xref: /linux/arch/x86/coco/tdx/tdx.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021-2022 Intel Corporation */
3 
4 #undef pr_fmt
5 #define pr_fmt(fmt)     "tdx: " fmt
6 
7 #include <linux/cpufeature.h>
8 #include <linux/export.h>
9 #include <linux/io.h>
10 #include <asm/coco.h>
11 #include <asm/tdx.h>
12 #include <asm/vmx.h>
13 #include <asm/ia32.h>
14 #include <asm/insn.h>
15 #include <asm/insn-eval.h>
16 #include <asm/pgtable.h>
17 
18 /* MMIO direction */
19 #define EPT_READ	0
20 #define EPT_WRITE	1
21 
22 /* Port I/O direction */
23 #define PORT_READ	0
24 #define PORT_WRITE	1
25 
26 /* See Exit Qualification for I/O Instructions in VMX documentation */
27 #define VE_IS_IO_IN(e)		((e) & BIT(3))
28 #define VE_GET_IO_SIZE(e)	(((e) & GENMASK(2, 0)) + 1)
29 #define VE_GET_PORT_NUM(e)	((e) >> 16)
30 #define VE_IS_IO_STRING(e)	((e) & BIT(4))
31 
32 #define ATTR_DEBUG		BIT(0)
33 #define ATTR_SEPT_VE_DISABLE	BIT(28)
34 
35 /* TDX Module call error codes */
36 #define TDCALL_RETURN_CODE(a)	((a) >> 32)
37 #define TDCALL_INVALID_OPERAND	0xc0000100
38 
39 #define TDREPORT_SUBTYPE_0	0
40 
41 /* Called from __tdx_hypercall() for unrecoverable failure */
42 noinstr void __noreturn __tdx_hypercall_failed(void)
43 {
44 	instrumentation_begin();
45 	panic("TDVMCALL failed. TDX module bug?");
46 }
47 
48 #ifdef CONFIG_KVM_GUEST
49 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
50 		       unsigned long p3, unsigned long p4)
51 {
52 	struct tdx_module_args args = {
53 		.r10 = nr,
54 		.r11 = p1,
55 		.r12 = p2,
56 		.r13 = p3,
57 		.r14 = p4,
58 	};
59 
60 	return __tdx_hypercall(&args);
61 }
62 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
63 #endif
64 
65 /*
66  * Used for TDX guests to make calls directly to the TD module.  This
67  * should only be used for calls that have no legitimate reason to fail
68  * or where the kernel can not survive the call failing.
69  */
70 static inline void tdcall(u64 fn, struct tdx_module_args *args)
71 {
72 	if (__tdcall_ret(fn, args))
73 		panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
74 }
75 
76 /**
77  * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT
78  *                           subtype 0) using TDG.MR.REPORT TDCALL.
79  * @reportdata: Address of the input buffer which contains user-defined
80  *              REPORTDATA to be included into TDREPORT.
81  * @tdreport: Address of the output buffer to store TDREPORT.
82  *
83  * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module
84  * v1.0 specification for more information on TDG.MR.REPORT TDCALL.
85  * It is used in the TDX guest driver module to get the TDREPORT0.
86  *
87  * Return 0 on success, -EINVAL for invalid operands, or -EIO on
88  * other TDCALL failures.
89  */
90 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport)
91 {
92 	struct tdx_module_args args = {
93 		.rcx = virt_to_phys(tdreport),
94 		.rdx = virt_to_phys(reportdata),
95 		.r8 = TDREPORT_SUBTYPE_0,
96 	};
97 	u64 ret;
98 
99 	ret = __tdcall(TDG_MR_REPORT, &args);
100 	if (ret) {
101 		if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
102 			return -EINVAL;
103 		return -EIO;
104 	}
105 
106 	return 0;
107 }
108 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0);
109 
110 /**
111  * tdx_hcall_get_quote() - Wrapper to request TD Quote using GetQuote
112  *                         hypercall.
113  * @buf: Address of the directly mapped shared kernel buffer which
114  *       contains TDREPORT. The same buffer will be used by VMM to
115  *       store the generated TD Quote output.
116  * @size: size of the tdquote buffer (4KB-aligned).
117  *
118  * Refer to section titled "TDG.VP.VMCALL<GetQuote>" in the TDX GHCI
119  * v1.0 specification for more information on GetQuote hypercall.
120  * It is used in the TDX guest driver module to get the TD Quote.
