1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021-2022 Intel Corporation */ 3 4 #undef pr_fmt 5 #define pr_fmt(fmt) "tdx: " fmt 6 7 #include <linux/cpufeature.h> 8 #include <asm/coco.h> 9 #include <asm/tdx.h> 10 #include <asm/vmx.h> 11 #include <asm/insn.h> 12 #include <asm/insn-eval.h> 13 #include <asm/pgtable.h> 14 15 /* TDX module Call Leaf IDs */ 16 #define TDX_GET_INFO 1 17 #define TDX_GET_VEINFO 3 18 #define TDX_ACCEPT_PAGE 6 19 20 /* TDX hypercall Leaf IDs */ 21 #define TDVMCALL_MAP_GPA 0x10001 22 23 /* MMIO direction */ 24 #define EPT_READ 0 25 #define EPT_WRITE 1 26 27 /* Port I/O direction */ 28 #define PORT_READ 0 29 #define PORT_WRITE 1 30 31 /* See Exit Qualification for I/O Instructions in VMX documentation */ 32 #define VE_IS_IO_IN(e) ((e) & BIT(3)) 33 #define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1) 34 #define VE_GET_PORT_NUM(e) ((e) >> 16) 35 #define VE_IS_IO_STRING(e) ((e) & BIT(4)) 36 37 /* 38 * Wrapper for standard use of __tdx_hypercall with no output aside from 39 * return code. 40 */ 41 static inline u64 _tdx_hypercall(u64 fn, u64 r12, u64 r13, u64 r14, u64 r15) 42 { 43 struct tdx_hypercall_args args = { 44 .r10 = TDX_HYPERCALL_STANDARD, 45 .r11 = fn, 46 .r12 = r12, 47 .r13 = r13, 48 .r14 = r14, 49 .r15 = r15, 50 }; 51 52 return __tdx_hypercall(&args, 0); 53 } 54 55 /* Called from __tdx_hypercall() for unrecoverable failure */ 56 void __tdx_hypercall_failed(void) 57 { 58 panic("TDVMCALL failed. TDX module bug?"); 59 } 60 61 /* 62 * The TDG.VP.VMCALL-Instruction-execution sub-functions are defined 63 * independently from but are currently matched 1:1 with VMX EXIT_REASONs. 64 * Reusing the KVM EXIT_REASON macros makes it easier to connect the host and 65 * guest sides of these calls. 66 */ 67 static u64 hcall_func(u64 exit_reason) 68 { 69 return exit_reason; 70 } 71 72 #ifdef CONFIG_KVM_GUEST 73 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2, 74 unsigned long p3, unsigned long p4) 75 { 76 struct tdx_hypercall_args args = { 77 .r10 = nr, 78 .r11 = p1, 79 .r12 = p2, 80 .r13 = p3, 81 .r14 = p4, 82 }; 83 84 return __tdx_hypercall(&args, 0); 85 } 86 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall); 87 #endif 88 89 /* 90 * Used for TDX guests to make calls directly to the TD module. This 91 * should only be used for calls that have no legitimate reason to fail 92 * or where the kernel can not survive the call failing. 93 */ 94 static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9, 95 struct tdx_module_output *out) 96 { 97 if (__tdx_module_call(fn, rcx, rdx, r8, r9, out)) 98 panic("TDCALL %lld failed (Buggy TDX module!)\n", fn); 99 } 100 101 static u64 get_cc_mask(void) 102 { 103 struct tdx_module_output out; 104 unsigned int gpa_width; 105 106 /* 107 * TDINFO TDX module call is used to get the TD execution environment 108 * information like GPA width, number of available vcpus, debug mode 109 * information, etc. More details about the ABI can be found in TDX 110 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL 111 * [TDG.VP.INFO]. 112 * 113 * The GPA width that comes out of this call is critical. TDX guests 114 * can not meaningfully run without it. 115 */ 116 tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out); 117 118 gpa_width = out.rcx & GENMASK(5, 0); 119 120 /* 121 * The highest bit of a guest physical address is the "sharing" bit. 122 * Set it for shared pages and clear it for private pages. 