struct.
52  * It's a type of per "session" data storage location.
53  * This needs to be 16 byte aligned.
54  */
55 struct aesni_rfc4106_gcm_ctx {
56 	u8 hash_subkey[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
57 	struct crypto_aes_ctx aes_key_expanded
58 		__attribute__ ((__aligned__(AESNI_ALIGN)));
59 	u8 nonce[4];
60 };
61 
62 struct aesni_gcm_set_hash_subkey_result {
63 	int err;
64 	struct completion completion;
65 };
66 
67 struct aesni_hash_subkey_req_data {
68 	u8 iv[16];
69 	struct aesni_gcm_set_hash_subkey_result result;
70 	struct scatterlist sg;
71 };
72 
73 struct aesni_lrw_ctx {
74 	struct lrw_table_ctx lrw_table;
75 	u8 raw_aes_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
76 };
77 
78 struct aesni_xts_ctx {
79 	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
80 	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
81 };
82 
83 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
84 			     unsigned int key_len);
85 asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
86 			  const u8 *in);
87 asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
88 			  const u8 *in);
89 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
90 			      const u8 *in, unsigned int len);
91 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
92 			      const u8 *in, unsigned int len);
93 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
94 			      const u8 *in, unsigned int len, u8 *iv);
95 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
96 			      const u8 *in, unsigned int len, u8 *iv);
97 
98 int crypto_fpu_init(void);
99 void crypto_fpu_exit(void);
100 
101 #define AVX_GEN2_OPTSIZE 640
102 #define AVX_GEN4_OPTSIZE 4096
103 
104 #ifdef CONFIG_X86_64
105 
106 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
107 			      const u8 *in, unsigned int len, u8 *iv);
108 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
109 			      const u8 *in, unsigned int len, u8 *iv);
110 
111 asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
112 				 const u8 *in, bool enc, u8 *iv);
113 
114 /* asmlinkage void aesni_gcm_enc()
115  * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
116  * u8 *out, Ciphertext output. Encrypt in-place is allowed.
117  * const u8 *in, Plaintext input
118  * unsigned long plaintext_len, Length of data in bytes for encryption.
119  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
120  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
121  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
122  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
123  * const u8 *aad, Additional Authentication Data (AAD)
124  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
125  *          is going to be 8 or 12 bytes
126  * u8 *auth_tag, Authenticated Tag output.
127  * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
128  *          Valid values are 16 (most likely), 12 or 8.
129  */
130 asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
131 			const u8 *in, unsigned long plaintext_len, u8 *iv,
132 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
133 			u8 *auth_tag, unsigned long auth_tag_len);
134 
135 /* asmlinkage void aesni_gcm_dec()
136  * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
137  * u8 *out, Plaintext output. Decrypt in-place is allowed.
138  * const u8 *in, Ciphertext input
139  * unsigned long ciphertext_len, Length of data in bytes for decryption.
140  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
141  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
142  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
143  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
144  * const u8 *aad, Additional Authentication Data (AAD)
145  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
146  * to be 8 or 12 bytes
147  * u8 *auth_tag, Authenticated Tag output.
148  * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
149  * Valid values are 16 (most likely), 12 or 8.
150  */
151 asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
152 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
153 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
154 			u8 *auth_tag, unsigned long auth_tag_len);
155 
156 
157 #ifdef CONFIG_AS_AVX
158 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
159 		void *keys, u8 *out, unsigned int num_bytes);
160 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
161 		void *keys, u8 *out, unsigned int num_bytes);
162 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
163 		void *keys, u8 *out, unsigned int num_bytes);
164 /*
165  * asmlinkage void aesni_gcm_precomp_avx_gen2()
166  * gcm_data *my_ctx_data, context data
167  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
168  */
169 asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
170 
171 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
172 			const u8 *in, unsigned long plaintext_len, u8 *iv,
173 			const u8 *aad, unsigned long aad_len,
174 			u8 *auth_tag, unsigned long auth_tag_len);
175 
176 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
177 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
178 			const u8 *aad, unsigned long aad_len,
179 			u8 *auth_tag, unsigned long auth_tag_len);
180 
181 static void aesni_gcm_enc_avx(void *ctx, u8 *out,
182 			const u8 *in, unsigned long plaintext_len, u8 *iv,
183 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
184 			u8 *auth_tag, unsigned long auth_tag_len)
185 {
186         struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
187 	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){
188 		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
189 				aad_len, auth_tag, auth_tag_len);
190 	} else {
191 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
192 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
193 					aad_len, auth_tag, auth_tag_len);
194 	}
195 }
196 
197 static void aesni_gcm_dec_avx(void *ctx, u8 *out,
198 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
199 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
200 			u8 *auth_tag, unsigned long auth_tag_len)
201 {
202         struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
203 	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
204 		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad,
205 				aad_len, auth_tag, auth_tag_len);
206 	} else {
207 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
208 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
209 					aad_len, auth_tag, auth_tag_len);
210 	}
211 }
212 #endif
213 
214 #ifdef CONFIG_AS_AVX2
215 /*
216  * asmlinkage void aesni_gcm_precomp_avx_gen4()
217  * gcm_data *my_ctx_data, context data
218  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
219  */
220 asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
221 
222 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