121  *
122  * Return 0 on success or error code on failure.
123  */
124 u64 tdx_hcall_get_quote(u8 *buf, size_t size)
125 {
126 	/* Since buf is a shared memory, set the shared (decrypted) bits */
127 	return _tdx_hypercall(TDVMCALL_GET_QUOTE, cc_mkdec(virt_to_phys(buf)), size, 0, 0);
128 }
129 EXPORT_SYMBOL_GPL(tdx_hcall_get_quote);
130 
131 static void __noreturn tdx_panic(const char *msg)
132 {
133 	struct tdx_module_args args = {
134 		.r10 = TDX_HYPERCALL_STANDARD,
135 		.r11 = TDVMCALL_REPORT_FATAL_ERROR,
136 		.r12 = 0, /* Error code: 0 is Panic */
137 	};
138 	union {
139 		/* Define register order according to the GHCI */
140 		struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; };
141 
142 		char str[64];
143 	} message;
144 
145 	/* VMM assumes '\0' in byte 65, if the message took all 64 bytes */
146 	strtomem_pad(message.str, msg, '\0');
147 
148 	args.r8  = message.r8;
149 	args.r9  = message.r9;
150 	args.r14 = message.r14;
151 	args.r15 = message.r15;
152 	args.rdi = message.rdi;
153 	args.rsi = message.rsi;
154 	args.rbx = message.rbx;
155 	args.rdx = message.rdx;
156 
157 	/*
158 	 * This hypercall should never return and it is not safe
159 	 * to keep the guest running. Call it forever if it
160 	 * happens to return.
161 	 */
162 	while (1)
163 		__tdx_hypercall(&args);
164 }
165 
166 static void tdx_parse_tdinfo(u64 *cc_mask)
167 {
168 	struct tdx_module_args args = {};
169 	unsigned int gpa_width;
170 	u64 td_attr;
171 
172 	/*
173 	 * TDINFO TDX module call is used to get the TD execution environment
174 	 * information like GPA width, number of available vcpus, debug mode
175 	 * information, etc. More details about the ABI can be found in TDX
176 	 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
177 	 * [TDG.VP.INFO].
178 	 */
179 	tdcall(TDG_VP_INFO, &args);
180 
181 	/*
182 	 * The highest bit of a guest physical address is the "sharing" bit.
183 	 * Set it for shared pages and clear it for private pages.
184 	 *
185 	 * The GPA width that comes out of this call is critical. TDX guests
186 	 * can not meaningfully run without it.
187 	 */
188 	gpa_width = args.rcx & GENMASK(5, 0);
189 	*cc_mask = BIT_ULL(gpa_width - 1);
190 
191 	/*
192 	 * The kernel can not handle #VE's when accessing normal kernel
193 	 * memory.  Ensure that no #VE will be delivered for accesses to
194 	 * TD-private memory.  Only VMM-shared memory (MMIO) will #VE.
195 	 */
196 	td_attr = args.rdx;
197 	if (!(td_attr & ATTR_SEPT_VE_DISABLE)) {
198 		const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set.";
199 
200 		/* Relax SEPT_VE_DISABLE check for debug TD. */
201 		if (td_attr & ATTR_DEBUG)
202 			pr_warn("%s\n", msg);
203 		else
204 			tdx_panic(msg);
205 	}
206 }
207 
208 /*
209  * The TDX module spec states that #VE may be injected for a limited set of
210  * reasons:
211  *
212  *  - Emulation of the architectural #VE injection on EPT violation;
213  *
214  *  - As a result of guest TD execution of a disallowed instruction,
215  *    a disallowed MSR access, or CPUID virtualization;
216  *
217  *  - A notification to the guest TD about anomalous behavior;
218  *
219  * The last one is opt-in and is not used by the kernel.
220  *
221  * The Intel Software Developer's Manual describes cases when instruction
222  * length field can be used in section "Information for VM Exits Due to
223  * Instruction Execution".
224  *
225  * For TDX, it ultimately means GET_VEINFO provides reliable instruction length
226  * information if #VE occurred due to instruction execution, but not for EPT
227  * violations.
