1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021-2022 Intel Corporation */ 3 4 #undef pr_fmt 5 #define pr_fmt(fmt) "tdx: " fmt 6 7 #include <linux/cpufeature.h> 8 #include <linux/export.h> 9 #include <linux/io.h> 10 #include <linux/kexec.h> 11 #include <asm/coco.h> 12 #include <asm/tdx.h> 13 #include <asm/vmx.h> 14 #include <asm/ia32.h> 15 #include <asm/insn.h> 16 #include <asm/insn-eval.h> 17 #include <asm/pgtable.h> 18 #include <asm/set_memory.h> 19 #include <asm/traps.h> 20 21 /* MMIO direction */ 22 #define EPT_READ 0 23 #define EPT_WRITE 1 24 25 /* Port I/O direction */ 26 #define PORT_READ 0 27 #define PORT_WRITE 1 28 29 /* See Exit Qualification for I/O Instructions in VMX documentation */ 30 #define VE_IS_IO_IN(e) ((e) & BIT(3)) 31 #define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1) 32 #define VE_GET_PORT_NUM(e) ((e) >> 16) 33 #define VE_IS_IO_STRING(e) ((e) & BIT(4)) 34 35 #define ATTR_DEBUG BIT(0) 36 #define ATTR_SEPT_VE_DISABLE BIT(28) 37 38 /* TDX Module call error codes */ 39 #define TDCALL_RETURN_CODE(a) ((a) >> 32) 40 #define TDCALL_INVALID_OPERAND 0xc0000100 41 42 #define TDREPORT_SUBTYPE_0 0 43 44 static atomic_long_t nr_shared; 45 46 /* Called from __tdx_hypercall() for unrecoverable failure */ 47 noinstr void __noreturn __tdx_hypercall_failed(void) 48 { 49 instrumentation_begin(); 50 panic("TDVMCALL failed. TDX module bug?"); 51 } 52 53 #ifdef CONFIG_KVM_GUEST 54 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2, 55 unsigned long p3, unsigned long p4) 56 { 57 struct tdx_module_args args = { 58 .r10 = nr, 59 .r11 = p1, 60 .r12 = p2, 61 .r13 = p3, 62 .r14 = p4, 63 }; 64 65 return __tdx_hypercall(&args); 66 } 67 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall); 68 #endif 69 70 /* 71 * Used for TDX guests to make calls directly to the TD module. This 72 * should only be used for calls that have no legitimate reason to fail 73 * or where the kernel can not survive the call failing. 74 */ 75 static inline void tdcall(u64 fn, struct tdx_module_args *args) 76 { 77 if (__tdcall_ret(fn, args)) 78 panic("TDCALL %lld failed (Buggy TDX module!)\n", fn); 79 } 80 81 /* Read TD-scoped metadata */ 82 static inline u64 tdg_vm_rd(u64 field, u64 *value) 83 { 84 struct tdx_module_args args = { 85 .rdx = field, 86 }; 87 u64 ret; 88 89 ret = __tdcall_ret(TDG_VM_RD, &args); 90 *value = args.r8; 91 92 return ret; 93 } 94 95 /* Write TD-scoped metadata */ 96 static inline u64 tdg_vm_wr(u64 field, u64 value, u64 mask) 97 { 98 struct tdx_module_args args = { 99 .rdx = field, 100 .r8 = value, 101 .r9 = mask, 102 }; 103 104 return __tdcall(TDG_VM_WR, &args); 105 } 106 107 /** 108 * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT 109 * subtype 0) using TDG.MR.REPORT TDCALL. 110 * @reportdata: Address of the input buffer which contains user-defined 111 * REPORTDATA to be included into TDREPORT. 112 * @tdreport: Address of the output buffer to store TDREPORT. 113 * 114 * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module 115 * v1.0 specification for more information on TDG.MR.REPORT TDCALL. 116 * It is used in the TDX guest driver module to get the TDREPORT0. 117 * 118 * Return 0 on success, -EINVAL for invalid operands, or -EIO on 119 * other TDCALL failures. 120 */ 121 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport) 122 { 123 struct tdx_module_args args = { 124 .rcx = virt_to_phys(tdreport), 125 .rdx = virt_to_phys(reportdata), 126 .r8 = TDREPORT_SUBTYPE_0, 127 }; 128 u64 ret; 129 130 ret = __tdcall(TDG_MR_REPORT, &args); 131 if (ret) { 132 if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND) 133 return -EINVAL; 134 return -EIO; 135 } 136 137 return 0; 138 } 139 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0); 140 141 /** 142 * tdx_hcall_get_quote() - Wrapper to request TD Quote using GetQuote 143 * hypercall. 144 * @buf: Address of the directly mapped shared kernel buffer which 145 * contains TDREPORT. The same buffer will be used by VMM to 146 * store the generated TD Quote output. 