223 			const u8 *in, unsigned long plaintext_len, u8 *iv,
224 			const u8 *aad, unsigned long aad_len,
225 			u8 *auth_tag, unsigned long auth_tag_len);
226 
227 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
228 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
229 			const u8 *aad, unsigned long aad_len,
230 			u8 *auth_tag, unsigned long auth_tag_len);
231 
232 static void aesni_gcm_enc_avx2(void *ctx, u8 *out,
233 			const u8 *in, unsigned long plaintext_len, u8 *iv,
234 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
235 			u8 *auth_tag, unsigned long auth_tag_len)
236 {
237        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
238 	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
239 		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
240 				aad_len, auth_tag, auth_tag_len);
241 	} else if (plaintext_len < AVX_GEN4_OPTSIZE) {
242 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
243 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
244 					aad_len, auth_tag, auth_tag_len);
245 	} else {
246 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
247 		aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
248 					aad_len, auth_tag, auth_tag_len);
249 	}
250 }
251 
252 static void aesni_gcm_dec_avx2(void *ctx, u8 *out,
253 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
254 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
255 			u8 *auth_tag, unsigned long auth_tag_len)
256 {
257        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
258 	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
259 		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey,
260 				aad, aad_len, auth_tag, auth_tag_len);
261 	} else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
262 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
263 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
264 					aad_len, auth_tag, auth_tag_len);
265 	} else {
266 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
267 		aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
268 					aad_len, auth_tag, auth_tag_len);
269 	}
270 }
271 #endif
272 
273 static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out,
274 			const u8 *in, unsigned long plaintext_len, u8 *iv,
275 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
276 			u8 *auth_tag, unsigned long auth_tag_len);
277 
278 static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out,
279 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
280 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
281 			u8 *auth_tag, unsigned long auth_tag_len);
282 
283 static inline struct
284 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
285 {
286 	unsigned long align = AESNI_ALIGN;
287 
288 	if (align <= crypto_tfm_ctx_alignment())
289 		align = 1;
290 	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
291 }
292 #endif
293 
294 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
295 {
296 	unsigned long addr = (unsigned long)raw_ctx;
297 	unsigned long align = AESNI_ALIGN;
298 
299 	if (align <= crypto_tfm_ctx_alignment())
300 		align = 1;
301 	return (struct crypto_aes_ctx *)ALIGN(addr, align);
302 }
303 
304 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
305 			      const u8 *in_key, unsigned int key_len)
306 {
307 	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
308 	u32 *flags = &tfm->crt_flags;
309 	int err;
310 
311 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
312 	    key_len != AES_KEYSIZE_256) {
313 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
314 		return -EINVAL;
315 	}
316 
317 	if (!irq_fpu_usable())
318 		err = crypto_aes_expand_key(ctx, in_key, key_len);
319 	else {
320 		kernel_fpu_begin();
321 		err = aesni_set_key(ctx, in_key, key_len);
322 		kernel_fpu_end();
323 	}
324 
325 	return err;
326 }
327 
328 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
329 		       unsigned int key_len)
330 {
331 	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
332 }
333 
334 static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
335 {
336 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
337 
338 	if (!irq_fpu_usable())
339 		crypto_aes_encrypt_x86(ctx, dst, src);
340 	else {
341 		kernel_fpu_begin();
342 		aesni_enc(ctx, dst, src);
343 		kernel_fpu_end();
344 	}
345 }
346 
347 static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
348 {
349 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
350 
351 	if (!irq_fpu_usable())
352 		crypto_aes_decrypt_x86(ctx, dst, src);
353 	else {
354 		kernel_fpu_begin();
355 		aesni_dec(ctx, dst, src);
356 		kernel_fpu_end();
357 	}
358 }
359 
360 static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
361 {
362 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
363 
364 	aesni_enc(ctx, dst, src);
365 }
366 
367 static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
368 {
369 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
370 
371 	aesni_dec(ctx, dst, src);
372 }
373 
374 static int ecb_encrypt(struct blkcipher_desc *desc,
375 		       struct scatterlist *dst, struct scatterlist *src,
376 		       unsigned int nbytes)
377 {
378 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
379 	struct blkcipher_walk walk;
380 	int err;
381 
382 	blkcipher_walk_init(&walk, dst, src, nbytes);
383 	err = blkcipher_walk_virt(desc, &walk);
384 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
385 
386 	kernel_fpu_begin();
387 	while ((nbytes = walk.nbytes)) {
388 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
389 			      nbytes & AES_BLOCK_MASK);
390 		nbytes &= AES_BLOCK_SIZE - 1;
391 		err = blkcipher_walk_done(desc, &walk, nbytes);
392 	}
393 	kernel_fpu_end();
394 
395 	return err;
396 }
397 
398 static int ecb_decrypt(struct blkcipher_desc *desc,
399 		       struct scatterlist *dst, struct scatterlist *src,
400 		       unsigned int nbytes)
401 {
402 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
403 	struct blkcipher_walk walk;
404 	int err;
405 
406 	blkcipher_walk_init(&walk, dst, src, nbytes);
407 	err = blkcipher_walk_virt(desc, &walk);
408 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
409 
410 	kernel_fpu_begin();
411 	while ((nbytes = walk.nbytes)) {
412 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
413 			      nbytes & AES_BLOCK_MASK);
414 		nbytes &= AES_BLOCK_SIZE - 1;
415 		err = blkcipher_walk_done(desc, &walk, nbytes);
416 	}
417 	kernel_fpu_end();
418 
419 	return err;
420 }
421 
422 static int cbc_encrypt(struct blkcipher_desc *desc,
423 		       struct scatterlist *dst, struct scatterlist *src,
424 		       unsigned int nbytes)
425 {
426 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
427 	struct blkcipher_walk walk;
428 	int err;
429 
430 	blkcipher_walk_init(&walk, dst, src, nbytes);
431 	err = blkcipher_walk_virt(desc, &walk);