228  */
229 static int ve_instr_len(struct ve_info *ve)
230 {
231 	switch (ve->exit_reason) {
232 	case EXIT_REASON_HLT:
233 	case EXIT_REASON_MSR_READ:
234 	case EXIT_REASON_MSR_WRITE:
235 	case EXIT_REASON_CPUID:
236 	case EXIT_REASON_IO_INSTRUCTION:
237 		/* It is safe to use ve->instr_len for #VE due instructions */
238 		return ve->instr_len;
239 	case EXIT_REASON_EPT_VIOLATION:
240 		/*
241 		 * For EPT violations, ve->insn_len is not defined. For those,
242 		 * the kernel must decode instructions manually and should not
243 		 * be using this function.
244 		 */
245 		WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
246 		return 0;
247 	default:
248 		WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
249 		return ve->instr_len;
250 	}
251 }
252 
253 static u64 __cpuidle __halt(const bool irq_disabled)
254 {
255 	struct tdx_module_args args = {
256 		.r10 = TDX_HYPERCALL_STANDARD,
257 		.r11 = hcall_func(EXIT_REASON_HLT),
258 		.r12 = irq_disabled,
259 	};
260 
261 	/*
262 	 * Emulate HLT operation via hypercall. More info about ABI
263 	 * can be found in TDX Guest-Host-Communication Interface
264 	 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
265 	 *
266 	 * The VMM uses the "IRQ disabled" param to understand IRQ
267 	 * enabled status (RFLAGS.IF) of the TD guest and to determine
268 	 * whether or not it should schedule the halted vCPU if an
269 	 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM
270 	 * can keep the vCPU in virtual HLT, even if an IRQ is
271 	 * pending, without hanging/breaking the guest.
272 	 */
273 	return __tdx_hypercall(&args);
274 }
275 
276 static int handle_halt(struct ve_info *ve)
277 {
278 	const bool irq_disabled = irqs_disabled();
279 
280 	if (__halt(irq_disabled))
281 		return -EIO;
282 
283 	return ve_instr_len(ve);
284 }
285 
286 void __cpuidle tdx_safe_halt(void)
287 {
288 	const bool irq_disabled = false;
289 
290 	/*
291 	 * Use WARN_ONCE() to report the failure.
292 	 */
293 	if (__halt(irq_disabled))
294 		WARN_ONCE(1, "HLT instruction emulation failed\n");
295 }
296 
297 static int read_msr(struct pt_regs *regs, struct ve_info *ve)
298 {
299 	struct tdx_module_args args = {
300 		.r10 = TDX_HYPERCALL_STANDARD,
301 		.r11 = hcall_func(EXIT_REASON_MSR_READ),
302 		.r12 = regs->cx,
303 	};
304 
305 	/*
306 	 * Emulate the MSR read via hypercall. More info about ABI
307 	 * can be found in TDX Guest-Host-Communication Interface
308 	 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
309 	 */
310 	if (__tdx_hypercall(&args))
311 		return -EIO;
312 
313 	regs->ax = lower_32_bits(args.r11);
314 	regs->dx = upper_32_bits(args.r11);
315 	return ve_instr_len(ve);
316 }
317 
318 static int write_msr(struct pt_regs *regs, struct ve_info *ve)
319 {
320 	struct tdx_module_args args = {
321 		.r10 = TDX_HYPERCALL_STANDARD,
322 		.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
323 		.r12 = regs->cx,
324 		.r13 = (u64)regs->dx << 32 | regs->ax,
325 	};
326 
327 	/*
328 	 * Emulate the MSR write via hypercall. More info about ABI
329 	 * can be found in TDX Guest-Host-Communication Interface
330 	 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
331 	 */
332 	if (__tdx_hypercall(&args))
333 		return -EIO;
334 
335 	return ve_instr_len(ve);
336 }
337 
338 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
339 {
340 	struct tdx_module_args args = {
341 		.r10 = TDX_HYPERCALL_STANDARD,
342 		.r11 = hcall_func(EXIT_REASON_CPUID),
343 		.r12 = regs->ax,
344 		.r13 = regs->cx,
345 	};
346 
347 	/*
348 	 * Only allow VMM to control range reserved for hypervisor
349 	 * communication.
350 	 *
351 	 * Return all-zeros for any CPUID outside the range. It matches CPU
352 	 * behaviour for non-supported leaf.
353 	 */
354 	if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
355 		regs->ax = regs->bx = regs->cx = regs->dx = 0;
356 		return ve_instr_len(ve);
357 	}
358 
359 	/*
360 	 * Emulate the CPUID instruction via a hypercall. More info about
361 	 * ABI can be found in TDX Guest-Host-Communication Interface
362 	 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
363 	 */
364 	if (__tdx_hypercall(&args))
365 		return -EIO;
366 
367 	/*
368 	 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
369 	 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
370 	 * So copy the register contents back to pt_regs.