147 * @size: size of the tdquote buffer (4KB-aligned). 148 * 149 * Refer to section titled "TDG.VP.VMCALL<GetQuote>" in the TDX GHCI 150 * v1.0 specification for more information on GetQuote hypercall. 151 * It is used in the TDX guest driver module to get the TD Quote. 152 * 153 * Return 0 on success or error code on failure. 154 */ 155 u64 tdx_hcall_get_quote(u8 *buf, size_t size) 156 { 157 /* Since buf is a shared memory, set the shared (decrypted) bits */ 158 return _tdx_hypercall(TDVMCALL_GET_QUOTE, cc_mkdec(virt_to_phys(buf)), size, 0, 0); 159 } 160 EXPORT_SYMBOL_GPL(tdx_hcall_get_quote); 161 162 static void __noreturn tdx_panic(const char *msg) 163 { 164 struct tdx_module_args args = { 165 .r10 = TDX_HYPERCALL_STANDARD, 166 .r11 = TDVMCALL_REPORT_FATAL_ERROR, 167 .r12 = 0, /* Error code: 0 is Panic */ 168 }; 169 union { 170 /* Define register order according to the GHCI */ 171 struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; }; 172 173 char str[64]; 174 } message; 175 176 /* VMM assumes '\0' in byte 65, if the message took all 64 bytes */ 177 strtomem_pad(message.str, msg, '\0'); 178 179 args.r8 = message.r8; 180 args.r9 = message.r9; 181 args.r14 = message.r14; 182 args.r15 = message.r15; 183 args.rdi = message.rdi; 184 args.rsi = message.rsi; 185 args.rbx = message.rbx; 186 args.rdx = message.rdx; 187 188 /* 189 * This hypercall should never return and it is not safe 190 * to keep the guest running. Call it forever if it 191 * happens to return. 192 */ 193 while (1) 194 __tdx_hypercall(&args); 195 } 196 197 /* 198 * The kernel cannot handle #VEs when accessing normal kernel memory. Ensure 199 * that no #VE will be delivered for accesses to TD-private memory. 200 * 201 * TDX 1.0 does not allow the guest to disable SEPT #VE on its own. The VMM 202 * controls if the guest will receive such #VE with TD attribute 203 * ATTR_SEPT_VE_DISABLE. 204 * 205 * Newer TDX modules allow the guest to control if it wants to receive SEPT 206 * violation #VEs. 207 * 208 * Check if the feature is available and disable SEPT #VE if possible. 209 * 210 * If the TD is allowed to disable/enable SEPT #VEs, the ATTR_SEPT_VE_DISABLE 211 * attribute is no longer reliable. It reflects the initial state of the 212 * control for the TD, but it will not be updated if someone (e.g. bootloader) 213 * changes it before the kernel starts. Kernel must check TDCS_TD_CTLS bit to 214 * determine if SEPT #VEs are enabled or disabled. 215 */ 216 static void disable_sept_ve(u64 td_attr) 217 { 218 const char *msg = "TD misconfiguration: SEPT #VE has to be disabled"; 219 bool debug = td_attr & ATTR_DEBUG; 220 u64 config, controls; 221 222 /* Is this TD allowed to disable SEPT #VE */ 223 tdg_vm_rd(TDCS_CONFIG_FLAGS, &config); 224 if (!(config & TDCS_CONFIG_FLEXIBLE_PENDING_VE)) { 225 /* No SEPT #VE controls for the guest: check the attribute */ 226 if (td_attr & ATTR_SEPT_VE_DISABLE) 227 return; 228 229 /* Relax SEPT_VE_DISABLE check for debug TD for backtraces */ 230 if (debug) 231 pr_warn("%s\n", msg); 232 else 233 tdx_panic(msg); 234 return; 235 } 236 237 /* Check if SEPT #VE has been disabled before us */ 238 tdg_vm_rd(TDCS_TD_CTLS, &controls); 239 if (controls & TD_CTLS_PENDING_VE_DISABLE) 240 return; 241 242 /* Keep #VEs enabled for splats in debugging environments */ 243 if (debug) 244 return; 245 246 /* Disable SEPT #VEs */ 247 tdg_vm_wr(TDCS_TD_CTLS, TD_CTLS_PENDING_VE_DISABLE, 248 TD_CTLS_PENDING_VE_DISABLE); 249 } 250 251 /* 252 * TDX 1.0 generates a #VE when accessing topology-related CPUID leafs (0xB and 253 * 0x1F) and the X2APIC_APICID MSR. The kernel returns all zeros on CPUID #VEs. 254 * In practice, this means that the kernel can only boot with a plain topology. 255 * Any complications will cause problems. 256 * 257 * The ENUM_TOPOLOGY feature allows the VMM to provide topology information. 258 * Enabling the feature eliminates topology-related #VEs: the TDX module 259 * virtualizes accesses to the CPUID leafs and the MSR. 260 * 261 * Enable ENUM_TOPOLOGY if it is available. 