432 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
433 
434 	kernel_fpu_begin();
435 	while ((nbytes = walk.nbytes)) {
436 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
437 			      nbytes & AES_BLOCK_MASK, walk.iv);
438 		nbytes &= AES_BLOCK_SIZE - 1;
439 		err = blkcipher_walk_done(desc, &walk, nbytes);
440 	}
441 	kernel_fpu_end();
442 
443 	return err;
444 }
445 
446 static int cbc_decrypt(struct blkcipher_desc *desc,
447 		       struct scatterlist *dst, struct scatterlist *src,
448 		       unsigned int nbytes)
449 {
450 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
451 	struct blkcipher_walk walk;
452 	int err;
453 
454 	blkcipher_walk_init(&walk, dst, src, nbytes);
455 	err = blkcipher_walk_virt(desc, &walk);
456 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
457 
458 	kernel_fpu_begin();
459 	while ((nbytes = walk.nbytes)) {
460 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
461 			      nbytes & AES_BLOCK_MASK, walk.iv);
462 		nbytes &= AES_BLOCK_SIZE - 1;
463 		err = blkcipher_walk_done(desc, &walk, nbytes);
464 	}
465 	kernel_fpu_end();
466 
467 	return err;
468 }
469 
470 #ifdef CONFIG_X86_64
471 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
472 			    struct blkcipher_walk *walk)
473 {
474 	u8 *ctrblk = walk->iv;
475 	u8 keystream[AES_BLOCK_SIZE];
476 	u8 *src = walk->src.virt.addr;
477 	u8 *dst = walk->dst.virt.addr;
478 	unsigned int nbytes = walk->nbytes;
479 
480 	aesni_enc(ctx, keystream, ctrblk);
481 	crypto_xor(keystream, src, nbytes);
482 	memcpy(dst, keystream, nbytes);
483 	crypto_inc(ctrblk, AES_BLOCK_SIZE);
484 }
485 
486 #ifdef CONFIG_AS_AVX
487 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
488 			      const u8 *in, unsigned int len, u8 *iv)
489 {
490 	/*
491 	 * based on key length, override with the by8 version
492 	 * of ctr mode encryption/decryption for improved performance
493 	 * aes_set_key_common() ensures that key length is one of
494 	 * {128,192,256}
495 	 */
496 	if (ctx->key_length == AES_KEYSIZE_128)
497 		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
498 	else if (ctx->key_length == AES_KEYSIZE_192)
499 		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
500 	else
501 		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
502 }
503 #endif
504 
505 static int ctr_crypt(struct blkcipher_desc *desc,
506 		     struct scatterlist *dst, struct scatterlist *src,
507 		     unsigned int nbytes)
508 {
509 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
510 	struct blkcipher_walk walk;
511 	int err;
512 
513 	blkcipher_walk_init(&walk, dst, src, nbytes);
514 	err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
515 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
516 
517 	kernel_fpu_begin();
518 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
519 		aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
520 			              nbytes & AES_BLOCK_MASK, walk.iv);
521 		nbytes &= AES_BLOCK_SIZE - 1;
522 		err = blkcipher_walk_done(desc, &walk, nbytes);
523 	}
524 	if (walk.nbytes) {
525 		ctr_crypt_final(ctx, &walk);
526 		err = blkcipher_walk_done(desc, &walk, 0);
527 	}
528 	kernel_fpu_end();
529 
530 	return err;
531 }
532 #endif
533 
534 static int ablk_ecb_init(struct crypto_tfm *tfm)
535 {
536 	return ablk_init_common(tfm, "__driver-ecb-aes-aesni");
537 }
538 
539 static int ablk_cbc_init(struct crypto_tfm *tfm)
540 {
541 	return ablk_init_common(tfm, "__driver-cbc-aes-aesni");
542 }
543 
544 #ifdef CONFIG_X86_64
545 static int ablk_ctr_init(struct crypto_tfm *tfm)
546 {
547 	return ablk_init_common(tfm, "__driver-ctr-aes-aesni");
548 }
549 
550 #endif
551 
552 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
553 static int ablk_pcbc_init(struct crypto_tfm *tfm)
554 {
555 	return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))");
556 }
557 #endif
558 
559 static void lrw_xts_encrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
560 {
561 	aesni_ecb_enc(ctx, blks, blks, nbytes);
562 }
563 
564 static void lrw_xts_decrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
565 {
566 	aesni_ecb_dec(ctx, blks, blks, nbytes);
567 }
568 
569 static int lrw_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
570 			    unsigned int keylen)
571 {
572 	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
573 	int err;
574 
575 	err = aes_set_key_common(tfm, ctx->raw_aes_ctx, key,
576 				 keylen - AES_BLOCK_SIZE);
577 	if (err)
578 		return err;
579 
580 	return lrw_init_table(&ctx->lrw_table, key + keylen - AES_BLOCK_SIZE);
581 }
582 
583 static void lrw_aesni_exit_tfm(struct crypto_tfm *tfm)
584 {
585 	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
586 
587 	lrw_free_table(&ctx->lrw_table);
588 }
589 
590 static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
591 		       struct scatterlist *src, unsigned int nbytes)
592 {
593 	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
594 	be128 buf[8];
595 	struct lrw_crypt_req req = {
596 		.tbuf = buf,
597 		.tbuflen = sizeof(buf),
598 
599 		.table_ctx = &ctx->lrw_table,
600 		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
601 		.crypt_fn = lrw_xts_encrypt_callback,
602 	};
603 	int ret;
604 
605 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
606 
607 	kernel_fpu_begin();
608 	ret = lrw_crypt(desc, dst, src, nbytes, &req);
609 	kernel_fpu_end();
610 
611 	return ret;
612 }
613 
614 static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
615 		       struct scatterlist *src, unsigned int nbytes)
616 {
617 	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
618 	be128 buf[8];
619 	struct lrw_crypt_req req = {
620 		.tbuf = buf,
621 		.tbuflen = sizeof(buf),
622 
623 		.table_ctx = &ctx->lrw_table,
624 		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
625 		.crypt_fn = lrw_xts_decrypt_callback,
626 	};
627 	int ret;
628 
629 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
630 
631 	kernel_fpu_begin();
632 	ret = lrw_crypt(desc, dst, src, nbytes, &req);
633 	kernel_fpu_end();
634 
635 	return ret;
636 }
637 
638 static int xts_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
639 			    unsigned int keylen)
640 {
641 	struct aesni_xts_ctx *ctx = crypto_tfm_ctx(tfm);
642 	int err;
643 
644 	err = xts_check_key(tfm, key, keylen);
645 	if (err)
646 		return err;
647 
648 	/* first half of xts-key is for crypt */
649 	err = aes_set_key_common(tfm, ctx->raw_crypt_ctx, key, keylen / 2);
650 	if (err)
651 		return err;
652 
653 	/* second half of xts-key is for tweak */
654 	return aes_set_key_common(tfm, ctx->raw_tweak_ctx, key + keylen / 2,
655 				  keylen / 2);
656 }
657 
658 
659 static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
660 {
661 	aesni_enc(ctx, out, in);
662 }
663 
664 #ifdef CONFIG_X86_64
665 
666 static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
