1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021-2022 Intel Corporation */ 3 4 #undef pr_fmt 5 #define pr_fmt(fmt) "tdx: " fmt 6 7 #include <linux/cpufeature.h> 8 #include <linux/export.h> 9 #include <linux/io.h> 10 #include <linux/kexec.h> 11 #include <asm/coco.h> 12 #include <asm/tdx.h> 13 #include <asm/vmx.h> 14 #include <asm/ia32.h> 15 #include <asm/insn.h> 16 #include <asm/insn-eval.h> 17 #include <asm/paravirt_types.h> 18 #include <asm/pgtable.h> 19 #include <asm/set_memory.h> 20 #include <asm/traps.h> 21 22 /* MMIO direction */ 23 #define EPT_READ 0 24 #define EPT_WRITE 1 25 26 /* Port I/O direction */ 27 #define PORT_READ 0 28 #define PORT_WRITE 1 29 30 /* See Exit Qualification for I/O Instructions in VMX documentation */ 31 #define VE_IS_IO_IN(e) ((e) & BIT(3)) 32 #define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1) 33 #define VE_GET_PORT_NUM(e) ((e) >> 16) 34 #define VE_IS_IO_STRING(e) ((e) & BIT(4)) 35 36 /* TDX Module call error codes */ 37 #define TDCALL_RETURN_CODE(a) ((a) >> 32) 38 #define TDCALL_INVALID_OPERAND 0xc0000100 39 40 #define TDREPORT_SUBTYPE_0 0 41 42 static atomic_long_t nr_shared; 43 44 /* Called from __tdx_hypercall() for unrecoverable failure */ 45 noinstr void __noreturn __tdx_hypercall_failed(void) 46 { 47 instrumentation_begin(); 48 panic("TDVMCALL failed. TDX module bug?"); 49 } 50 51 #ifdef CONFIG_KVM_GUEST 52 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2, 53 unsigned long p3, unsigned long p4) 54 { 55 struct tdx_module_args args = { 56 .r10 = nr, 57 .r11 = p1, 58 .r12 = p2, 59 .r13 = p3, 60 .r14 = p4, 61 }; 62 63 return __tdx_hypercall(&args); 64 } 65 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall); 66 #endif 67 68 /* 69 * Used for TDX guests to make calls directly to the TD module. This 70 * should only be used for calls that have no legitimate reason to fail 71 * or where the kernel can not survive the call failing. 72 */ 73 static inline void tdcall(u64 fn, struct tdx_module_args *args) 74 { 75 if (__tdcall_ret(fn, args)) 76 panic("TDCALL %lld failed (Buggy TDX module!)\n", fn); 77 } 78 79 /* Read TD-scoped metadata */ 80 static inline u64 tdg_vm_rd(u64 field, u64 *value) 81 { 82 struct tdx_module_args args = { 83 .rdx = field, 84 }; 85 u64 ret; 86 87 ret = __tdcall_ret(TDG_VM_RD, &args); 88 *value = args.r8; 89 90 return ret; 91 } 92 93 /* Write TD-scoped metadata */ 94 static inline u64 tdg_vm_wr(u64 field, u64 value, u64 mask) 95 { 96 struct tdx_module_args args = { 97 .rdx = field, 98 .r8 = value, 99 .r9 = mask, 100 }; 101 102 return __tdcall(TDG_VM_WR, &args); 103 } 104 105 /** 106 * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT 107 * subtype 0) using TDG.MR.REPORT TDCALL. 108 * @reportdata: Address of the input buffer which contains user-defined 109 * REPORTDATA to be included into TDREPORT. 110 * @tdreport: Address of the output buffer to store TDREPORT. 111 * 112 * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module 113 * v1.0 specification for more information on TDG.MR.REPORT TDCALL. 114 * It is used in the TDX guest driver module to get the TDREPORT0. 115 * 116 * Return 0 on success, -EINVAL for invalid operands, or -EIO on 117 * other TDCALL failures. 118 */ 119 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport) 120 { 121 struct tdx_module_args args = { 122 .rcx = virt_to_phys(tdreport), 123 .rdx = virt_to_phys(reportdata), 124 .r8 = TDREPORT_SUBTYPE_0, 125 }; 126 u64 ret; 127 128 ret = __tdcall(TDG_MR_REPORT, &args); 129 if (ret) { 130 if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND) 131 return -EINVAL; 132 return -EIO; 133 } 134 135 return 0; 136 } 137 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0); 138 139 /** 140 * tdx_hcall_get_quote() - Wrapper to request TD Quote using GetQuote 141 * hypercall. 142 * @buf: Address of the directly mapped shared kernel buffer which 143 * contains TDREPORT. The same buffer will be used by VMM to 144 * store the generated TD Quote output. 145 * @size: size of the tdquote buffer (4KB-aligned). 146 * 147 * Refer to section titled "TDG.VP.VMCALL<GetQuote>" in the TDX GHCI 148 * v1.0 specification for more information on GetQuote hypercall. 149 * It is used in the TDX guest driver module to get the TD Quote. 