371 	 */
372 	regs->ax = args.r12;
373 	regs->bx = args.r13;
374 	regs->cx = args.r14;
375 	regs->dx = args.r15;
376 
377 	return ve_instr_len(ve);
378 }
379 
380 static bool mmio_read(int size, unsigned long addr, unsigned long *val)
381 {
382 	struct tdx_module_args args = {
383 		.r10 = TDX_HYPERCALL_STANDARD,
384 		.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
385 		.r12 = size,
386 		.r13 = EPT_READ,
387 		.r14 = addr,
388 		.r15 = *val,
389 	};
390 
391 	if (__tdx_hypercall(&args))
392 		return false;
393 
394 	*val = args.r11;
395 	return true;
396 }
397 
398 static bool mmio_write(int size, unsigned long addr, unsigned long val)
399 {
400 	return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
401 			       EPT_WRITE, addr, val);
402 }
403 
404 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
405 {
406 	unsigned long *reg, val, vaddr;
407 	char buffer[MAX_INSN_SIZE];
408 	enum insn_mmio_type mmio;
409 	struct insn insn = {};
410 	int size, extend_size;
411 	u8 extend_val = 0;
412 
413 	/* Only in-kernel MMIO is supported */
414 	if (WARN_ON_ONCE(user_mode(regs)))
415 		return -EFAULT;
416 
417 	if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
418 		return -EFAULT;
419 
420 	if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
421 		return -EINVAL;
422 
423 	mmio = insn_decode_mmio(&insn, &size);
424 	if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED))
425 		return -EINVAL;
426 
427 	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
428 		reg = insn_get_modrm_reg_ptr(&insn, regs);
429 		if (!reg)
430 			return -EINVAL;
431 	}
432 
433 	/*
434 	 * Reject EPT violation #VEs that split pages.
435 	 *
436 	 * MMIO accesses are supposed to be naturally aligned and therefore
437 	 * never cross page boundaries. Seeing split page accesses indicates
438 	 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
439 	 *
440 	 * load_unaligned_zeropad() will recover using exception fixups.
441 	 */
442 	vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
443 	if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
444 		return -EFAULT;
445 
446 	/* Handle writes first */
447 	switch (mmio) {
448 	case INSN_MMIO_WRITE:
449 		memcpy(&val, reg, size);
450 		if (!mmio_write(size, ve->gpa, val))
451 			return -EIO;
452 		return insn.length;
453 	case INSN_MMIO_WRITE_IMM:
454 		val = insn.immediate.value;
455 		if (!mmio_write(size, ve->gpa, val))
456 			return -EIO;
457 		return insn.length;
458 	case INSN_MMIO_READ:
459 	case INSN_MMIO_READ_ZERO_EXTEND:
460 	case INSN_MMIO_READ_SIGN_EXTEND:
461 		/* Reads are handled below */
462 		break;
463 	case INSN_MMIO_MOVS:
464 	case INSN_MMIO_DECODE_FAILED:
465 		/*
466 		 * MMIO was accessed with an instruction that could not be
467 		 * decoded or handled properly. It was likely not using io.h
468 		 * helpers or accessed MMIO accidentally.
469 		 */
470 		return -EINVAL;
471 	default:
472 		WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
473 		return -EINVAL;
474 	}
475 
476 	/* Handle reads */
477 	if (!mmio_read(size, ve->gpa, &val))
478 		return -EIO;
479 
480 	switch (mmio) {
481 	case INSN_MMIO_READ:
482 		/* Zero-extend for 32-bit operation */
483 		extend_size = size == 4 ? sizeof(*reg) : 0;
484 		break;
485 	case INSN_MMIO_READ_ZERO_EXTEND:
486 		/* Zero extend based on operand size */
487 		extend_size = insn.opnd_bytes;
488 		break;
489 	case INSN_MMIO_READ_SIGN_EXTEND:
490 		/* Sign extend based on operand size */
491 		extend_size = insn.opnd_bytes;
492 		if (size == 1 && val & BIT(7))
493 			extend_val = 0xFF;
494 		else if (size > 1 && val & BIT(15))
495 			extend_val = 0xFF;
496 		break;
497 	default:
498 		/* All other cases has to be covered with the first switch() */
499 		WARN_ON_ONCE(1);
500 		return -EINVAL;
501 	}
502 
503 	if (extend_size)
504 		memset(reg, extend_val, extend_size);
505 	memcpy(reg, &val, size);
506 	return insn.length;
507 }
508 
509 static bool handle_in(struct pt_regs *regs, int size, int port)
510 {
511 	struct tdx_module_args args = {
512 		.r10 = TDX_HYPERCALL_STANDARD,
513 		.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
514 		.r12 = size,
515 		.r13 = PORT_READ,
516 		.r14 = port,
517 	};
518 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
519 	bool success;
520 
521 	/*
522 	 * Emulate the I/O read via hypercall. More info about ABI can be found
523 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
524 	 * "TDG.VP.VMCALL<Instruction.IO>".