262 */ 263 static void enable_cpu_topology_enumeration(void) 264 { 265 u64 configured; 266 267 /* Has the VMM provided a valid topology configuration? */ 268 tdg_vm_rd(TDCS_TOPOLOGY_ENUM_CONFIGURED, &configured); 269 if (!configured) { 270 pr_err("VMM did not configure X2APIC_IDs properly\n"); 271 return; 272 } 273 274 tdg_vm_wr(TDCS_TD_CTLS, TD_CTLS_ENUM_TOPOLOGY, TD_CTLS_ENUM_TOPOLOGY); 275 } 276 277 static void tdx_setup(u64 *cc_mask) 278 { 279 struct tdx_module_args args = {}; 280 unsigned int gpa_width; 281 u64 td_attr; 282 283 /* 284 * TDINFO TDX module call is used to get the TD execution environment 285 * information like GPA width, number of available vcpus, debug mode 286 * information, etc. More details about the ABI can be found in TDX 287 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL 288 * [TDG.VP.INFO]. 289 */ 290 tdcall(TDG_VP_INFO, &args); 291 292 /* 293 * The highest bit of a guest physical address is the "sharing" bit. 294 * Set it for shared pages and clear it for private pages. 295 * 296 * The GPA width that comes out of this call is critical. TDX guests 297 * can not meaningfully run without it. 298 */ 299 gpa_width = args.rcx & GENMASK(5, 0); 300 *cc_mask = BIT_ULL(gpa_width - 1); 301 302 td_attr = args.rdx; 303 304 /* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */ 305 tdg_vm_wr(TDCS_NOTIFY_ENABLES, 0, -1ULL); 306 307 disable_sept_ve(td_attr); 308 enable_cpu_topology_enumeration(); 309 } 310 311 /* 312 * The TDX module spec states that #VE may be injected for a limited set of 313 * reasons: 314 * 315 * - Emulation of the architectural #VE injection on EPT violation; 316 * 317 * - As a result of guest TD execution of a disallowed instruction, 318 * a disallowed MSR access, or CPUID virtualization; 319 * 320 * - A notification to the guest TD about anomalous behavior; 321 * 322 * The last one is opt-in and is not used by the kernel. 323 * 324 * The Intel Software Developer's Manual describes cases when instruction 325 * length field can be used in section "Information for VM Exits Due to 326 * Instruction Execution". 327 * 328 * For TDX, it ultimately means GET_VEINFO provides reliable instruction length 329 * information if #VE occurred due to instruction execution, but not for EPT 330 * violations. 331 */ 332 static int ve_instr_len(struct ve_info *ve) 333 { 334 switch (ve->exit_reason) { 335 case EXIT_REASON_HLT: 336 case EXIT_REASON_MSR_READ: 337 case EXIT_REASON_MSR_WRITE: 338 case EXIT_REASON_CPUID: 339 case EXIT_REASON_IO_INSTRUCTION: 340 /* It is safe to use ve->instr_len for #VE due instructions */ 341 return ve->instr_len; 342 case EXIT_REASON_EPT_VIOLATION: 343 /* 344 * For EPT violations, ve->insn_len is not defined. For those, 345 * the kernel must decode instructions manually and should not 346 * be using this function. 347 */ 348 WARN_ONCE(1, "ve->instr_len is not defined for EPT violations"); 349 return 0; 350 default: 351 WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason); 352 return ve->instr_len; 353 } 354 } 355 356 static u64 __cpuidle __halt(const bool irq_disabled) 357 { 358 struct tdx_module_args args = { 359 .r10 = TDX_HYPERCALL_STANDARD, 360 .r11 = hcall_func(EXIT_REASON_HLT), 361 .r12 = irq_disabled, 362 }; 363 364 /* 365 * Emulate HLT operation via hypercall. More info about ABI 366 * can be found in TDX Guest-Host-Communication Interface 367 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>. 368 * 369 * The VMM uses the "IRQ disabled" param to understand IRQ 370 * enabled status (RFLAGS.IF) of the TD guest and to determine 371 * whether or not it should schedule the halted vCPU if an 372 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM 373 * can keep the vCPU in virtual HLT, even if an IRQ is 374 * pending, without hanging/breaking the guest. 375 */ 376 return __tdx_hypercall(&args); 377 } 378 379 static int handle_halt(struct ve_info *ve) 380 { 381 const bool irq_disabled = irqs_disabled(); 382 383 if (__halt(irq_disabled)) 384 return -EIO; 385 386 return ve_instr_len(ve); 387 } 388 389 void __cpuidle tdx_safe_halt(void) 390 { 391 const bool irq_disabled = false; 392 393 /* 394 * Use WARN_ONCE() to report the failure. 