150 * 151 * Return 0 on success or error code on failure. 152 */ 153 u64 tdx_hcall_get_quote(u8 *buf, size_t size) 154 { 155 /* Since buf is a shared memory, set the shared (decrypted) bits */ 156 return _tdx_hypercall(TDVMCALL_GET_QUOTE, cc_mkdec(virt_to_phys(buf)), size, 0, 0); 157 } 158 EXPORT_SYMBOL_GPL(tdx_hcall_get_quote); 159 160 static void __noreturn tdx_panic(const char *msg) 161 { 162 struct tdx_module_args args = { 163 .r10 = TDX_HYPERCALL_STANDARD, 164 .r11 = TDVMCALL_REPORT_FATAL_ERROR, 165 .r12 = 0, /* Error code: 0 is Panic */ 166 }; 167 union { 168 /* Define register order according to the GHCI */ 169 struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; }; 170 171 char bytes[64] __nonstring; 172 } message; 173 174 /* VMM assumes '\0' in byte 65, if the message took all 64 bytes */ 175 strtomem_pad(message.bytes, msg, '\0'); 176 177 args.r8 = message.r8; 178 args.r9 = message.r9; 179 args.r14 = message.r14; 180 args.r15 = message.r15; 181 args.rdi = message.rdi; 182 args.rsi = message.rsi; 183 args.rbx = message.rbx; 184 args.rdx = message.rdx; 185 186 /* 187 * This hypercall should never return and it is not safe 188 * to keep the guest running. Call it forever if it 189 * happens to return. 190 */ 191 while (1) 192 __tdx_hypercall(&args); 193 } 194 195 /* 196 * The kernel cannot handle #VEs when accessing normal kernel memory. Ensure 197 * that no #VE will be delivered for accesses to TD-private memory. 198 * 199 * TDX 1.0 does not allow the guest to disable SEPT #VE on its own. The VMM 200 * controls if the guest will receive such #VE with TD attribute 201 * TDX_ATTR_SEPT_VE_DISABLE. 202 * 203 * Newer TDX modules allow the guest to control if it wants to receive SEPT 204 * violation #VEs. 205 * 206 * Check if the feature is available and disable SEPT #VE if possible. 207 * 208 * If the TD is allowed to disable/enable SEPT #VEs, the TDX_ATTR_SEPT_VE_DISABLE 209 * attribute is no longer reliable. It reflects the initial state of the 210 * control for the TD, but it will not be updated if someone (e.g. bootloader) 211 * changes it before the kernel starts. Kernel must check TDCS_TD_CTLS bit to 212 * determine if SEPT #VEs are enabled or disabled. 213 */ 214 static void disable_sept_ve(u64 td_attr) 215 { 216 const char *msg = "TD misconfiguration: SEPT #VE has to be disabled"; 217 bool debug = td_attr & TDX_ATTR_DEBUG; 218 u64 config, controls; 219 220 /* Is this TD allowed to disable SEPT #VE */ 221 tdg_vm_rd(TDCS_CONFIG_FLAGS, &config); 222 if (!(config & TDCS_CONFIG_FLEXIBLE_PENDING_VE)) { 223 /* No SEPT #VE controls for the guest: check the attribute */ 224 if (td_attr & TDX_ATTR_SEPT_VE_DISABLE) 225 return; 226 227 /* Relax SEPT_VE_DISABLE check for debug TD for backtraces */ 228 if (debug) 229 pr_warn("%s\n", msg); 230 else 231 tdx_panic(msg); 232 return; 233 } 234 235 /* Check if SEPT #VE has been disabled before us */ 236 tdg_vm_rd(TDCS_TD_CTLS, &controls); 237 if (controls & TD_CTLS_PENDING_VE_DISABLE) 238 return; 239 240 /* Keep #VEs enabled for splats in debugging environments */ 241 if (debug) 242 return; 243 244 /* Disable SEPT #VEs */ 245 tdg_vm_wr(TDCS_TD_CTLS, TD_CTLS_PENDING_VE_DISABLE, 246 TD_CTLS_PENDING_VE_DISABLE); 247 } 248 249 /* 250 * TDX 1.0 generates a #VE when accessing topology-related CPUID leafs (0xB and 251 * 0x1F) and the X2APIC_APICID MSR. The kernel returns all zeros on CPUID #VEs. 252 * In practice, this means that the kernel can only boot with a plain topology. 253 * Any complications will cause problems. 254 * 255 * The ENUM_TOPOLOGY feature allows the VMM to provide topology information. 256 * Enabling the feature eliminates topology-related #VEs: the TDX module 257 * virtualizes accesses to the CPUID leafs and the MSR. 258 * 259 * Enable ENUM_TOPOLOGY if it is available. 260 */ 261 static void enable_cpu_topology_enumeration(void) 262 { 263 u64 configured; 264 265 /* Has the VMM provided a valid topology configuration? */ 266 tdg_vm_rd(TDCS_TOPOLOGY_ENUM_CONFIGURED, &configured); 267 if (!configured) { 268 pr_err("VMM did not configure X2APIC_IDs properly\n"); 269 return; 270 } 271 272 tdg_vm_wr(TDCS_TD_CTLS, TD_CTLS_ENUM_TOPOLOGY, TD_CTLS_ENUM_TOPOLOGY); 273 } 274 275 static void reduce_unnecessary_ve(void) 276 { 277 u64 err = tdg_vm_wr(TDCS_TD_CTLS, TD_CTLS_REDUCE_VE, TD_CTLS_REDUCE_VE); 278 279 if (err == TDX_SUCCESS) 280 return; 281 282 /* 283 * Enabling REDUCE_VE includes ENUM_TOPOLOGY. Only try to 284 * enable ENUM_TOPOLOGY if REDUCE_VE was not successful. 