667 {
668 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
669 }
670 
671 static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
672 {
673 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
674 }
675 
676 static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
677 {
678 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
679 }
680 
681 static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
682 {
683 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
684 }
685 
686 static const struct common_glue_ctx aesni_enc_xts = {
687 	.num_funcs = 2,
688 	.fpu_blocks_limit = 1,
689 
690 	.funcs = { {
691 		.num_blocks = 8,
692 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
693 	}, {
694 		.num_blocks = 1,
695 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
696 	} }
697 };
698 
699 static const struct common_glue_ctx aesni_dec_xts = {
700 	.num_funcs = 2,
701 	.fpu_blocks_limit = 1,
702 
703 	.funcs = { {
704 		.num_blocks = 8,
705 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
706 	}, {
707 		.num_blocks = 1,
708 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
709 	} }
710 };
711 
712 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
713 		       struct scatterlist *src, unsigned int nbytes)
714 {
715 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
716 
717 	return glue_xts_crypt_128bit(&aesni_enc_xts, desc, dst, src, nbytes,
718 				     XTS_TWEAK_CAST(aesni_xts_tweak),
719 				     aes_ctx(ctx->raw_tweak_ctx),
720 				     aes_ctx(ctx->raw_crypt_ctx));
721 }
722 
723 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
724 		       struct scatterlist *src, unsigned int nbytes)
725 {
726 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
727 
728 	return glue_xts_crypt_128bit(&aesni_dec_xts, desc, dst, src, nbytes,
729 				     XTS_TWEAK_CAST(aesni_xts_tweak),
730 				     aes_ctx(ctx->raw_tweak_ctx),
731 				     aes_ctx(ctx->raw_crypt_ctx));
732 }
733 
734 #else
735 
736 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
737 		       struct scatterlist *src, unsigned int nbytes)
738 {
739 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
740 	be128 buf[8];
741 	struct xts_crypt_req req = {
742 		.tbuf = buf,
743 		.tbuflen = sizeof(buf),
744 
745 		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
746 		.tweak_fn = aesni_xts_tweak,
747 		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
748 		.crypt_fn = lrw_xts_encrypt_callback,
749 	};
750 	int ret;
751 
752 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
753 
754 	kernel_fpu_begin();
755 	ret = xts_crypt(desc, dst, src, nbytes, &req);
756 	kernel_fpu_end();
757 
758 	return ret;
759 }
760 
761 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
762 		       struct scatterlist *src, unsigned int nbytes)
763 {
764 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
765 	be128 buf[8];
766 	struct xts_crypt_req req = {
767 		.tbuf = buf,
768 		.tbuflen = sizeof(buf),
769 
770 		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
771 		.tweak_fn = aesni_xts_tweak,
772 		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
773 		.crypt_fn = lrw_xts_decrypt_callback,
774 	};
775 	int ret;
776 
777 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
778 
779 	kernel_fpu_begin();
780 	ret = xts_crypt(desc, dst, src, nbytes, &req);
781 	kernel_fpu_end();
782 
783 	return ret;
784 }
785 
786 #endif
787 
788 #ifdef CONFIG_X86_64
789 static int rfc4106_init(struct crypto_aead *aead)
790 {
791 	struct cryptd_aead *cryptd_tfm;
792 	struct cryptd_aead **ctx = crypto_aead_ctx(aead);
793 
794 	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni",
795 				       CRYPTO_ALG_INTERNAL,
796 				       CRYPTO_ALG_INTERNAL);
797 	if (IS_ERR(cryptd_tfm))
798 		return PTR_ERR(cryptd_tfm);
799 
800 	*ctx = cryptd_tfm;
801 	crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
802 	return 0;
803 }
804 
805 static void rfc4106_exit(struct crypto_aead *aead)
806 {
807 	struct cryptd_aead **ctx = crypto_aead_ctx(aead);
808 
809 	cryptd_free_aead(*ctx);
810 }
811 
812 static void
813 rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err)
814 {
815 	struct aesni_gcm_set_hash_subkey_result *result = req->data;
816 
817 	if (err == -EINPROGRESS)
818 		return;
819 	result->err = err;
820 	complete(&result->completion);
821 }
822 
823 static int
824 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
825 {
826 	struct crypto_ablkcipher *ctr_tfm;
827 	struct ablkcipher_request *req;
828 	int ret = -EINVAL;
829 	struct aesni_hash_subkey_req_data *req_data;
830 
831 	ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0);
832 	if (IS_ERR(ctr_tfm))
833 		return PTR_ERR(ctr_tfm);
834 
835 	ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len);
836 	if (ret)
837 		goto out_free_ablkcipher;
838 
839 	ret = -ENOMEM;
840 	req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL);
841 	if (!req)
842 		goto out_free_ablkcipher;
843 
844 	req_data = kmalloc(sizeof(*req_data), GFP_KERNEL);
845 	if (!req_data)
846 		goto out_free_request;
847 
848 	memset(req_data->iv, 0, sizeof(req_data->iv));
849 
850 	/* Clear the data in the hash sub key container to zero.*/
851 	/* We want to cipher all zeros to create the hash sub key. */
852 	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
853 
854 	init_completion(&req_data->result.completion);
855 	sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE);
856 	ablkcipher_request_set_tfm(req, ctr_tfm);
857 	ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
858 					CRYPTO_TFM_REQ_MAY_BACKLOG,
859 					rfc4106_set_hash_subkey_done,
860 					&req_data->result);
861 
862 	ablkcipher_request_set_crypt(req, &req_data->sg,
863 		&req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv);
864 
865 	ret = crypto_ablkcipher_encrypt(req);
866 	if (ret == -EINPROGRESS || ret == -EBUSY) {
867 		ret = wait_for_completion_interruptible
868 			(&req_data->result.completion);
869 		if (!ret)
870 			ret = req_data->result.err;
871 	}
872 	kfree(req_data);
873 out_free_request:
874 	ablkcipher_request_free(req);
875 out_free_ablkcipher:
876 	crypto_free_ablkcipher(ctr_tfm);
877 	return ret;
878 }
879 
880 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
881 				  unsigned int key_len)
882 {
883 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
884 
885 	if (key_len < 4) {
886 		crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
887 		return -EINVAL;
888 	}
889 	/*Account for 4 byte nonce at the end.*/
890 	key_len -= 4;
891 
892 	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
893 
894 	return aes_set_key_common(crypto_aead_tfm(aead),
895 				  &ctx->aes_key_expanded, key, key_len) ?:
896 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
897 }
898 
899 static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
900 			   unsigned int key_len)
