1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021-2022 Intel Corporation */ 3 4 #undef pr_fmt 5 #define pr_fmt(fmt) "tdx: " fmt 6 7 #include <linux/cpufeature.h> 8 #include <linux/export.h> 9 #include <linux/io.h> 10 #include <asm/coco.h> 11 #include <asm/tdx.h> 12 #include <asm/vmx.h> 13 #include <asm/ia32.h> 14 #include <asm/insn.h> 15 #include <asm/insn-eval.h> 16 #include <asm/pgtable.h> 17 18 /* MMIO direction */ 19 #define EPT_READ 0 20 #define EPT_WRITE 1 21 22 /* Port I/O direction */ 23 #define PORT_READ 0 24 #define PORT_WRITE 1 25 26 /* See Exit Qualification for I/O Instructions in VMX documentation */ 27 #define VE_IS_IO_IN(e) ((e) & BIT(3)) 28 #define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1) 29 #define VE_GET_PORT_NUM(e) ((e) >> 16) 30 #define VE_IS_IO_STRING(e) ((e) & BIT(4)) 31 32 #define ATTR_DEBUG BIT(0) 33 #define ATTR_SEPT_VE_DISABLE BIT(28) 34 35 /* TDX Module call error codes */ 36 #define TDCALL_RETURN_CODE(a) ((a) >> 32) 37 #define TDCALL_INVALID_OPERAND 0xc0000100 38 39 #define TDREPORT_SUBTYPE_0 0 40 41 /* Called from __tdx_hypercall() for unrecoverable failure */ 42 noinstr void __noreturn __tdx_hypercall_failed(void) 43 { 44 instrumentation_begin(); 45 panic("TDVMCALL failed. TDX module bug?"); 46 } 47 48 #ifdef CONFIG_KVM_GUEST 49 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2, 50 unsigned long p3, unsigned long p4) 51 { 52 struct tdx_module_args args = { 53 .r10 = nr, 54 .r11 = p1, 55 .r12 = p2, 56 .r13 = p3, 57 .r14 = p4, 58 }; 59 60 return __tdx_hypercall(&args); 61 } 62 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall); 63 #endif 64 65 /* 66 * Used for TDX guests to make calls directly to the TD module. This 67 * should only be used for calls that have no legitimate reason to fail 68 * or where the kernel can not survive the call failing. 69 */ 70 static inline void tdcall(u64 fn, struct tdx_module_args *args) 71 { 72 if (__tdcall_ret(fn, args)) 73 panic("TDCALL %lld failed (Buggy TDX module!)\n", fn); 74 } 75 76 /** 77 * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT 78 * subtype 0) using TDG.MR.REPORT TDCALL. 79 * @reportdata: Address of the input buffer which contains user-defined 80 * REPORTDATA to be included into TDREPORT. 81 * @tdreport: Address of the output buffer to store TDREPORT. 82 * 83 * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module 84 * v1.0 specification for more information on TDG.MR.REPORT TDCALL. 85 * It is used in the TDX guest driver module to get the TDREPORT0. 86 * 87 * Return 0 on success, -EINVAL for invalid operands, or -EIO on 88 * other TDCALL failures. 89 */ 90 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport) 91 { 92 struct tdx_module_args args = { 93 .rcx = virt_to_phys(tdreport), 94 .rdx = virt_to_phys(reportdata), 95 .r8 = TDREPORT_SUBTYPE_0, 96 }; 97 u64 ret; 98 99 ret = __tdcall(TDG_MR_REPORT, &args); 100 if (ret) { 101 if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND) 102 return -EINVAL; 103 return -EIO; 104 } 105 106 return 0; 107 } 108 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0); 109 110 /** 111 * tdx_hcall_get_quote() - Wrapper to request TD Quote using GetQuote 112 * hypercall. 113 * @buf: Address of the directly mapped shared kernel buffer which 114 * contains TDREPORT. The same buffer will be used by VMM to 115 * store the generated TD Quote output. 