525 	 */
526 	success = !__tdx_hypercall(&args);
527 
528 	/* Update part of the register affected by the emulated instruction */
529 	regs->ax &= ~mask;
530 	if (success)
531 		regs->ax |= args.r11 & mask;
532 
533 	return success;
534 }
535 
536 static bool handle_out(struct pt_regs *regs, int size, int port)
537 {
538 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
539 
540 	/*
541 	 * Emulate the I/O write via hypercall. More info about ABI can be found
542 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
543 	 * "TDG.VP.VMCALL<Instruction.IO>".
544 	 */
545 	return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
546 			       PORT_WRITE, port, regs->ax & mask);
547 }
548 
549 /*
550  * Emulate I/O using hypercall.
551  *
552  * Assumes the IO instruction was using ax, which is enforced
553  * by the standard io.h macros.
554  *
555  * Return True on success or False on failure.
556  */
557 static int handle_io(struct pt_regs *regs, struct ve_info *ve)
558 {
559 	u32 exit_qual = ve->exit_qual;
560 	int size, port;
561 	bool in, ret;
562 
563 	if (VE_IS_IO_STRING(exit_qual))
564 		return -EIO;
565 
566 	in   = VE_IS_IO_IN(exit_qual);
567 	size = VE_GET_IO_SIZE(exit_qual);
568 	port = VE_GET_PORT_NUM(exit_qual);
569 
570 
571 	if (in)
572 		ret = handle_in(regs, size, port);
573 	else
574 		ret = handle_out(regs, size, port);
575 	if (!ret)
576 		return -EIO;
577 
578 	return ve_instr_len(ve);
579 }
580 
581 /*
582  * Early #VE exception handler. Only handles a subset of port I/O.
583  * Intended only for earlyprintk. If failed, return false.
584  */
585 __init bool tdx_early_handle_ve(struct pt_regs *regs)
586 {
587 	struct ve_info ve;
588 	int insn_len;
589 
590 	tdx_get_ve_info(&ve);
591 
592 	if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
593 		return false;
594 
595 	insn_len = handle_io(regs, &ve);
596 	if (insn_len < 0)
597 		return false;
598 
599 	regs->ip += insn_len;
600 	return true;
601 }
602 
603 void tdx_get_ve_info(struct ve_info *ve)
604 {
605 	struct tdx_module_args args = {};
606 
607 	/*
608 	 * Called during #VE handling to retrieve the #VE info from the
609 	 * TDX module.
610 	 *
611 	 * This has to be called early in #VE handling.  A "nested" #VE which
612 	 * occurs before this will raise a #DF and is not recoverable.
613 	 *
614 	 * The call retrieves the #VE info from the TDX module, which also
615 	 * clears the "#VE valid" flag. This must be done before anything else
616 	 * because any #VE that occurs while the valid flag is set will lead to
617 	 * #DF.
618 	 *
619 	 * Note, the TDX module treats virtual NMIs as inhibited if the #VE
620 	 * valid flag is set. It means that NMI=>#VE will not result in a #DF.
621 	 */
622 	tdcall(TDG_VP_VEINFO_GET, &args);
623 
624 	/* Transfer the output parameters */
625 	ve->exit_reason = args.rcx;
626 	ve->exit_qual   = args.rdx;
627 	ve->gla         = args.r8;
628 	ve->gpa         = args.r9;
629 	ve->instr_len   = lower_32_bits(args.r10);
630 	ve->instr_info  = upper_32_bits(args.r10);
631 }
632 
633 /*
634  * Handle the user initiated #VE.
635  *
636  * On success, returns the number of bytes RIP should be incremented (>=0)
637  * or -errno on error.