123 */ 124 return BIT_ULL(gpa_width - 1); 125 } 126 127 /* 128 * The TDX module spec states that #VE may be injected for a limited set of 129 * reasons: 130 * 131 * - Emulation of the architectural #VE injection on EPT violation; 132 * 133 * - As a result of guest TD execution of a disallowed instruction, 134 * a disallowed MSR access, or CPUID virtualization; 135 * 136 * - A notification to the guest TD about anomalous behavior; 137 * 138 * The last one is opt-in and is not used by the kernel. 139 * 140 * The Intel Software Developer's Manual describes cases when instruction 141 * length field can be used in section "Information for VM Exits Due to 142 * Instruction Execution". 143 * 144 * For TDX, it ultimately means GET_VEINFO provides reliable instruction length 145 * information if #VE occurred due to instruction execution, but not for EPT 146 * violations. 147 */ 148 static int ve_instr_len(struct ve_info *ve) 149 { 150 switch (ve->exit_reason) { 151 case EXIT_REASON_HLT: 152 case EXIT_REASON_MSR_READ: 153 case EXIT_REASON_MSR_WRITE: 154 case EXIT_REASON_CPUID: 155 case EXIT_REASON_IO_INSTRUCTION: 156 /* It is safe to use ve->instr_len for #VE due instructions */ 157 return ve->instr_len; 158 case EXIT_REASON_EPT_VIOLATION: 159 /* 160 * For EPT violations, ve->insn_len is not defined. For those, 161 * the kernel must decode instructions manually and should not 162 * be using this function. 163 */ 164 WARN_ONCE(1, "ve->instr_len is not defined for EPT violations"); 165 return 0; 166 default: 167 WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason); 168 return ve->instr_len; 169 } 170 } 171 172 static u64 __cpuidle __halt(const bool irq_disabled, const bool do_sti) 173 { 174 struct tdx_hypercall_args args = { 175 .r10 = TDX_HYPERCALL_STANDARD, 176 .r11 = hcall_func(EXIT_REASON_HLT), 177 .r12 = irq_disabled, 178 }; 179 180 /* 181 * Emulate HLT operation via hypercall. More info about ABI 182 * can be found in TDX Guest-Host-Communication Interface 183 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>. 184 * 185 * The VMM uses the "IRQ disabled" param to understand IRQ 186 * enabled status (RFLAGS.IF) of the TD guest and to determine 187 * whether or not it should schedule the halted vCPU if an 188 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM 189 * can keep the vCPU in virtual HLT, even if an IRQ is 190 * pending, without hanging/breaking the guest. 191 */ 192 return __tdx_hypercall(&args, do_sti ? TDX_HCALL_ISSUE_STI : 0); 193 } 194 195 static int handle_halt(struct ve_info *ve) 196 { 197 /* 198 * Since non safe halt is mainly used in CPU offlining 199 * and the guest will always stay in the halt state, don't 200 * call the STI instruction (set do_sti as false). 201 */ 202 const bool irq_disabled = irqs_disabled(); 203 const bool do_sti = false; 204 205 if (__halt(irq_disabled, do_sti)) 206 return -EIO; 207 208 return ve_instr_len(ve); 209 } 210 211 void __cpuidle tdx_safe_halt(void) 212 { 213 /* 214 * For do_sti=true case, __tdx_hypercall() function enables 215 * interrupts using the STI instruction before the TDCALL. So 216 * set irq_disabled as false. 217 */ 218 const bool irq_disabled = false; 219 const bool do_sti = true; 220 221 /* 222 * Use WARN_ONCE() to report the failure. 223 */ 224 if (__halt(irq_disabled, do_sti)) 225 WARN_ONCE(1, "HLT instruction emulation failed\n"); 226 } 227 228 static int read_msr(struct pt_regs *regs, struct ve_info *ve) 229 { 230 struct tdx_hypercall_args args = { 231 .r10 = TDX_HYPERCALL_STANDARD, 232 .r11 = hcall_func(EXIT_REASON_MSR_READ), 233 .r12 = regs->cx, 234 }; 235 236 /* 237 * Emulate the MSR read via hypercall. More info about ABI 238 * can be found in TDX Guest-Host-Communication Interface 239 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>". 