285 */ 286 enable_cpu_topology_enumeration(); 287 } 288 289 static void tdx_setup(u64 *cc_mask) 290 { 291 struct tdx_module_args args = {}; 292 unsigned int gpa_width; 293 u64 td_attr; 294 295 /* 296 * TDINFO TDX module call is used to get the TD execution environment 297 * information like GPA width, number of available vcpus, debug mode 298 * information, etc. More details about the ABI can be found in TDX 299 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL 300 * [TDG.VP.INFO]. 301 */ 302 tdcall(TDG_VP_INFO, &args); 303 304 /* 305 * The highest bit of a guest physical address is the "sharing" bit. 306 * Set it for shared pages and clear it for private pages. 307 * 308 * The GPA width that comes out of this call is critical. TDX guests 309 * can not meaningfully run without it. 310 */ 311 gpa_width = args.rcx & GENMASK(5, 0); 312 *cc_mask = BIT_ULL(gpa_width - 1); 313 314 td_attr = args.rdx; 315 316 /* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */ 317 tdg_vm_wr(TDCS_NOTIFY_ENABLES, 0, -1ULL); 318 319 disable_sept_ve(td_attr); 320 321 reduce_unnecessary_ve(); 322 } 323 324 /* 325 * The TDX module spec states that #VE may be injected for a limited set of 326 * reasons: 327 * 328 * - Emulation of the architectural #VE injection on EPT violation; 329 * 330 * - As a result of guest TD execution of a disallowed instruction, 331 * a disallowed MSR access, or CPUID virtualization; 332 * 333 * - A notification to the guest TD about anomalous behavior; 334 * 335 * The last one is opt-in and is not used by the kernel. 336 * 337 * The Intel Software Developer's Manual describes cases when instruction 338 * length field can be used in section "Information for VM Exits Due to 339 * Instruction Execution". 340 * 341 * For TDX, it ultimately means GET_VEINFO provides reliable instruction length 342 * information if #VE occurred due to instruction execution, but not for EPT 343 * violations. 344 */ 345 static int ve_instr_len(struct ve_info *ve) 346 { 347 switch (ve->exit_reason) { 348 case EXIT_REASON_HLT: 349 case EXIT_REASON_MSR_READ: 350 case EXIT_REASON_MSR_WRITE: 351 case EXIT_REASON_CPUID: 352 case EXIT_REASON_IO_INSTRUCTION: 353 /* It is safe to use ve->instr_len for #VE due instructions */ 354 return ve->instr_len; 355 case EXIT_REASON_EPT_VIOLATION: 356 /* 357 * For EPT violations, ve->insn_len is not defined. For those, 358 * the kernel must decode instructions manually and should not 359 * be using this function. 360 */ 361 WARN_ONCE(1, "ve->instr_len is not defined for EPT violations"); 362 return 0; 363 default: 364 WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason); 365 return ve->instr_len; 366 } 367 } 368 369 static u64 __cpuidle __halt(const bool irq_disabled) 370 { 371 struct tdx_module_args args = { 372 .r10 = TDX_HYPERCALL_STANDARD, 373 .r11 = hcall_func(EXIT_REASON_HLT), 374 .r12 = irq_disabled, 375 }; 376 377 /* 378 * Emulate HLT operation via hypercall. More info about ABI 379 * can be found in TDX Guest-Host-Communication Interface 380 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>. 381 * 382 * The VMM uses the "IRQ disabled" param to understand IRQ 383 * enabled status (RFLAGS.IF) of the TD guest and to determine 384 * whether or not it should schedule the halted vCPU if an 385 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM 386 * can keep the vCPU in virtual HLT, even if an IRQ is 387 * pending, without hanging/breaking the guest. 388 */ 389 return __tdx_hypercall(&args); 390 } 391 392 static int handle_halt(struct ve_info *ve) 393 { 394 const bool irq_disabled = irqs_disabled(); 395 396 /* 397 * HLT with IRQs enabled is unsafe, as an IRQ that is intended to be a 398 * wake event may be consumed before requesting HLT emulation, leaving 399 * the vCPU blocking indefinitely. 400 */ 401 if (WARN_ONCE(!irq_disabled, "HLT emulation with IRQs enabled")) 402 return -EIO; 403 404 if (__halt(irq_disabled)) 405 return -EIO; 406 407 return ve_instr_len(ve); 408 } 409 410 void __cpuidle tdx_halt(void) 411 { 412 const bool irq_disabled = false; 413 414 /* 415 * Use WARN_ONCE() to report the failure. 