638  */
639 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
640 {
641 	switch (ve->exit_reason) {
642 	case EXIT_REASON_CPUID:
643 		return handle_cpuid(regs, ve);
644 	default:
645 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
646 		return -EIO;
647 	}
648 }
649 
650 static inline bool is_private_gpa(u64 gpa)
651 {
652 	return gpa == cc_mkenc(gpa);
653 }
654 
655 /*
656  * Handle the kernel #VE.
657  *
658  * On success, returns the number of bytes RIP should be incremented (>=0)
659  * or -errno on error.
660  */
661 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
662 {
663 	switch (ve->exit_reason) {
664 	case EXIT_REASON_HLT:
665 		return handle_halt(ve);
666 	case EXIT_REASON_MSR_READ:
667 		return read_msr(regs, ve);
668 	case EXIT_REASON_MSR_WRITE:
669 		return write_msr(regs, ve);
670 	case EXIT_REASON_CPUID:
671 		return handle_cpuid(regs, ve);
672 	case EXIT_REASON_EPT_VIOLATION:
673 		if (is_private_gpa(ve->gpa))
674 			panic("Unexpected EPT-violation on private memory.");
675 		return handle_mmio(regs, ve);
676 	case EXIT_REASON_IO_INSTRUCTION:
677 		return handle_io(regs, ve);
678 	default:
679 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
680 		return -EIO;
681 	}
682 }
683 
684 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
685 {
686 	int insn_len;
687 
688 	if (user_mode(regs))
689 		insn_len = virt_exception_user(regs, ve);
690 	else
691 		insn_len = virt_exception_kernel(regs, ve);
692 	if (insn_len < 0)
693 		return false;
694 
695 	/* After successful #VE handling, move the IP */
696 	regs->ip += insn_len;
697 
698 	return true;
699 }
700 
701 static bool tdx_tlb_flush_required(bool private)
702 {
703 	/*
704 	 * TDX guest is responsible for flushing TLB on private->shared
705 	 * transition. VMM is responsible for flushing on shared->private.
706 	 *
707 	 * The VMM _can't_ flush private addresses as it can't generate PAs
708 	 * with the guest's HKID.  Shared memory isn't subject to integrity
709 	 * checking, i.e. the VMM doesn't need to flush for its own protection.
710 	 *
711 	 * There's no need to flush when converting from shared to private,
712 	 * as flushing is the VMM's responsibility in this case, e.g. it must
713 	 * flush to avoid integrity failures in the face of a buggy or
714 	 * malicious guest.
715 	 */
716 	return !private;
717 }
718 
719 static bool tdx_cache_flush_required(void)
720 {
721 	/*
722 	 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
723 	 * TDX doesn't have such capability.
724 	 *
725 	 * Flush cache unconditionally.
726 	 */
727 	return true;
728 }
729 
730 /*
731  * Notify the VMM about page mapping conversion. More info about ABI
732  * can be found in TDX Guest-Host-Communication Interface (GHCI),
733  * section "TDG.VP.VMCALL<MapGPA>".
734  */
735 static bool tdx_map_gpa(phys_addr_t start, phys_addr_t end, bool enc)
736 {
737 	/* Retrying the hypercall a second time should succeed; use 3 just in case */
738 	const int max_retries_per_page = 3;
739 	int retry_count = 0;
740 
741 	if (!enc) {
742 		/* Set the shared (decrypted) bits: */
743 		start |= cc_mkdec(0);
744 		end   |= cc_mkdec(0);
745 	}
746 
747 	while (retry_count < max_retries_per_page) {
748 		struct tdx_module_args args = {
749 			.r10 = TDX_HYPERCALL_STANDARD,
750 			.r11 = TDVMCALL_MAP_GPA,
751 			.r12 = start,
752 			.r13 = end - start };
753 
754 		u64 map_fail_paddr;
755 		u64 ret = __tdx_hypercall(&args);
756 
757 		if (ret != TDVMCALL_STATUS_RETRY)
758 			return !ret;
759 		/*
760 		 * The guest must retry the operation for the pages in the
761 		 * region starting at the GPA specified in R11. R11 comes
762 		 * from the untrusted VMM. Sanity check it.