395 */ 396 if (__halt(irq_disabled)) 397 WARN_ONCE(1, "HLT instruction emulation failed\n"); 398 } 399 400 static int read_msr(struct pt_regs *regs, struct ve_info *ve) 401 { 402 struct tdx_module_args args = { 403 .r10 = TDX_HYPERCALL_STANDARD, 404 .r11 = hcall_func(EXIT_REASON_MSR_READ), 405 .r12 = regs->cx, 406 }; 407 408 /* 409 * Emulate the MSR read via hypercall. More info about ABI 410 * can be found in TDX Guest-Host-Communication Interface 411 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>". 412 */ 413 if (__tdx_hypercall(&args)) 414 return -EIO; 415 416 regs->ax = lower_32_bits(args.r11); 417 regs->dx = upper_32_bits(args.r11); 418 return ve_instr_len(ve); 419 } 420 421 static int write_msr(struct pt_regs *regs, struct ve_info *ve) 422 { 423 struct tdx_module_args args = { 424 .r10 = TDX_HYPERCALL_STANDARD, 425 .r11 = hcall_func(EXIT_REASON_MSR_WRITE), 426 .r12 = regs->cx, 427 .r13 = (u64)regs->dx << 32 | regs->ax, 428 }; 429 430 /* 431 * Emulate the MSR write via hypercall. More info about ABI 432 * can be found in TDX Guest-Host-Communication Interface 433 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>". 434 */ 435 if (__tdx_hypercall(&args)) 436 return -EIO; 437 438 return ve_instr_len(ve); 439 } 440 441 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve) 442 { 443 struct tdx_module_args args = { 444 .r10 = TDX_HYPERCALL_STANDARD, 445 .r11 = hcall_func(EXIT_REASON_CPUID), 446 .r12 = regs->ax, 447 .r13 = regs->cx, 448 }; 449 450 /* 451 * Only allow VMM to control range reserved for hypervisor 452 * communication. 453 * 454 * Return all-zeros for any CPUID outside the range. It matches CPU 455 * behaviour for non-supported leaf. 456 */ 457 if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) { 458 regs->ax = regs->bx = regs->cx = regs->dx = 0; 459 return ve_instr_len(ve); 460 } 461 462 /* 463 * Emulate the CPUID instruction via a hypercall. More info about 464 * ABI can be found in TDX Guest-Host-Communication Interface 465 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>". 466 */ 467 if (__tdx_hypercall(&args)) 468 return -EIO; 469 470 /* 471 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of 472 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution. 473 * So copy the register contents back to pt_regs. 474 */ 475 regs->ax = args.r12; 476 regs->bx = args.r13; 477 regs->cx = args.r14; 478 regs->dx = args.r15; 479 480 return ve_instr_len(ve); 481 } 482 483 static bool mmio_read(int size, unsigned long addr, unsigned long *val) 484 { 485 struct tdx_module_args args = { 486 .r10 = TDX_HYPERCALL_STANDARD, 487 .r11 = hcall_func(EXIT_REASON_EPT_VIOLATION), 488 .r12 = size, 489 .r13 = EPT_READ, 490 .r14 = addr, 491 }; 492 493 if (__tdx_hypercall(&args)) 494 return false; 495 496 *val = args.r11; 497 return true; 498 } 499 500 static bool mmio_write(int size, unsigned long addr, unsigned long val) 501 { 502 return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size, 503 EPT_WRITE, addr, val); 504 } 505 506 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve) 507 { 508 unsigned long *reg, val, vaddr; 509 char buffer[MAX_INSN_SIZE]; 510 enum insn_mmio_type mmio; 511 struct insn insn = {}; 512 int size, extend_size; 513 u8 extend_val = 0; 514 515 /* Only in-kernel MMIO is supported */ 516 if (WARN_ON_ONCE(user_mode(regs))) 517 return -EFAULT; 518 519 if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE)) 520 return -EFAULT; 521 522 if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64)) 523 return -EINVAL; 524 525 mmio = insn_decode_mmio(&insn, &size); 526 if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED)) 527 return -EINVAL; 528 529 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) { 530 reg = insn_get_modrm_reg_ptr(&insn, regs); 531 if (!reg) 532 return -EINVAL; 533 } 534 535 if (!fault_in_kernel_space(ve->gla)) { 536 WARN_ONCE(1, "Access to userspace address is not supported"); 537 return -EINVAL; 538 } 539 540 /* 541 * Reject EPT violation #VEs that split pages. 