416 */ 417 if (__halt(irq_disabled)) 418 WARN_ONCE(1, "HLT instruction emulation failed\n"); 419 } 420 421 static void __cpuidle tdx_safe_halt(void) 422 { 423 tdx_halt(); 424 /* 425 * "__cpuidle" section doesn't support instrumentation, so stick 426 * with raw_* variant that avoids tracing hooks. 427 */ 428 raw_local_irq_enable(); 429 } 430 431 static int read_msr(struct pt_regs *regs, struct ve_info *ve) 432 { 433 struct tdx_module_args args = { 434 .r10 = TDX_HYPERCALL_STANDARD, 435 .r11 = hcall_func(EXIT_REASON_MSR_READ), 436 .r12 = regs->cx, 437 }; 438 439 /* 440 * Emulate the MSR read via hypercall. More info about ABI 441 * can be found in TDX Guest-Host-Communication Interface 442 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>". 443 */ 444 if (__tdx_hypercall(&args)) 445 return -EIO; 446 447 regs->ax = lower_32_bits(args.r11); 448 regs->dx = upper_32_bits(args.r11); 449 return ve_instr_len(ve); 450 } 451 452 static int write_msr(struct pt_regs *regs, struct ve_info *ve) 453 { 454 struct tdx_module_args args = { 455 .r10 = TDX_HYPERCALL_STANDARD, 456 .r11 = hcall_func(EXIT_REASON_MSR_WRITE), 457 .r12 = regs->cx, 458 .r13 = (u64)regs->dx << 32 | regs->ax, 459 }; 460 461 /* 462 * Emulate the MSR write via hypercall. More info about ABI 463 * can be found in TDX Guest-Host-Communication Interface 464 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>". 465 */ 466 if (__tdx_hypercall(&args)) 467 return -EIO; 468 469 return ve_instr_len(ve); 470 } 471 472 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve) 473 { 474 struct tdx_module_args args = { 475 .r10 = TDX_HYPERCALL_STANDARD, 476 .r11 = hcall_func(EXIT_REASON_CPUID), 477 .r12 = regs->ax, 478 .r13 = regs->cx, 479 }; 480 481 /* 482 * Only allow VMM to control range reserved for hypervisor 483 * communication. 484 * 485 * Return all-zeros for any CPUID outside the range. It matches CPU 486 * behaviour for non-supported leaf. 487 */ 488 if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) { 489 regs->ax = regs->bx = regs->cx = regs->dx = 0; 490 return ve_instr_len(ve); 491 } 492 493 /* 494 * Emulate the CPUID instruction via a hypercall. More info about 495 * ABI can be found in TDX Guest-Host-Communication Interface 496 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>". 497 */ 498 if (__tdx_hypercall(&args)) 499 return -EIO; 500 501 /* 502 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of 503 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution. 504 * So copy the register contents back to pt_regs. 505 */ 506 regs->ax = args.r12; 507 regs->bx = args.r13; 508 regs->cx = args.r14; 509 regs->dx = args.r15; 510 511 return ve_instr_len(ve); 512 } 513 514 static bool mmio_read(int size, unsigned long addr, unsigned long *val) 515 { 516 struct tdx_module_args args = { 517 .r10 = TDX_HYPERCALL_STANDARD, 518 .r11 = hcall_func(EXIT_REASON_EPT_VIOLATION), 519 .r12 = size, 520 .r13 = EPT_READ, 521 .r14 = addr, 522 }; 523 524 if (__tdx_hypercall(&args)) 525 return false; 526 527 *val = args.r11; 528 return true; 529 } 530 531 static bool mmio_write(int size, unsigned long addr, unsigned long val) 532 { 533 return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size, 534 EPT_WRITE, addr, val); 535 } 536 537 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve) 538 { 539 unsigned long *reg, val, vaddr; 540 char buffer[MAX_INSN_SIZE]; 541 enum insn_mmio_type mmio; 542 struct insn insn = {}; 543 int size, extend_size; 544 u8 extend_val = 0; 545 546 /* Only in-kernel MMIO is supported */ 547 if (WARN_ON_ONCE(user_mode(regs))) 548 return -EFAULT; 549 550 if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE)) 551 return -EFAULT; 552 553 if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64)) 554 return -EINVAL; 555 556 mmio = insn_decode_mmio(&insn, &size); 557 if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED)) 558 return -EINVAL; 559 560 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) { 561 reg = insn_get_modrm_reg_ptr(&insn, regs); 562 if (!reg) 563 return -EINVAL; 564 } 565 566 if (!fault_in_kernel_space(ve->gla)) { 567 WARN_ONCE(1, "Access to userspace address is not supported"); 568 return -EINVAL; 569 } 570 571 /* 572 * Reject EPT violation #VEs that split pages. 