901 {
902 	struct cryptd_aead **ctx = crypto_aead_ctx(parent);
903 	struct cryptd_aead *cryptd_tfm = *ctx;
904 
905 	return crypto_aead_setkey(&cryptd_tfm->base, key, key_len);
906 }
907 
908 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
909 				       unsigned int authsize)
910 {
911 	switch (authsize) {
912 	case 8:
913 	case 12:
914 	case 16:
915 		break;
916 	default:
917 		return -EINVAL;
918 	}
919 
920 	return 0;
921 }
922 
923 /* This is the Integrity Check Value (aka the authentication tag length and can
924  * be 8, 12 or 16 bytes long. */
925 static int rfc4106_set_authsize(struct crypto_aead *parent,
926 				unsigned int authsize)
927 {
928 	struct cryptd_aead **ctx = crypto_aead_ctx(parent);
929 	struct cryptd_aead *cryptd_tfm = *ctx;
930 
931 	return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
932 }
933 
934 static int helper_rfc4106_encrypt(struct aead_request *req)
935 {
936 	u8 one_entry_in_sg = 0;
937 	u8 *src, *dst, *assoc;
938 	__be32 counter = cpu_to_be32(1);
939 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
940 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
941 	void *aes_ctx = &(ctx->aes_key_expanded);
942 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
943 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
944 	struct scatter_walk src_sg_walk;
945 	struct scatter_walk dst_sg_walk;
946 	unsigned int i;
947 
948 	/* Assuming we are supporting rfc4106 64-bit extended */
949 	/* sequence numbers We need to have the AAD length equal */
950 	/* to 16 or 20 bytes */
951 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
952 		return -EINVAL;
953 
954 	/* IV below built */
955 	for (i = 0; i < 4; i++)
956 		*(iv+i) = ctx->nonce[i];
957 	for (i = 0; i < 8; i++)
958 		*(iv+4+i) = req->iv[i];
959 	*((__be32 *)(iv+12)) = counter;
960 
961 	if (sg_is_last(req->src) &&
962 	    req->src->offset + req->src->length <= PAGE_SIZE &&
963 	    sg_is_last(req->dst) &&
964 	    req->dst->offset + req->dst->length <= PAGE_SIZE) {
965 		one_entry_in_sg = 1;
966 		scatterwalk_start(&src_sg_walk, req->src);
967 		assoc = scatterwalk_map(&src_sg_walk);
968 		src = assoc + req->assoclen;
969 		dst = src;
970 		if (unlikely(req->src != req->dst)) {
971 			scatterwalk_start(&dst_sg_walk, req->dst);
972 			dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
973 		}
974 	} else {
975 		/* Allocate memory for src, dst, assoc */
976 		assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
977 			GFP_ATOMIC);
978 		if (unlikely(!assoc))
979 			return -ENOMEM;
980 		scatterwalk_map_and_copy(assoc, req->src, 0,
981 					 req->assoclen + req->cryptlen, 0);
982 		src = assoc + req->assoclen;
983 		dst = src;
984 	}
985 
986 	kernel_fpu_begin();
987 	aesni_gcm_enc_tfm(aes_ctx, dst, src, req->cryptlen, iv,
988 			  ctx->hash_subkey, assoc, req->assoclen - 8,
989 			  dst + req->cryptlen, auth_tag_len);
990 	kernel_fpu_end();
991 
992 	/* The authTag (aka the Integrity Check Value) needs to be written
993 	 * back to the packet. */
994 	if (one_entry_in_sg) {
995 		if (unlikely(req->src != req->dst)) {
996 			scatterwalk_unmap(dst - req->assoclen);
997 			scatterwalk_advance(&dst_sg_walk, req->dst->length);
998 			scatterwalk_done(&dst_sg_walk, 1, 0);
999 		}
1000 		scatterwalk_unmap(assoc);
1001 		scatterwalk_advance(&src_sg_walk, req->src->length);
1002 		scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
1003 	} else {
1004 		scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
1005 					 req->cryptlen + auth_tag_len, 1);
1006 		kfree(assoc);
1007 	}
1008 	return 0;
1009 }
1010 
1011 static int helper_rfc4106_decrypt(struct aead_request *req)
1012 {
1013 	u8 one_entry_in_sg = 0;
1014 	u8 *src, *dst, *assoc;
1015 	unsigned long tempCipherLen = 0;
1016 	__be32 counter = cpu_to_be32(1);
1017 	int retval = 0;
1018 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1019 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1020 	void *aes_ctx = &(ctx->aes_key_expanded);
1021 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
1022 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1023 	u8 authTag[16];
1024 	struct scatter_walk src_sg_walk;
1025 	struct scatter_walk dst_sg_walk;
1026 	unsigned int i;
1027 
1028 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
1029 		return -EINVAL;
1030 
1031 	/* Assuming we are supporting rfc4106 64-bit extended */
1032 	/* sequence numbers We need to have the AAD length */
1033 	/* equal to 16 or 20 bytes */
1034 
1035 	tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
1036 	/* IV below built */
1037 	for (i = 0; i < 4; i++)
1038 		*(iv+i) = ctx->nonce[i];
1039 	for (i = 0; i < 8; i++)
1040 		*(iv+4+i) = req->iv[i];
1041 	*((__be32 *)(iv+12)) = counter;
1042 
1043 	if (sg_is_last(req->src) &&
1044 	    req->src->offset + req->src->length <= PAGE_SIZE &&
1045 	    sg_is_last(req->dst) &&
1046 	    req->dst->offset + req->dst->length <= PAGE_SIZE) {
1047 		one_entry_in_sg = 1;
1048 		scatterwalk_start(&src_sg_walk, req->src);
1049 		assoc = scatterwalk_map(&src_sg_walk);
1050 		src = assoc + req->assoclen;
1051 		dst = src;
1052 		if (unlikely(req->src != req->dst)) {
1053 			scatterwalk_start(&dst_sg_walk, req->dst);
1054 			dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
1055 		}
1056 
1057 	} else {
1058 		/* Allocate memory for src, dst, assoc */
1059 		assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
1060 		if (!assoc)
1061 			return -ENOMEM;
1062 		scatterwalk_map_and_copy(assoc, req->src, 0,
1063 					 req->assoclen + req->cryptlen, 0);
1064 		src = assoc + req->assoclen;
1065 		dst = src;
1066 	}
1067 
1068 	kernel_fpu_begin();
1069 	aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
1070 			  ctx->hash_subkey, assoc, req->assoclen - 8,
1071 			  authTag, auth_tag_len);
1072 	kernel_fpu_end();
1073 
1074 	/* Compare generated tag with passed in tag. */
1075 	retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
1076 		-EBADMSG : 0;
1077 
1078 	if (one_entry_in_sg) {
1079 		if (unlikely(req->src != req->dst)) {
1080 			scatterwalk_unmap(dst - req->assoclen);
1081 			scatterwalk_advance(&dst_sg_walk, req->dst->length);
1082 			scatterwalk_done(&dst_sg_walk, 1, 0);
1083 		}
1084 		scatterwalk_unmap(assoc);
1085 		scatterwalk_advance(&src_sg_walk, req->src->length);
1086 		scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
1087 	} else {
1088 		scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
1089 					 tempCipherLen, 1);
1090 		kfree(assoc);
1091 	}
1092 	return retval;
1093 }
1094 
1095 static int rfc4106_encrypt(struct aead_request *req)
1096 {
1097 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1098 	struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
1099 	struct cryptd_aead *cryptd_tfm = *ctx;
1100 
1101 	aead_request_set_tfm(req, irq_fpu_usable() ?