542 * 543 * MMIO accesses are supposed to be naturally aligned and therefore 544 * never cross page boundaries. Seeing split page accesses indicates 545 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page. 546 * 547 * load_unaligned_zeropad() will recover using exception fixups. 548 */ 549 vaddr = (unsigned long)insn_get_addr_ref(&insn, regs); 550 if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE) 551 return -EFAULT; 552 553 /* Handle writes first */ 554 switch (mmio) { 555 case INSN_MMIO_WRITE: 556 memcpy(&val, reg, size); 557 if (!mmio_write(size, ve->gpa, val)) 558 return -EIO; 559 return insn.length; 560 case INSN_MMIO_WRITE_IMM: 561 val = insn.immediate.value; 562 if (!mmio_write(size, ve->gpa, val)) 563 return -EIO; 564 return insn.length; 565 case INSN_MMIO_READ: 566 case INSN_MMIO_READ_ZERO_EXTEND: 567 case INSN_MMIO_READ_SIGN_EXTEND: 568 /* Reads are handled below */ 569 break; 570 case INSN_MMIO_MOVS: 571 case INSN_MMIO_DECODE_FAILED: 572 /* 573 * MMIO was accessed with an instruction that could not be 574 * decoded or handled properly. It was likely not using io.h 575 * helpers or accessed MMIO accidentally. 576 */ 577 return -EINVAL; 578 default: 579 WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?"); 580 return -EINVAL; 581 } 582 583 /* Handle reads */ 584 if (!mmio_read(size, ve->gpa, &val)) 585 return -EIO; 586 587 switch (mmio) { 588 case INSN_MMIO_READ: 589 /* Zero-extend for 32-bit operation */ 590 extend_size = size == 4 ? sizeof(*reg) : 0; 591 break; 592 case INSN_MMIO_READ_ZERO_EXTEND: 593 /* Zero extend based on operand size */ 594 extend_size = insn.opnd_bytes; 595 break; 596 case INSN_MMIO_READ_SIGN_EXTEND: 597 /* Sign extend based on operand size */ 598 extend_size = insn.opnd_bytes; 599 if (size == 1 && val & BIT(7)) 600 extend_val = 0xFF; 601 else if (size > 1 && val & BIT(15)) 602 extend_val = 0xFF; 603 break; 604 default: 605 /* All other cases has to be covered with the first switch() */ 606 WARN_ON_ONCE(1); 607 return -EINVAL; 608 } 609 610 if (extend_size) 611 memset(reg, extend_val, extend_size); 612 memcpy(reg, &val, size); 613 return insn.length; 614 } 615 616 static bool handle_in(struct pt_regs *regs, int size, int port) 617 { 618 struct tdx_module_args args = { 619 .r10 = TDX_HYPERCALL_STANDARD, 620 .r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION), 621 .r12 = size, 622 .r13 = PORT_READ, 623 .r14 = port, 624 }; 625 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 626 bool success; 627 628 /* 629 * Emulate the I/O read via hypercall. More info about ABI can be found 630 * in TDX Guest-Host-Communication Interface (GHCI) section titled 631 * "TDG.VP.VMCALL<Instruction.IO>". 632 */ 633 success = !__tdx_hypercall(&args); 634 635 /* Update part of the register affected by the emulated instruction */ 636 regs->ax &= ~mask; 637 if (success) 638 regs->ax |= args.r11 & mask; 639 640 return success; 641 } 642 643 static bool handle_out(struct pt_regs *regs, int size, int port) 644 { 645 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 646 647 /* 648 * Emulate the I/O write via hypercall. More info about ABI can be found 649 * in TDX Guest-Host-Communication Interface (GHCI) section titled 650 * "TDG.VP.VMCALL<Instruction.IO>". 651 */ 652 return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size, 653 PORT_WRITE, port, regs->ax & mask); 654 } 655 656 /* 657 * Emulate I/O using hypercall. 658 * 659 * Assumes the IO instruction was using ax, which is enforced 660 * by the standard io.h macros. 661 * 662 * Return True on success or False on failure. 