573 * 574 * MMIO accesses are supposed to be naturally aligned and therefore 575 * never cross page boundaries. Seeing split page accesses indicates 576 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page. 577 * 578 * load_unaligned_zeropad() will recover using exception fixups. 579 */ 580 vaddr = (unsigned long)insn_get_addr_ref(&insn, regs); 581 if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE) 582 return -EFAULT; 583 584 /* Handle writes first */ 585 switch (mmio) { 586 case INSN_MMIO_WRITE: 587 memcpy(&val, reg, size); 588 if (!mmio_write(size, ve->gpa, val)) 589 return -EIO; 590 return insn.length; 591 case INSN_MMIO_WRITE_IMM: 592 val = insn.immediate.value; 593 if (!mmio_write(size, ve->gpa, val)) 594 return -EIO; 595 return insn.length; 596 case INSN_MMIO_READ: 597 case INSN_MMIO_READ_ZERO_EXTEND: 598 case INSN_MMIO_READ_SIGN_EXTEND: 599 /* Reads are handled below */ 600 break; 601 case INSN_MMIO_MOVS: 602 case INSN_MMIO_DECODE_FAILED: 603 /* 604 * MMIO was accessed with an instruction that could not be 605 * decoded or handled properly. It was likely not using io.h 606 * helpers or accessed MMIO accidentally. 607 */ 608 return -EINVAL; 609 default: 610 WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?"); 611 return -EINVAL; 612 } 613 614 /* Handle reads */ 615 if (!mmio_read(size, ve->gpa, &val)) 616 return -EIO; 617 618 switch (mmio) { 619 case INSN_MMIO_READ: 620 /* Zero-extend for 32-bit operation */ 621 extend_size = size == 4 ? sizeof(*reg) : 0; 622 break; 623 case INSN_MMIO_READ_ZERO_EXTEND: 624 /* Zero extend based on operand size */ 625 extend_size = insn.opnd_bytes; 626 break; 627 case INSN_MMIO_READ_SIGN_EXTEND: 628 /* Sign extend based on operand size */ 629 extend_size = insn.opnd_bytes; 630 if (size == 1 && val & BIT(7)) 631 extend_val = 0xFF; 632 else if (size > 1 && val & BIT(15)) 633 extend_val = 0xFF; 634 break; 635 default: 636 /* All other cases has to be covered with the first switch() */ 637 WARN_ON_ONCE(1); 638 return -EINVAL; 639 } 640 641 if (extend_size) 642 memset(reg, extend_val, extend_size); 643 memcpy(reg, &val, size); 644 return insn.length; 645 } 646 647 static bool handle_in(struct pt_regs *regs, int size, int port) 648 { 649 struct tdx_module_args args = { 650 .r10 = TDX_HYPERCALL_STANDARD, 651 .r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION), 652 .r12 = size, 653 .r13 = PORT_READ, 654 .r14 = port, 655 }; 656 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 657 bool success; 658 659 /* 660 * Emulate the I/O read via hypercall. More info about ABI can be found 661 * in TDX Guest-Host-Communication Interface (GHCI) section titled 662 * "TDG.VP.VMCALL<Instruction.IO>". 663 */ 664 success = !__tdx_hypercall(&args); 665 666 /* Update part of the register affected by the emulated instruction */ 667 regs->ax &= ~mask; 668 if (success) 669 regs->ax |= args.r11 & mask; 670 671 return success; 672 } 673 674 static bool handle_out(struct pt_regs *regs, int size, int port) 675 { 676 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 677 678 /* 679 * Emulate the I/O write via hypercall. More info about ABI can be found 680 * in TDX Guest-Host-Communication Interface (GHCI) section titled 681 * "TDG.VP.VMCALL<Instruction.IO>". 682 */ 683 return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size, 684 PORT_WRITE, port, regs->ax & mask); 685 } 686 687 /* 688 * Emulate I/O using hypercall. 689 * 690 * Assumes the IO instruction was using ax, which is enforced 691 * by the standard io.h macros. 692 * 693 * Return True on success or False on failure. 694 */ 695 static int handle_io(struct pt_regs *regs, struct ve_info *ve) 696 { 697 u32 exit_qual = ve->exit_qual; 698 int size, port; 699 bool in, ret; 700 701 if (VE_IS_IO_STRING(exit_qual)) 702 return -EIO; 703 704 in = VE_IS_IO_IN(exit_qual); 705 size = VE_GET_IO_SIZE(exit_qual); 706 port = VE_GET_PORT_NUM(exit_qual); 707 708 709 if (in) 710 ret = handle_in(regs, size, port); 711 else 712 ret = handle_out(regs, size, port); 713 if (!ret) 714 return -EIO; 715 716 return ve_instr_len(ve); 717 } 718 719 /* 720 * Early #VE exception handler. Only handles a subset of port I/O. 721 * Intended only for earlyprintk. If failed, return false. 