1102 				  cryptd_aead_child(cryptd_tfm) :
1103 				  &cryptd_tfm->base);
1104 
1105 	return crypto_aead_encrypt(req);
1106 }
1107 
1108 static int rfc4106_decrypt(struct aead_request *req)
1109 {
1110 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1111 	struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
1112 	struct cryptd_aead *cryptd_tfm = *ctx;
1113 
1114 	aead_request_set_tfm(req, irq_fpu_usable() ?
1115 				  cryptd_aead_child(cryptd_tfm) :
1116 				  &cryptd_tfm->base);
1117 
1118 	return crypto_aead_decrypt(req);
1119 }
1120 #endif
1121 
1122 static struct crypto_alg aesni_algs[] = { {
1123 	.cra_name		= "aes",
1124 	.cra_driver_name	= "aes-aesni",
1125 	.cra_priority		= 300,
1126 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
1127 	.cra_blocksize		= AES_BLOCK_SIZE,
1128 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1129 				  AESNI_ALIGN - 1,
1130 	.cra_alignmask		= 0,
1131 	.cra_module		= THIS_MODULE,
1132 	.cra_u	= {
1133 		.cipher	= {
1134 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1135 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1136 			.cia_setkey		= aes_set_key,
1137 			.cia_encrypt		= aes_encrypt,
1138 			.cia_decrypt		= aes_decrypt
1139 		}
1140 	}
1141 }, {
1142 	.cra_name		= "__aes-aesni",
1143 	.cra_driver_name	= "__driver-aes-aesni",
1144 	.cra_priority		= 0,
1145 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER | CRYPTO_ALG_INTERNAL,
1146 	.cra_blocksize		= AES_BLOCK_SIZE,
1147 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1148 				  AESNI_ALIGN - 1,
1149 	.cra_alignmask		= 0,
1150 	.cra_module		= THIS_MODULE,
1151 	.cra_u	= {
1152 		.cipher	= {
1153 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1154 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1155 			.cia_setkey		= aes_set_key,
1156 			.cia_encrypt		= __aes_encrypt,
1157 			.cia_decrypt		= __aes_decrypt
1158 		}
1159 	}
1160 }, {
1161 	.cra_name		= "__ecb-aes-aesni",
1162 	.cra_driver_name	= "__driver-ecb-aes-aesni",
1163 	.cra_priority		= 0,
1164 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
1165 				  CRYPTO_ALG_INTERNAL,
1166 	.cra_blocksize		= AES_BLOCK_SIZE,
1167 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1168 				  AESNI_ALIGN - 1,
1169 	.cra_alignmask		= 0,
1170 	.cra_type		= &crypto_blkcipher_type,
1171 	.cra_module		= THIS_MODULE,
1172 	.cra_u = {
1173 		.blkcipher = {
1174 			.min_keysize	= AES_MIN_KEY_SIZE,
1175 			.max_keysize	= AES_MAX_KEY_SIZE,
1176 			.setkey		= aes_set_key,
1177 			.encrypt	= ecb_encrypt,
1178 			.decrypt	= ecb_decrypt,
1179 		},
1180 	},
1181 }, {
1182 	.cra_name		= "__cbc-aes-aesni",
1183 	.cra_driver_name	= "__driver-cbc-aes-aesni",
1184 	.cra_priority		= 0,
1185 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
1186 				  CRYPTO_ALG_INTERNAL,
1187 	.cra_blocksize		= AES_BLOCK_SIZE,
1188 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1189 				  AESNI_ALIGN - 1,
1190 	.cra_alignmask		= 0,
1191 	.cra_type		= &crypto_blkcipher_type,
1192 	.cra_module		= THIS_MODULE,
1193 	.cra_u = {
1194 		.blkcipher = {
1195 			.min_keysize	= AES_MIN_KEY_SIZE,
1196 			.max_keysize	= AES_MAX_KEY_SIZE,
1197 			.setkey		= aes_set_key,
1198 			.encrypt	= cbc_encrypt,
1199 			.decrypt	= cbc_decrypt,
1200 		},
1201 	},
1202 }, {
1203 	.cra_name		= "ecb(aes)",
1204 	.cra_driver_name	= "ecb-aes-aesni",
1205 	.cra_priority		= 400,
1206 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1207 	.cra_blocksize		= AES_BLOCK_SIZE,
1208 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1209 	.cra_alignmask		= 0,
1210 	.cra_type		= &crypto_ablkcipher_type,
1211 	.cra_module		= THIS_MODULE,
1212 	.cra_init		= ablk_ecb_init,
1213 	.cra_exit		= ablk_exit,
1214 	.cra_u = {
1215 		.ablkcipher = {
1216 			.min_keysize	= AES_MIN_KEY_SIZE,
1217 			.max_keysize	= AES_MAX_KEY_SIZE,
1218 			.setkey		= ablk_set_key,
1219 			.encrypt	= ablk_encrypt,
1220 			.decrypt	= ablk_decrypt,
1221 		},
1222 	},
1223 }, {
1224 	.cra_name		= "cbc(aes)",
1225 	.cra_driver_name	= "cbc-aes-aesni",
1226 	.cra_priority		= 400,
1227 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1228 	.cra_blocksize		= AES_BLOCK_SIZE,
1229 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1230 	.cra_alignmask		= 0,
1231 	.cra_type		= &crypto_ablkcipher_type,
1232 	.cra_module		= THIS_MODULE,
1233 	.cra_init		= ablk_cbc_init,
1234 	.cra_exit		= ablk_exit,
1235 	.cra_u = {
1236 		.ablkcipher = {
1237 			.min_keysize	= AES_MIN_KEY_SIZE,
1238 			.max_keysize	= AES_MAX_KEY_SIZE,