663 */ 664 static int handle_io(struct pt_regs *regs, struct ve_info *ve) 665 { 666 u32 exit_qual = ve->exit_qual; 667 int size, port; 668 bool in, ret; 669 670 if (VE_IS_IO_STRING(exit_qual)) 671 return -EIO; 672 673 in = VE_IS_IO_IN(exit_qual); 674 size = VE_GET_IO_SIZE(exit_qual); 675 port = VE_GET_PORT_NUM(exit_qual); 676 677 678 if (in) 679 ret = handle_in(regs, size, port); 680 else 681 ret = handle_out(regs, size, port); 682 if (!ret) 683 return -EIO; 684 685 return ve_instr_len(ve); 686 } 687 688 /* 689 * Early #VE exception handler. Only handles a subset of port I/O. 690 * Intended only for earlyprintk. If failed, return false. 691 */ 692 __init bool tdx_early_handle_ve(struct pt_regs *regs) 693 { 694 struct ve_info ve; 695 int insn_len; 696 697 tdx_get_ve_info(&ve); 698 699 if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION) 700 return false; 701 702 insn_len = handle_io(regs, &ve); 703 if (insn_len < 0) 704 return false; 705 706 regs->ip += insn_len; 707 return true; 708 } 709 710 void tdx_get_ve_info(struct ve_info *ve) 711 { 712 struct tdx_module_args args = {}; 713 714 /* 715 * Called during #VE handling to retrieve the #VE info from the 716 * TDX module. 717 * 718 * This has to be called early in #VE handling. A "nested" #VE which 719 * occurs before this will raise a #DF and is not recoverable. 720 * 721 * The call retrieves the #VE info from the TDX module, which also 722 * clears the "#VE valid" flag. This must be done before anything else 723 * because any #VE that occurs while the valid flag is set will lead to 724 * #DF. 725 * 726 * Note, the TDX module treats virtual NMIs as inhibited if the #VE 727 * valid flag is set. It means that NMI=>#VE will not result in a #DF. 728 */ 729 tdcall(TDG_VP_VEINFO_GET, &args); 730 731 /* Transfer the output parameters */ 732 ve->exit_reason = args.rcx; 733 ve->exit_qual = args.rdx; 734 ve->gla = args.r8; 735 ve->gpa = args.r9; 736 ve->instr_len = lower_32_bits(args.r10); 737 ve->instr_info = upper_32_bits(args.r10); 738 } 739 740 /* 741 * Handle the user initiated #VE. 742 * 743 * On success, returns the number of bytes RIP should be incremented (>=0) 744 * or -errno on error. 745 */ 746 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve) 747 { 748 switch (ve->exit_reason) { 749 case EXIT_REASON_CPUID: 750 return handle_cpuid(regs, ve); 751 default: 752 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 753 return -EIO; 754 } 755 } 756 757 static inline bool is_private_gpa(u64 gpa) 758 { 759 return gpa == cc_mkenc(gpa); 760 } 761 762 /* 763 * Handle the kernel #VE. 764 * 765 * On success, returns the number of bytes RIP should be incremented (>=0) 766 * or -errno on error. 767 */ 768 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve) 769 { 770 switch (ve->exit_reason) { 771 case EXIT_REASON_HLT: 772 return handle_halt(ve); 773 case EXIT_REASON_MSR_READ: 774 return read_msr(regs, ve); 775 case EXIT_REASON_MSR_WRITE: 776 return write_msr(regs, ve); 777 case EXIT_REASON_CPUID: 778 return handle_cpuid(regs, ve); 779 case EXIT_REASON_EPT_VIOLATION: 780 if (is_private_gpa(ve->gpa)) 781 panic("Unexpected EPT-violation on private memory."); 782 return handle_mmio(regs, ve); 783 case EXIT_REASON_IO_INSTRUCTION: 784 return handle_io(regs, ve); 785 default: 786 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 787 return -EIO; 788 } 789 } 790 791 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve) 792 { 793 int insn_len; 794 795 if (user_mode(regs)) 796 insn_len = virt_exception_user(regs, ve); 797 else 798 insn_len = virt_exception_kernel(regs, ve); 799 if (insn_len < 0) 800 return false; 801 802 /* After successful #VE handling, move the IP */ 803 regs->ip += insn_len; 804 805 return true; 806 } 807 808 static bool tdx_tlb_flush_required(bool private) 809 { 810 /* 811 * TDX guest is responsible for flushing TLB on private->shared 812 * transition. VMM is responsible for flushing on shared->private. 813 * 814 * The VMM _can't_ flush private addresses as it can't generate PAs 815 * with the guest's HKID. Shared memory isn't subject to integrity 816 * checking, i.e. the VMM doesn't need to flush for its own protection. 817 * 818 * There's no need to flush when converting from shared to private, 819 * as flushing is the VMM's responsibility in this case, e.g. it must 820 * flush to avoid integrity failures in the face of a buggy or 821 * malicious guest. 