722 */ 723 __init bool tdx_early_handle_ve(struct pt_regs *regs) 724 { 725 struct ve_info ve; 726 int insn_len; 727 728 tdx_get_ve_info(&ve); 729 730 if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION) 731 return false; 732 733 insn_len = handle_io(regs, &ve); 734 if (insn_len < 0) 735 return false; 736 737 regs->ip += insn_len; 738 return true; 739 } 740 741 void tdx_get_ve_info(struct ve_info *ve) 742 { 743 struct tdx_module_args args = {}; 744 745 /* 746 * Called during #VE handling to retrieve the #VE info from the 747 * TDX module. 748 * 749 * This has to be called early in #VE handling. A "nested" #VE which 750 * occurs before this will raise a #DF and is not recoverable. 751 * 752 * The call retrieves the #VE info from the TDX module, which also 753 * clears the "#VE valid" flag. This must be done before anything else 754 * because any #VE that occurs while the valid flag is set will lead to 755 * #DF. 756 * 757 * Note, the TDX module treats virtual NMIs as inhibited if the #VE 758 * valid flag is set. It means that NMI=>#VE will not result in a #DF. 759 */ 760 tdcall(TDG_VP_VEINFO_GET, &args); 761 762 /* Transfer the output parameters */ 763 ve->exit_reason = args.rcx; 764 ve->exit_qual = args.rdx; 765 ve->gla = args.r8; 766 ve->gpa = args.r9; 767 ve->instr_len = lower_32_bits(args.r10); 768 ve->instr_info = upper_32_bits(args.r10); 769 } 770 771 /* 772 * Handle the user initiated #VE. 773 * 774 * On success, returns the number of bytes RIP should be incremented (>=0) 775 * or -errno on error. 776 */ 777 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve) 778 { 779 switch (ve->exit_reason) { 780 case EXIT_REASON_CPUID: 781 return handle_cpuid(regs, ve); 782 default: 783 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 784 return -EIO; 785 } 786 } 787 788 static inline bool is_private_gpa(u64 gpa) 789 { 790 return gpa == cc_mkenc(gpa); 791 } 792 793 /* 794 * Handle the kernel #VE. 795 * 796 * On success, returns the number of bytes RIP should be incremented (>=0) 797 * or -errno on error. 798 */ 799 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve) 800 { 801 switch (ve->exit_reason) { 802 case EXIT_REASON_HLT: 803 return handle_halt(ve); 804 case EXIT_REASON_MSR_READ: 805 return read_msr(regs, ve); 806 case EXIT_REASON_MSR_WRITE: 807 return write_msr(regs, ve); 808 case EXIT_REASON_CPUID: 809 return handle_cpuid(regs, ve); 810 case EXIT_REASON_EPT_VIOLATION: 811 if (is_private_gpa(ve->gpa)) 812 panic("Unexpected EPT-violation on private memory."); 813 return handle_mmio(regs, ve); 814 case EXIT_REASON_IO_INSTRUCTION: 815 return handle_io(regs, ve); 816 default: 817 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 818 return -EIO; 819 } 820 } 821 822 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve) 823 { 824 int insn_len; 825 826 if (user_mode(regs)) 827 insn_len = virt_exception_user(regs, ve); 828 else 829 insn_len = virt_exception_kernel(regs, ve); 830 if (insn_len < 0) 831 return false; 832 833 /* After successful #VE handling, move the IP */ 834 regs->ip += insn_len; 835 836 return true; 837 } 838 839 static bool tdx_tlb_flush_required(bool private) 840 { 841 /* 842 * TDX guest is responsible for flushing TLB on private->shared 843 * transition. VMM is responsible for flushing on shared->private. 844 * 845 * The VMM _can't_ flush private addresses as it can't generate PAs 846 * with the guest's HKID. Shared memory isn't subject to integrity 847 * checking, i.e. the VMM doesn't need to flush for its own protection. 848 * 849 * There's no need to flush when converting from shared to private, 850 * as flushing is the VMM's responsibility in this case, e.g. it must 851 * flush to avoid integrity failures in the face of a buggy or 852 * malicious guest. 853 */ 854 return !private; 855 } 856 857 static bool tdx_cache_flush_required(void) 858 { 859 /* 860 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence. 861 * TDX doesn't have such capability. 862 * 863 * Flush cache unconditionally. 864 */ 865 return true; 866 } 867 868 /* 869 * Notify the VMM about page mapping conversion. More info about ABI 870 * can be found in TDX Guest-Host-Communication Interface (GHCI), 871 * section "TDG.VP.VMCALL<MapGPA>". 