763 		 */
764 		map_fail_paddr = args.r11;
765 		if (map_fail_paddr < start || map_fail_paddr >= end)
766 			return false;
767 
768 		/* "Consume" a retry without forward progress */
769 		if (map_fail_paddr == start) {
770 			retry_count++;
771 			continue;
772 		}
773 
774 		start = map_fail_paddr;
775 		retry_count = 0;
776 	}
777 
778 	return false;
779 }
780 
781 /*
782  * Inform the VMM of the guest's intent for this physical page: shared with
783  * the VMM or private to the guest.  The VMM is expected to change its mapping
784  * of the page in response.
785  */
786 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
787 {
788 	phys_addr_t start = __pa(vaddr);
789 	phys_addr_t end   = __pa(vaddr + numpages * PAGE_SIZE);
790 
791 	if (!tdx_map_gpa(start, end, enc))
792 		return false;
793 
794 	/* shared->private conversion requires memory to be accepted before use */
795 	if (enc)
796 		return tdx_accept_memory(start, end);
797 
798 	return true;
799 }
800 
801 static bool tdx_enc_status_change_prepare(unsigned long vaddr, int numpages,
802 					  bool enc)
803 {
804 	/*
805 	 * Only handle shared->private conversion here.
806 	 * See the comment in tdx_early_init().
807 	 */
808 	if (enc)
809 		return tdx_enc_status_changed(vaddr, numpages, enc);
810 	return true;
811 }
812 
813 static bool tdx_enc_status_change_finish(unsigned long vaddr, int numpages,
814 					 bool enc)
815 {
816 	/*
817 	 * Only handle private->shared conversion here.
818 	 * See the comment in tdx_early_init().
819 	 */
820 	if (!enc)
821 		return tdx_enc_status_changed(vaddr, numpages, enc);
822 	return true;
823 }
824 
825 void __init tdx_early_init(void)
826 {
827 	struct tdx_module_args args = {
828 		.rdx = TDCS_NOTIFY_ENABLES,
829 		.r9 = -1ULL,
830 	};
831 	u64 cc_mask;
832 	u32 eax, sig[3];
833 
834 	cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2],  &sig[1]);
835 
836 	if (memcmp(TDX_IDENT, sig, sizeof(sig)))
837 		return;
838 
839 	setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
840 
841 	/* TSC is the only reliable clock in TDX guest */
842 	setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
843 
844 	cc_vendor = CC_VENDOR_INTEL;
845 	tdx_parse_tdinfo(&cc_mask);
846 	cc_set_mask(cc_mask);
847 
848 	/* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */
849 	tdcall(TDG_VM_WR, &args);
850 
851 	/*
852 	 * All bits above GPA width are reserved and kernel treats shared bit
853 	 * as flag, not as part of physical address.
854 	 *
855 	 * Adjust physical mask to only cover valid GPA bits.
856 	 */
857 	physical_mask &= cc_mask - 1;
858 
859 	/*
860 	 * The kernel mapping should match the TDX metadata for the page.
861 	 * load_unaligned_zeropad() can touch memory *adjacent* to that which is
862 	 * owned by the caller and can catch even _momentary_ mismatches.  Bad
863 	 * things happen on mismatch:
864 	 *
865 	 *   - Private mapping => Shared Page  == Guest shutdown
866          *   - Shared mapping  => Private Page == Recoverable #VE
867 	 *
868 	 * guest.enc_status_change_prepare() converts the page from
869 	 * shared=>private before the mapping becomes private.
870 	 *
871 	 * guest.enc_status_change_finish() converts the page from
872 	 * private=>shared after the mapping becomes private.
873 	 *
874 	 * In both cases there is a temporary shared mapping to a private page,
875 	 * which can result in a #VE.  But, there is never a private mapping to
876 	 * a shared page.
877 	 */
878 	x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare;
879 	x86_platform.guest.enc_status_change_finish  = tdx_enc_status_change_finish;
880 
881 	x86_platform.guest.enc_cache_flush_required  = tdx_cache_flush_required;
882 	x86_platform.guest.enc_tlb_flush_required    = tdx_tlb_flush_required;
883 
884 	/*
885 	 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel
886 	 * bringup low level code. That raises #VE which cannot be handled
887 	 * there.
888 	 *
889 	 * Intel-TDX has a secure RDMSR hypercall, but that needs to be
890 	 * implemented separately in the low level startup ASM code.
891 	 * Until that is in place, disable parallel bringup for TDX.
892 	 */
893 	x86_cpuinit.parallel_bringup = false;
894 
895 	pr_info("Guest detected\n");
896 }
897