822 */ 823 return !private; 824 } 825 826 static bool tdx_cache_flush_required(void) 827 { 828 /* 829 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence. 830 * TDX doesn't have such capability. 831 * 832 * Flush cache unconditionally. 833 */ 834 return true; 835 } 836 837 /* 838 * Notify the VMM about page mapping conversion. More info about ABI 839 * can be found in TDX Guest-Host-Communication Interface (GHCI), 840 * section "TDG.VP.VMCALL<MapGPA>". 841 */ 842 static bool tdx_map_gpa(phys_addr_t start, phys_addr_t end, bool enc) 843 { 844 /* Retrying the hypercall a second time should succeed; use 3 just in case */ 845 const int max_retries_per_page = 3; 846 int retry_count = 0; 847 848 if (!enc) { 849 /* Set the shared (decrypted) bits: */ 850 start |= cc_mkdec(0); 851 end |= cc_mkdec(0); 852 } 853 854 while (retry_count < max_retries_per_page) { 855 struct tdx_module_args args = { 856 .r10 = TDX_HYPERCALL_STANDARD, 857 .r11 = TDVMCALL_MAP_GPA, 858 .r12 = start, 859 .r13 = end - start }; 860 861 u64 map_fail_paddr; 862 u64 ret = __tdx_hypercall(&args); 863 864 if (ret != TDVMCALL_STATUS_RETRY) 865 return !ret; 866 /* 867 * The guest must retry the operation for the pages in the 868 * region starting at the GPA specified in R11. R11 comes 869 * from the untrusted VMM. Sanity check it. 870 */ 871 map_fail_paddr = args.r11; 872 if (map_fail_paddr < start || map_fail_paddr >= end) 873 return false; 874 875 /* "Consume" a retry without forward progress */ 876 if (map_fail_paddr == start) { 877 retry_count++; 878 continue; 879 } 880 881 start = map_fail_paddr; 882 retry_count = 0; 883 } 884 885 return false; 886 } 887 888 /* 889 * Inform the VMM of the guest's intent for this physical page: shared with 890 * the VMM or private to the guest. The VMM is expected to change its mapping 891 * of the page in response. 892 */ 893 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc) 894 { 895 phys_addr_t start = __pa(vaddr); 896 phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE); 897 898 if (!tdx_map_gpa(start, end, enc)) 899 return false; 900 901 /* shared->private conversion requires memory to be accepted before use */ 902 if (enc) 903 return tdx_accept_memory(start, end); 904 905 return true; 906 } 907 908 static int tdx_enc_status_change_prepare(unsigned long vaddr, int numpages, 909 bool enc) 910 { 911 /* 912 * Only handle shared->private conversion here. 913 * See the comment in tdx_early_init(). 914 */ 915 if (enc && !tdx_enc_status_changed(vaddr, numpages, enc)) 916 return -EIO; 917 918 return 0; 919 } 920 921 static int tdx_enc_status_change_finish(unsigned long vaddr, int numpages, 922 bool enc) 923 { 924 /* 925 * Only handle private->shared conversion here. 926 * See the comment in tdx_early_init(). 927 */ 928 if (!enc && !tdx_enc_status_changed(vaddr, numpages, enc)) 929 return -EIO; 930 931 if (enc) 932 atomic_long_sub(numpages, &nr_shared); 933 else 934 atomic_long_add(numpages, &nr_shared); 935 936 return 0; 937 } 938 939 /* Stop new private<->shared conversions */ 940 static void tdx_kexec_begin(void) 941 { 942 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 943 return; 944 945 /* 946 * Crash kernel reaches here with interrupts disabled: can't wait for 947 * conversions to finish. 948 * 949 * If race happened, just report and proceed. 950 */ 951 if (!set_memory_enc_stop_conversion()) 952 pr_warn("Failed to stop shared<->private conversions\n"); 953 } 954 955 /* Walk direct mapping and convert all shared memory back to private */ 956 static void tdx_kexec_finish(void) 957 { 958 unsigned long addr, end; 959 long found = 0, shared; 960 961 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 962 return; 963 964 lockdep_assert_irqs_disabled(); 965 966 addr = PAGE_OFFSET; 967 end = PAGE_OFFSET + get_max_mapped(); 968 969 while (addr < end) { 970 unsigned long size; 971 unsigned int level; 972 pte_t *pte; 973 974 pte = lookup_address(addr, &level); 975 size = page_level_size(level); 976 977 if (pte && pte_decrypted(*pte)) { 978 int pages = size / PAGE_SIZE; 979 980 /* 981 * Touching memory with shared bit set triggers implicit 982 * conversion to shared. 