872 */ 873 static bool tdx_map_gpa(phys_addr_t start, phys_addr_t end, bool enc) 874 { 875 /* Retrying the hypercall a second time should succeed; use 3 just in case */ 876 const int max_retries_per_page = 3; 877 int retry_count = 0; 878 879 if (!enc) { 880 /* Set the shared (decrypted) bits: */ 881 start |= cc_mkdec(0); 882 end |= cc_mkdec(0); 883 } 884 885 while (retry_count < max_retries_per_page) { 886 struct tdx_module_args args = { 887 .r10 = TDX_HYPERCALL_STANDARD, 888 .r11 = TDVMCALL_MAP_GPA, 889 .r12 = start, 890 .r13 = end - start }; 891 892 u64 map_fail_paddr; 893 u64 ret = __tdx_hypercall(&args); 894 895 if (ret != TDVMCALL_STATUS_RETRY) 896 return !ret; 897 /* 898 * The guest must retry the operation for the pages in the 899 * region starting at the GPA specified in R11. R11 comes 900 * from the untrusted VMM. Sanity check it. 901 */ 902 map_fail_paddr = args.r11; 903 if (map_fail_paddr < start || map_fail_paddr >= end) 904 return false; 905 906 /* "Consume" a retry without forward progress */ 907 if (map_fail_paddr == start) { 908 retry_count++; 909 continue; 910 } 911 912 start = map_fail_paddr; 913 retry_count = 0; 914 } 915 916 return false; 917 } 918 919 /* 920 * Inform the VMM of the guest's intent for this physical page: shared with 921 * the VMM or private to the guest. The VMM is expected to change its mapping 922 * of the page in response. 923 */ 924 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc) 925 { 926 phys_addr_t start = __pa(vaddr); 927 phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE); 928 929 if (!tdx_map_gpa(start, end, enc)) 930 return false; 931 932 /* shared->private conversion requires memory to be accepted before use */ 933 if (enc) 934 return tdx_accept_memory(start, end); 935 936 return true; 937 } 938 939 static int tdx_enc_status_change_prepare(unsigned long vaddr, int numpages, 940 bool enc) 941 { 942 /* 943 * Only handle shared->private conversion here. 944 * See the comment in tdx_early_init(). 945 */ 946 if (enc && !tdx_enc_status_changed(vaddr, numpages, enc)) 947 return -EIO; 948 949 return 0; 950 } 951 952 static int tdx_enc_status_change_finish(unsigned long vaddr, int numpages, 953 bool enc) 954 { 955 /* 956 * Only handle private->shared conversion here. 957 * See the comment in tdx_early_init(). 958 */ 959 if (!enc && !tdx_enc_status_changed(vaddr, numpages, enc)) 960 return -EIO; 961 962 if (enc) 963 atomic_long_sub(numpages, &nr_shared); 964 else 965 atomic_long_add(numpages, &nr_shared); 966 967 return 0; 968 } 969 970 /* Stop new private<->shared conversions */ 971 static void tdx_kexec_begin(void) 972 { 973 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 974 return; 975 976 /* 977 * Crash kernel reaches here with interrupts disabled: can't wait for 978 * conversions to finish. 979 * 980 * If race happened, just report and proceed. 981 */ 982 if (!set_memory_enc_stop_conversion()) 983 pr_warn("Failed to stop shared<->private conversions\n"); 984 } 985 986 /* Walk direct mapping and convert all shared memory back to private */ 987 static void tdx_kexec_finish(void) 988 { 989 unsigned long addr, end; 990 long found = 0, shared; 991 992 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 993 return; 994 995 lockdep_assert_irqs_disabled(); 996 997 addr = PAGE_OFFSET; 998 end = PAGE_OFFSET + get_max_mapped(); 999 1000 while (addr < end) { 1001 unsigned long size; 1002 unsigned int level; 1003 pte_t *pte; 1004 1005 pte = lookup_address(addr, &level); 1006 size = page_level_size(level); 1007 1008 if (pte && pte_decrypted(*pte)) { 1009 int pages = size / PAGE_SIZE; 1010 1011 /* 1012 * Touching memory with shared bit set triggers implicit 1013 * conversion to shared. 1014 * 1015 * Make sure nobody touches the shared range from 1016 * now on. 1017 */ 1018 set_pte(pte, __pte(0)); 1019 1020 /* 1021 * Memory encryption state persists across kexec. 1022 * If tdx_enc_status_changed() fails in the first 1023 * kernel, it leaves memory in an unknown state. 1024 * 1025 * If that memory remains shared, accessing it in the 1026 * *next* kernel through a private mapping will result 1027 * in an unrecoverable guest shutdown. 