1239 			.ivsize		= AES_BLOCK_SIZE,
1240 			.setkey		= ablk_set_key,
1241 			.encrypt	= ablk_encrypt,
1242 			.decrypt	= ablk_decrypt,
1243 		},
1244 	},
1245 #ifdef CONFIG_X86_64
1246 }, {
1247 	.cra_name		= "__ctr-aes-aesni",
1248 	.cra_driver_name	= "__driver-ctr-aes-aesni",
1249 	.cra_priority		= 0,
1250 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
1251 				  CRYPTO_ALG_INTERNAL,
1252 	.cra_blocksize		= 1,
1253 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1254 				  AESNI_ALIGN - 1,
1255 	.cra_alignmask		= 0,
1256 	.cra_type		= &crypto_blkcipher_type,
1257 	.cra_module		= THIS_MODULE,
1258 	.cra_u = {
1259 		.blkcipher = {
1260 			.min_keysize	= AES_MIN_KEY_SIZE,
1261 			.max_keysize	= AES_MAX_KEY_SIZE,
1262 			.ivsize		= AES_BLOCK_SIZE,
1263 			.setkey		= aes_set_key,
1264 			.encrypt	= ctr_crypt,
1265 			.decrypt	= ctr_crypt,
1266 		},
1267 	},
1268 }, {
1269 	.cra_name		= "ctr(aes)",
1270 	.cra_driver_name	= "ctr-aes-aesni",
1271 	.cra_priority		= 400,
1272 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1273 	.cra_blocksize		= 1,
1274 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1275 	.cra_alignmask		= 0,
1276 	.cra_type		= &crypto_ablkcipher_type,
1277 	.cra_module		= THIS_MODULE,
1278 	.cra_init		= ablk_ctr_init,
1279 	.cra_exit		= ablk_exit,
1280 	.cra_u = {
1281 		.ablkcipher = {
1282 			.min_keysize	= AES_MIN_KEY_SIZE,
1283 			.max_keysize	= AES_MAX_KEY_SIZE,
1284 			.ivsize		= AES_BLOCK_SIZE,
1285 			.setkey		= ablk_set_key,
1286 			.encrypt	= ablk_encrypt,
1287 			.decrypt	= ablk_encrypt,
1288 			.geniv		= "chainiv",
1289 		},
1290 	},
1291 #endif
1292 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
1293 }, {
1294 	.cra_name		= "pcbc(aes)",
1295 	.cra_driver_name	= "pcbc-aes-aesni",
1296 	.cra_priority		= 400,
1297 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1298 	.cra_blocksize		= AES_BLOCK_SIZE,
1299 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1300 	.cra_alignmask		= 0,
1301 	.cra_type		= &crypto_ablkcipher_type,
1302 	.cra_module		= THIS_MODULE,
1303 	.cra_init		= ablk_pcbc_init,
1304 	.cra_exit		= ablk_exit,
1305 	.cra_u = {
1306 		.ablkcipher = {
1307 			.min_keysize	= AES_MIN_KEY_SIZE,
1308 			.max_keysize	= AES_MAX_KEY_SIZE,
1309 			.ivsize		= AES_BLOCK_SIZE,
1310 			.setkey		= ablk_set_key,
1311 			.encrypt	= ablk_encrypt,
1312 			.decrypt	= ablk_decrypt,
1313 		},
1314 	},
1315 #endif
1316 }, {
1317 	.cra_name		= "__lrw-aes-aesni",
1318 	.cra_driver_name	= "__driver-lrw-aes-aesni",
1319 	.cra_priority		= 0,
1320 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
1321 				  CRYPTO_ALG_INTERNAL,
1322 	.cra_blocksize		= AES_BLOCK_SIZE,
1323 	.cra_ctxsize		= sizeof(struct aesni_lrw_ctx),
1324 	.cra_alignmask		= 0,
1325 	.cra_type		= &crypto_blkcipher_type,
1326 	.cra_module		= THIS_MODULE,
1327 	.cra_exit		= lrw_aesni_exit_tfm,
1328 	.cra_u = {
1329 		.blkcipher = {
1330 			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1331 			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1332 			.ivsize		= AES_BLOCK_SIZE,
1333 			.setkey		= lrw_aesni_setkey,
1334 			.encrypt	= lrw_encrypt,
1335 			.decrypt	= lrw_decrypt,
1336 		},
1337 	},
1338 }, {
1339 	.cra_name		= "__xts-aes-aesni",
1340 	.cra_driver_name	= "__driver-xts-aes-aesni",
1341 	.cra_priority		= 0,
1342 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
1343 				  CRYPTO_ALG_INTERNAL,
1344 	.cra_blocksize		= AES_BLOCK_SIZE,
1345 	.cra_ctxsize		= sizeof(struct aesni_xts_ctx),
1346 	.cra_alignmask		= 0,
1347 	.cra_type		= &crypto_blkcipher_type,
1348 	.cra_module		= THIS_MODULE,
1349 	.cra_u = {
1350 		.blkcipher = {
1351 			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1352 			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1353 			.ivsize		= AES_BLOCK_SIZE,
1354 			.setkey		= xts_aesni_setkey,
1355 			.encrypt	= xts_encrypt,
1356 			.decrypt	= xts_decrypt,
1357 		},
1358 	},
1359 }, {
1360 	.cra_name		= "lrw(aes)",
1361 	.cra_driver_name	= "lrw-aes-aesni",
1362 	.cra_priority		= 400,
1363 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1364 	.cra_blocksize		= AES_BLOCK_SIZE,
1365 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1366 	.cra_alignmask		= 0,
1367 	.cra_type		= &crypto_ablkcipher_type,
1368 	.cra_module		= THIS_MODULE,
1369 	.cra_init		= ablk_init,
1370 	.cra_exit		= ablk_exit,
1371 	.cra_u = {
1372 		.ablkcipher = {
1373 			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1374 			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1375 			.ivsize		= AES_BLOCK_SIZE,