240 */ 241 if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT)) 242 return -EIO; 243 244 regs->ax = lower_32_bits(args.r11); 245 regs->dx = upper_32_bits(args.r11); 246 return ve_instr_len(ve); 247 } 248 249 static int write_msr(struct pt_regs *regs, struct ve_info *ve) 250 { 251 struct tdx_hypercall_args args = { 252 .r10 = TDX_HYPERCALL_STANDARD, 253 .r11 = hcall_func(EXIT_REASON_MSR_WRITE), 254 .r12 = regs->cx, 255 .r13 = (u64)regs->dx << 32 | regs->ax, 256 }; 257 258 /* 259 * Emulate the MSR write via hypercall. More info about ABI 260 * can be found in TDX Guest-Host-Communication Interface 261 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>". 262 */ 263 if (__tdx_hypercall(&args, 0)) 264 return -EIO; 265 266 return ve_instr_len(ve); 267 } 268 269 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve) 270 { 271 struct tdx_hypercall_args args = { 272 .r10 = TDX_HYPERCALL_STANDARD, 273 .r11 = hcall_func(EXIT_REASON_CPUID), 274 .r12 = regs->ax, 275 .r13 = regs->cx, 276 }; 277 278 /* 279 * Only allow VMM to control range reserved for hypervisor 280 * communication. 281 * 282 * Return all-zeros for any CPUID outside the range. It matches CPU 283 * behaviour for non-supported leaf. 284 */ 285 if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) { 286 regs->ax = regs->bx = regs->cx = regs->dx = 0; 287 return ve_instr_len(ve); 288 } 289 290 /* 291 * Emulate the CPUID instruction via a hypercall. More info about 292 * ABI can be found in TDX Guest-Host-Communication Interface 293 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>". 294 */ 295 if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT)) 296 return -EIO; 297 298 /* 299 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of 300 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution. 301 * So copy the register contents back to pt_regs. 302 */ 303 regs->ax = args.r12; 304 regs->bx = args.r13; 305 regs->cx = args.r14; 306 regs->dx = args.r15; 307 308 return ve_instr_len(ve); 309 } 310 311 static bool mmio_read(int size, unsigned long addr, unsigned long *val) 312 { 313 struct tdx_hypercall_args args = { 314 .r10 = TDX_HYPERCALL_STANDARD, 315 .r11 = hcall_func(EXIT_REASON_EPT_VIOLATION), 316 .r12 = size, 317 .r13 = EPT_READ, 318 .r14 = addr, 319 .r15 = *val, 320 }; 321 322 if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT)) 323 return false; 324 *val = args.r11; 325 return true; 326 } 327 328 static bool mmio_write(int size, unsigned long addr, unsigned long val) 329 { 330 return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size, 331 EPT_WRITE, addr, val); 332 } 333 334 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve) 335 { 336 unsigned long *reg, val, vaddr; 337 char buffer[MAX_INSN_SIZE]; 338 struct insn insn = {}; 339 enum mmio_type mmio; 340 int size, extend_size; 341 u8 extend_val = 0; 342 343 /* Only in-kernel MMIO is supported */ 344 if (WARN_ON_ONCE(user_mode(regs))) 345 return -EFAULT; 346 347 if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE)) 348 return -EFAULT; 349 350 if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64)) 351 return -EINVAL; 352 353 mmio = insn_decode_mmio(&insn, &size); 354 if (WARN_ON_ONCE(mmio == MMIO_DECODE_FAILED)) 355 return -EINVAL; 356 357 if (mmio != MMIO_WRITE_IMM && mmio != MMIO_MOVS) { 358 reg = insn_get_modrm_reg_ptr(&insn, regs); 359 if (!reg) 360 return -EINVAL; 361 } 362 363 /* 364 * Reject EPT violation #VEs that split pages. 365 * 366 * MMIO accesses are supposed to be naturally aligned and therefore 367 * never cross page boundaries. Seeing split page accesses indicates 368 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page. 369 * 370 * load_unaligned_zeropad() will recover using exception fixups. 