983 * 984 * Make sure nobody touches the shared range from 985 * now on. 986 */ 987 set_pte(pte, __pte(0)); 988 989 /* 990 * Memory encryption state persists across kexec. 991 * If tdx_enc_status_changed() fails in the first 992 * kernel, it leaves memory in an unknown state. 993 * 994 * If that memory remains shared, accessing it in the 995 * *next* kernel through a private mapping will result 996 * in an unrecoverable guest shutdown. 997 * 998 * The kdump kernel boot is not impacted as it uses 999 * a pre-reserved memory range that is always private. 1000 * However, gathering crash information could lead to 1001 * a crash if it accesses unconverted memory through 1002 * a private mapping which is possible when accessing 1003 * that memory through /proc/vmcore, for example. 1004 * 1005 * In all cases, print error info in order to leave 1006 * enough bread crumbs for debugging. 1007 */ 1008 if (!tdx_enc_status_changed(addr, pages, true)) { 1009 pr_err("Failed to unshare range %#lx-%#lx\n", 1010 addr, addr + size); 1011 } 1012 1013 found += pages; 1014 } 1015 1016 addr += size; 1017 } 1018 1019 __flush_tlb_all(); 1020 1021 shared = atomic_long_read(&nr_shared); 1022 if (shared != found) { 1023 pr_err("shared page accounting is off\n"); 1024 pr_err("nr_shared = %ld, nr_found = %ld\n", shared, found); 1025 } 1026 } 1027 1028 void __init tdx_early_init(void) 1029 { 1030 u64 cc_mask; 1031 u32 eax, sig[3]; 1032 1033 cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]); 1034 1035 if (memcmp(TDX_IDENT, sig, sizeof(sig))) 1036 return; 1037 1038 setup_force_cpu_cap(X86_FEATURE_TDX_GUEST); 1039 1040 /* TSC is the only reliable clock in TDX guest */ 1041 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); 1042 1043 cc_vendor = CC_VENDOR_INTEL; 1044 1045 /* Configure the TD */ 1046 tdx_setup(&cc_mask); 1047 1048 cc_set_mask(cc_mask); 1049 1050 /* 1051 * All bits above GPA width are reserved and kernel treats shared bit 1052 * as flag, not as part of physical address. 1053 * 1054 * Adjust physical mask to only cover valid GPA bits. 1055 */ 1056 physical_mask &= cc_mask - 1; 1057 1058 /* 1059 * The kernel mapping should match the TDX metadata for the page. 1060 * load_unaligned_zeropad() can touch memory *adjacent* to that which is 1061 * owned by the caller and can catch even _momentary_ mismatches. Bad 1062 * things happen on mismatch: 1063 * 1064 * - Private mapping => Shared Page == Guest shutdown 1065 * - Shared mapping => Private Page == Recoverable #VE 1066 * 1067 * guest.enc_status_change_prepare() converts the page from 1068 * shared=>private before the mapping becomes private. 1069 * 1070 * guest.enc_status_change_finish() converts the page from 1071 * private=>shared after the mapping becomes private. 1072 * 1073 * In both cases there is a temporary shared mapping to a private page, 1074 * which can result in a #VE. But, there is never a private mapping to 1075 * a shared page. 1076 */ 1077 x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare; 1078 x86_platform.guest.enc_status_change_finish = tdx_enc_status_change_finish; 1079 1080 x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required; 1081 x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required; 1082 1083 x86_platform.guest.enc_kexec_begin = tdx_kexec_begin; 1084 x86_platform.guest.enc_kexec_finish = tdx_kexec_finish; 1085 1086 /* 1087 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel 1088 * bringup low level code. That raises #VE which cannot be handled 1089 * there. 1090 * 1091 * Intel-TDX has a secure RDMSR hypercall, but that needs to be 1092 * implemented separately in the low level startup ASM code. 1093 * Until that is in place, disable parallel bringup for TDX. 1094 */ 1095 x86_cpuinit.parallel_bringup = false; 1096 1097 pr_info("Guest detected\n"); 1098 } 1099