1376 			.setkey		= ablk_set_key,
1377 			.encrypt	= ablk_encrypt,
1378 			.decrypt	= ablk_decrypt,
1379 		},
1380 	},
1381 }, {
1382 	.cra_name		= "xts(aes)",
1383 	.cra_driver_name	= "xts-aes-aesni",
1384 	.cra_priority		= 400,
1385 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1386 	.cra_blocksize		= AES_BLOCK_SIZE,
1387 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1388 	.cra_alignmask		= 0,
1389 	.cra_type		= &crypto_ablkcipher_type,
1390 	.cra_module		= THIS_MODULE,
1391 	.cra_init		= ablk_init,
1392 	.cra_exit		= ablk_exit,
1393 	.cra_u = {
1394 		.ablkcipher = {
1395 			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1396 			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1397 			.ivsize		= AES_BLOCK_SIZE,
1398 			.setkey		= ablk_set_key,
1399 			.encrypt	= ablk_encrypt,
1400 			.decrypt	= ablk_decrypt,
1401 		},
1402 	},
1403 } };
1404 
1405 #ifdef CONFIG_X86_64
1406 static struct aead_alg aesni_aead_algs[] = { {
1407 	.setkey			= common_rfc4106_set_key,
1408 	.setauthsize		= common_rfc4106_set_authsize,
1409 	.encrypt		= helper_rfc4106_encrypt,
1410 	.decrypt		= helper_rfc4106_decrypt,
1411 	.ivsize			= 8,
1412 	.maxauthsize		= 16,
1413 	.base = {
1414 		.cra_name		= "__gcm-aes-aesni",
1415 		.cra_driver_name	= "__driver-gcm-aes-aesni",
1416 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1417 		.cra_blocksize		= 1,
1418 		.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx),
1419 		.cra_alignmask		= AESNI_ALIGN - 1,
1420 		.cra_module		= THIS_MODULE,
1421 	},
1422 }, {
1423 	.init			= rfc4106_init,
1424 	.exit			= rfc4106_exit,
1425 	.setkey			= rfc4106_set_key,
1426 	.setauthsize		= rfc4106_set_authsize,
1427 	.encrypt		= rfc4106_encrypt,
1428 	.decrypt		= rfc4106_decrypt,
1429 	.ivsize			= 8,
1430 	.maxauthsize		= 16,
1431 	.base = {
1432 		.cra_name		= "rfc4106(gcm(aes))",
1433 		.cra_driver_name	= "rfc4106-gcm-aesni",
1434 		.cra_priority		= 400,
1435 		.cra_flags		= CRYPTO_ALG_ASYNC,
1436 		.cra_blocksize		= 1,
1437 		.cra_ctxsize		= sizeof(struct cryptd_aead *),
1438 		.cra_module		= THIS_MODULE,
1439 	},
1440 } };
1441 #else
1442 static struct aead_alg aesni_aead_algs[0];
1443 #endif
1444 
1445 
1446 static const struct x86_cpu_id aesni_cpu_id[] = {
1447 	X86_FEATURE_MATCH(X86_FEATURE_AES),
1448 	{}
1449 };
1450 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1451 
1452 static int __init aesni_init(void)
1453 {
1454 	int err;
1455 
1456 	if (!x86_match_cpu(aesni_cpu_id))
1457 		return -ENODEV;
1458 #ifdef CONFIG_X86_64
1459 #ifdef CONFIG_AS_AVX2
1460 	if (boot_cpu_has(X86_FEATURE_AVX2)) {
1461 		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1462 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
1463 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
1464 	} else
1465 #endif
1466 #ifdef CONFIG_AS_AVX
1467 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1468 		pr_info("AVX version of gcm_enc/dec engaged.\n");
1469 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
1470 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
1471 	} else
1472 #endif
1473 	{
1474 		pr_info("SSE version of gcm_enc/dec engaged.\n");
1475 		aesni_gcm_enc_tfm = aesni_gcm_enc;
1476 		aesni_gcm_dec_tfm = aesni_gcm_dec;
1477 	}
1478 	aesni_ctr_enc_tfm = aesni_ctr_enc;
1479 #ifdef CONFIG_AS_AVX
1480 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1481 		/* optimize performance of ctr mode encryption transform */
1482 		aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1483 		pr_info("AES CTR mode by8 optimization enabled\n");
1484 	}
1485 #endif
1486 #endif
1487 
1488 	err = crypto_fpu_init();
1489 	if (err)
1490 		return err;
1491 
1492 	err = crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1493 	if (err)
1494 		goto fpu_exit;
1495 
1496 	err = crypto_register_aeads(aesni_aead_algs,
1497 				    ARRAY_SIZE(aesni_aead_algs));
1498 	if (err)
1499 		goto unregister_algs;
1500 
1501 	return err;
1502 
1503 unregister_algs:
1504 	crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1505 fpu_exit:
1506 	crypto_fpu_exit();
1507 	return err;
1508 }
1509 
1510 static void __exit aesni_exit(void)
1511 {
1512 	crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
1513 	crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1514 
1515 	crypto_fpu_exit();
1516 }
1517 
1518 late_initcall(aesni_init);
1519 module_exit(aesni_exit);
1520 
1521 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1522 MODULE_LICENSE("GPL");
1523 MODULE_ALIAS_CRYPTO("aes");
1524