371 */ 372 vaddr = (unsigned long)insn_get_addr_ref(&insn, regs); 373 if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE) 374 return -EFAULT; 375 376 /* Handle writes first */ 377 switch (mmio) { 378 case MMIO_WRITE: 379 memcpy(&val, reg, size); 380 if (!mmio_write(size, ve->gpa, val)) 381 return -EIO; 382 return insn.length; 383 case MMIO_WRITE_IMM: 384 val = insn.immediate.value; 385 if (!mmio_write(size, ve->gpa, val)) 386 return -EIO; 387 return insn.length; 388 case MMIO_READ: 389 case MMIO_READ_ZERO_EXTEND: 390 case MMIO_READ_SIGN_EXTEND: 391 /* Reads are handled below */ 392 break; 393 case MMIO_MOVS: 394 case MMIO_DECODE_FAILED: 395 /* 396 * MMIO was accessed with an instruction that could not be 397 * decoded or handled properly. It was likely not using io.h 398 * helpers or accessed MMIO accidentally. 399 */ 400 return -EINVAL; 401 default: 402 WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?"); 403 return -EINVAL; 404 } 405 406 /* Handle reads */ 407 if (!mmio_read(size, ve->gpa, &val)) 408 return -EIO; 409 410 switch (mmio) { 411 case MMIO_READ: 412 /* Zero-extend for 32-bit operation */ 413 extend_size = size == 4 ? sizeof(*reg) : 0; 414 break; 415 case MMIO_READ_ZERO_EXTEND: 416 /* Zero extend based on operand size */ 417 extend_size = insn.opnd_bytes; 418 break; 419 case MMIO_READ_SIGN_EXTEND: 420 /* Sign extend based on operand size */ 421 extend_size = insn.opnd_bytes; 422 if (size == 1 && val & BIT(7)) 423 extend_val = 0xFF; 424 else if (size > 1 && val & BIT(15)) 425 extend_val = 0xFF; 426 break; 427 default: 428 /* All other cases has to be covered with the first switch() */ 429 WARN_ON_ONCE(1); 430 return -EINVAL; 431 } 432 433 if (extend_size) 434 memset(reg, extend_val, extend_size); 435 memcpy(reg, &val, size); 436 return insn.length; 437 } 438 439 static bool handle_in(struct pt_regs *regs, int size, int port) 440 { 441 struct tdx_hypercall_args args = { 442 .r10 = TDX_HYPERCALL_STANDARD, 443 .r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION), 444 .r12 = size, 445 .r13 = PORT_READ, 446 .r14 = port, 447 }; 448 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 449 bool success; 450 451 /* 452 * Emulate the I/O read via hypercall. More info about ABI can be found 453 * in TDX Guest-Host-Communication Interface (GHCI) section titled 454 * "TDG.VP.VMCALL<Instruction.IO>". 455 */ 456 success = !__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT); 457 458 /* Update part of the register affected by the emulated instruction */ 459 regs->ax &= ~mask; 460 if (success) 461 regs->ax |= args.r11 & mask; 462 463 return success; 464 } 465 466 static bool handle_out(struct pt_regs *regs, int size, int port) 467 { 468 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 469 470 /* 471 * Emulate the I/O write via hypercall. More info about ABI can be found 472 * in TDX Guest-Host-Communication Interface (GHCI) section titled 473 * "TDG.VP.VMCALL<Instruction.IO>". 474 */ 475 return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size, 476 PORT_WRITE, port, regs->ax & mask); 477 } 478 479 /* 480 * Emulate I/O using hypercall. 481 * 482 * Assumes the IO instruction was using ax, which is enforced 483 * by the standard io.h macros. 484 * 485 * Return True on success or False on failure. 486 */ 487 static int handle_io(struct pt_regs *regs, struct ve_info *ve) 488 { 489 u32 exit_qual = ve->exit_qual; 490 int size, port; 491 bool in, ret; 492 493 if (VE_IS_IO_STRING(exit_qual)) 494 return -EIO; 495 496 in = VE_IS_IO_IN(exit_qual); 497 size = VE_GET_IO_SIZE(exit_qual); 498 port = VE_GET_PORT_NUM(exit_qual); 499 500 501 if (in) 502 ret = handle_in(regs, size, port); 503 else 504 ret = handle_out(regs, size, port); 505 if (!ret) 506 return -EIO; 507 508 return ve_instr_len(ve); 509 } 510 511 /* 512 * Early #VE exception handler. Only handles a subset of port I/O. 513 * Intended only for earlyprintk. If failed, return false. 