1028 * 1029 * The kdump kernel boot is not impacted as it uses 1030 * a pre-reserved memory range that is always private. 1031 * However, gathering crash information could lead to 1032 * a crash if it accesses unconverted memory through 1033 * a private mapping which is possible when accessing 1034 * that memory through /proc/vmcore, for example. 1035 * 1036 * In all cases, print error info in order to leave 1037 * enough bread crumbs for debugging. 1038 */ 1039 if (!tdx_enc_status_changed(addr, pages, true)) { 1040 pr_err("Failed to unshare range %#lx-%#lx\n", 1041 addr, addr + size); 1042 } 1043 1044 found += pages; 1045 } 1046 1047 addr += size; 1048 } 1049 1050 __flush_tlb_all(); 1051 1052 shared = atomic_long_read(&nr_shared); 1053 if (shared != found) { 1054 pr_err("shared page accounting is off\n"); 1055 pr_err("nr_shared = %ld, nr_found = %ld\n", shared, found); 1056 } 1057 } 1058 1059 static __init void tdx_announce(void) 1060 { 1061 struct tdx_module_args args = {}; 1062 u64 controls; 1063 1064 pr_info("Guest detected\n"); 1065 1066 tdcall(TDG_VP_INFO, &args); 1067 tdx_dump_attributes(args.rdx); 1068 1069 tdg_vm_rd(TDCS_TD_CTLS, &controls); 1070 tdx_dump_td_ctls(controls); 1071 } 1072 1073 void __init tdx_early_init(void) 1074 { 1075 u64 cc_mask; 1076 u32 eax, sig[3]; 1077 1078 cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]); 1079 1080 if (memcmp(TDX_IDENT, sig, sizeof(sig))) 1081 return; 1082 1083 setup_force_cpu_cap(X86_FEATURE_TDX_GUEST); 1084 1085 /* TSC is the only reliable clock in TDX guest */ 1086 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); 1087 1088 cc_vendor = CC_VENDOR_INTEL; 1089 1090 /* Configure the TD */ 1091 tdx_setup(&cc_mask); 1092 1093 cc_set_mask(cc_mask); 1094 1095 /* 1096 * All bits above GPA width are reserved and kernel treats shared bit 1097 * as flag, not as part of physical address. 1098 * 1099 * Adjust physical mask to only cover valid GPA bits. 1100 */ 1101 physical_mask &= cc_mask - 1; 1102 1103 /* 1104 * The kernel mapping should match the TDX metadata for the page. 1105 * load_unaligned_zeropad() can touch memory *adjacent* to that which is 1106 * owned by the caller and can catch even _momentary_ mismatches. Bad 1107 * things happen on mismatch: 1108 * 1109 * - Private mapping => Shared Page == Guest shutdown 1110 * - Shared mapping => Private Page == Recoverable #VE 1111 * 1112 * guest.enc_status_change_prepare() converts the page from 1113 * shared=>private before the mapping becomes private. 1114 * 1115 * guest.enc_status_change_finish() converts the page from 1116 * private=>shared after the mapping becomes private. 1117 * 1118 * In both cases there is a temporary shared mapping to a private page, 1119 * which can result in a #VE. But, there is never a private mapping to 1120 * a shared page. 1121 */ 1122 x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare; 1123 x86_platform.guest.enc_status_change_finish = tdx_enc_status_change_finish; 1124 1125 x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required; 1126 x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required; 1127 1128 x86_platform.guest.enc_kexec_begin = tdx_kexec_begin; 1129 x86_platform.guest.enc_kexec_finish = tdx_kexec_finish; 1130 1131 /* 1132 * Avoid "sti;hlt" execution in TDX guests as HLT induces a #VE that 1133 * will enable interrupts before HLT TDCALL invocation if executed 1134 * in STI-shadow, possibly resulting in missed wakeup events. 1135 * 1136 * Modify all possible HLT execution paths to use TDX specific routines 1137 * that directly execute TDCALL and toggle the interrupt state as 1138 * needed after TDCALL completion. This also reduces HLT related #VEs 1139 * in addition to having a reliable halt logic execution. 1140 */ 1141 pv_ops.irq.safe_halt = tdx_safe_halt; 1142 pv_ops.irq.halt = tdx_halt; 1143 1144 /* 1145 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel 1146 * bringup low level code. That raises #VE which cannot be handled 1147 * there. 1148 * 1149 * Intel-TDX has a secure RDMSR hypercall, but that needs to be 1150 * implemented separately in the low level startup ASM code. 1151 * Until that is in place, disable parallel bringup for TDX. 1152 */ 1153 x86_cpuinit.parallel_bringup = false; 1154 1155 tdx_announce(); 1156 } 1157