514 */ 515 __init bool tdx_early_handle_ve(struct pt_regs *regs) 516 { 517 struct ve_info ve; 518 int insn_len; 519 520 tdx_get_ve_info(&ve); 521 522 if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION) 523 return false; 524 525 insn_len = handle_io(regs, &ve); 526 if (insn_len < 0) 527 return false; 528 529 regs->ip += insn_len; 530 return true; 531 } 532 533 void tdx_get_ve_info(struct ve_info *ve) 534 { 535 struct tdx_module_output out; 536 537 /* 538 * Called during #VE handling to retrieve the #VE info from the 539 * TDX module. 540 * 541 * This has to be called early in #VE handling. A "nested" #VE which 542 * occurs before this will raise a #DF and is not recoverable. 543 * 544 * The call retrieves the #VE info from the TDX module, which also 545 * clears the "#VE valid" flag. This must be done before anything else 546 * because any #VE that occurs while the valid flag is set will lead to 547 * #DF. 548 * 549 * Note, the TDX module treats virtual NMIs as inhibited if the #VE 550 * valid flag is set. It means that NMI=>#VE will not result in a #DF. 551 */ 552 tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out); 553 554 /* Transfer the output parameters */ 555 ve->exit_reason = out.rcx; 556 ve->exit_qual = out.rdx; 557 ve->gla = out.r8; 558 ve->gpa = out.r9; 559 ve->instr_len = lower_32_bits(out.r10); 560 ve->instr_info = upper_32_bits(out.r10); 561 } 562 563 /* 564 * Handle the user initiated #VE. 565 * 566 * On success, returns the number of bytes RIP should be incremented (>=0) 567 * or -errno on error. 568 */ 569 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve) 570 { 571 switch (ve->exit_reason) { 572 case EXIT_REASON_CPUID: 573 return handle_cpuid(regs, ve); 574 default: 575 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 576 return -EIO; 577 } 578 } 579 580 /* 581 * Handle the kernel #VE. 582 * 583 * On success, returns the number of bytes RIP should be incremented (>=0) 584 * or -errno on error. 585 */ 586 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve) 587 { 588 switch (ve->exit_reason) { 589 case EXIT_REASON_HLT: 590 return handle_halt(ve); 591 case EXIT_REASON_MSR_READ: 592 return read_msr(regs, ve); 593 case EXIT_REASON_MSR_WRITE: 594 return write_msr(regs, ve); 595 case EXIT_REASON_CPUID: 596 return handle_cpuid(regs, ve); 597 case EXIT_REASON_EPT_VIOLATION: 598 return handle_mmio(regs, ve); 599 case EXIT_REASON_IO_INSTRUCTION: 600 return handle_io(regs, ve); 601 default: 602 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 603 return -EIO; 604 } 605 } 606 607 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve) 608 { 609 int insn_len; 610 611 if (user_mode(regs)) 612 insn_len = virt_exception_user(regs, ve); 613 else 614 insn_len = virt_exception_kernel(regs, ve); 615 if (insn_len < 0) 616 return false; 617 618 /* After successful #VE handling, move the IP */ 619 regs->ip += insn_len; 620 621 return true; 622 } 623 624 static bool tdx_tlb_flush_required(bool private) 625 { 626 /* 627 * TDX guest is responsible for flushing TLB on private->shared 628 * transition. VMM is responsible for flushing on shared->private. 629 * 630 * The VMM _can't_ flush private addresses as it can't generate PAs 631 * with the guest's HKID. Shared memory isn't subject to integrity 632 * checking, i.e. the VMM doesn't need to flush for its own protection. 633 * 634 * There's no need to flush when converting from shared to private, 635 * as flushing is the VMM's responsibility in this case, e.g. it must 636 * flush to avoid integrity failures in the face of a buggy or 637 * malicious guest. 638 */ 639 return !private; 640 } 641 642 static bool tdx_cache_flush_required(void) 643 { 644 /* 645 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence. 646 * TDX doesn't have such capability. 647 * 648 * Flush cache unconditionally. 649 */ 650 return true; 651 } 652 653 static bool try_accept_one(phys_addr_t *start, unsigned long len, 654 enum pg_level pg_level) 655 { 656 unsigned long accept_size = page_level_size(pg_level); 657 u64 tdcall_rcx; 658 u8 page_size; 659 660 if (!IS_ALIGNED(*start, accept_size)) 661 return false; 662 663 if (len < accept_size) 664 return false; 665 666 /* 667 * Pass the page physical address to the TDX module to accept the 668 * pending, private page. 669 * 670 * Bits 2:0 of RCX encode page size: 0 - 4K, 1 - 2M, 2 - 1G. 671 */ 672 switch (pg_level) { 673 case PG_LEVEL_4K: 674 page_size = 0; 675 break; 676 case PG_LEVEL_2M: 677 page_size = 1; 678 break; 679 case PG_LEVEL_1G: 680 page_size = 2; 681 break; 682 default: 683 return false; 684 } 685 686 tdcall_rcx = *start | page_size; 687 if (__tdx_module_call(TDX_ACCEPT_PAGE, tdcall_rcx, 0, 0, 0, NULL)) 688 return false; 689 690 *start += accept_size; 691 return true; 692 } 693 694 /* 695 * Inform the VMM of the guest's intent for this physical page: shared with 696 * the VMM or private to the guest. The VMM is expected to change its mapping 697 * of the page in response. 698 */ 699 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc) 700 { 701 phys_addr_t start = __pa(vaddr); 702 phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE); 703 704 if (!enc) { 705 /* Set the shared (decrypted) bits: */ 706 start |= cc_mkdec(0); 707 end |= cc_mkdec(0); 708 } 709 710 /* 711 * Notify the VMM about page mapping conversion. More info about ABI 712 * can be found in TDX Guest-Host-Communication Interface (GHCI), 713 * section "TDG.VP.VMCALL<MapGPA>" 714 */ 715 if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0)) 716 return false; 717 718 /* private->shared conversion requires only MapGPA call */ 719 if (!enc) 720 return true; 721 722 /* 723 * For shared->private conversion, accept the page using 724 * TDX_ACCEPT_PAGE TDX module call. 725 */ 726 while (start < end) { 727 unsigned long len = end - start; 728 729 /* 730 * Try larger accepts first. It gives chance to VMM to keep 731 * 1G/2M SEPT entries where possible and speeds up process by 732 * cutting number of hypercalls (if successful). 733 */ 734 735 if (try_accept_one(&start, len, PG_LEVEL_1G)) 736 continue; 737 738 if (try_accept_one(&start, len, PG_LEVEL_2M)) 739 continue; 740 741 if (!try_accept_one(&start, len, PG_LEVEL_4K)) 742 return false; 743 } 744 745 return true; 746 } 747 748 void __init tdx_early_init(void) 749 { 750 u64 cc_mask; 751 u32 eax, sig[3]; 752 753 cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]); 754 755 if (memcmp(TDX_IDENT, sig, sizeof(sig))) 756 return; 757 758 setup_force_cpu_cap(X86_FEATURE_TDX_GUEST); 759 760 cc_set_vendor(CC_VENDOR_INTEL); 761 cc_mask = get_cc_mask(); 762 cc_set_mask(cc_mask); 763 764 /* 765 * All bits above GPA width are reserved and kernel treats shared bit 766 * as flag, not as part of physical address. 767 * 768 * Adjust physical mask to only cover valid GPA bits. 769 */ 770 physical_mask &= cc_mask - 1; 771 772 x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required; 773 x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required; 774 x86_platform.guest.enc_status_change_finish = tdx_enc_status_changed; 775 776 pr_info("Guest detected\n"); 777 } 778