116 * @size: size of the tdquote buffer (4KB-aligned). 117 * 118 * Refer to section titled "TDG.VP.VMCALL<GetQuote>" in the TDX GHCI 119 * v1.0 specification for more information on GetQuote hypercall. 120 * It is used in the TDX guest driver module to get the TD Quote. 121 * 122 * Return 0 on success or error code on failure. 123 */ 124 u64 tdx_hcall_get_quote(u8 *buf, size_t size) 125 { 126 /* Since buf is a shared memory, set the shared (decrypted) bits */ 127 return _tdx_hypercall(TDVMCALL_GET_QUOTE, cc_mkdec(virt_to_phys(buf)), size, 0, 0); 128 } 129 EXPORT_SYMBOL_GPL(tdx_hcall_get_quote); 130 131 static void __noreturn tdx_panic(const char *msg) 132 { 133 struct tdx_module_args args = { 134 .r10 = TDX_HYPERCALL_STANDARD, 135 .r11 = TDVMCALL_REPORT_FATAL_ERROR, 136 .r12 = 0, /* Error code: 0 is Panic */ 137 }; 138 union { 139 /* Define register order according to the GHCI */ 140 struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; }; 141 142 char str[64]; 143 } message; 144 145 /* VMM assumes '\0' in byte 65, if the message took all 64 bytes */ 146 strtomem_pad(message.str, msg, '\0'); 147 148 args.r8 = message.r8; 149 args.r9 = message.r9; 150 args.r14 = message.r14; 151 args.r15 = message.r15; 152 args.rdi = message.rdi; 153 args.rsi = message.rsi; 154 args.rbx = message.rbx; 155 args.rdx = message.rdx; 156 157 /* 158 * This hypercall should never return and it is not safe 159 * to keep the guest running. Call it forever if it 160 * happens to return. 161 */ 162 while (1) 163 __tdx_hypercall(&args); 164 } 165 166 static void tdx_parse_tdinfo(u64 *cc_mask) 167 { 168 struct tdx_module_args args = {}; 169 unsigned int gpa_width; 170 u64 td_attr; 171 172 /* 173 * TDINFO TDX module call is used to get the TD execution environment 174 * information like GPA width, number of available vcpus, debug mode 175 * information, etc. More details about the ABI can be found in TDX 176 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL 177 * [TDG.VP.INFO]. 178 */ 179 tdcall(TDG_VP_INFO, &args); 180 181 /* 182 * The highest bit of a guest physical address is the "sharing" bit. 183 * Set it for shared pages and clear it for private pages. 184 * 185 * The GPA width that comes out of this call is critical. TDX guests 186 * can not meaningfully run without it. 187 */ 188 gpa_width = args.rcx & GENMASK(5, 0); 189 *cc_mask = BIT_ULL(gpa_width - 1); 190 191 /* 192 * The kernel can not handle #VE's when accessing normal kernel 193 * memory. Ensure that no #VE will be delivered for accesses to 194 * TD-private memory. Only VMM-shared memory (MMIO) will #VE. 195 */ 196 td_attr = args.rdx; 197 if (!(td_attr & ATTR_SEPT_VE_DISABLE)) { 198 const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set."; 199 200 /* Relax SEPT_VE_DISABLE check for debug TD. */ 201 if (td_attr & ATTR_DEBUG) 202 pr_warn("%s\n", msg); 203 else 204 tdx_panic(msg); 205 } 206 } 207 208 /* 209 * The TDX module spec states that #VE may be injected for a limited set of 210 * reasons: 211 * 212 * - Emulation of the architectural #VE injection on EPT violation; 213 * 214 * - As a result of guest TD execution of a disallowed instruction, 215 * a disallowed MSR access, or CPUID virtualization; 216 * 217 * - A notification to the guest TD about anomalous behavior; 218 * 219 * The last one is opt-in and is not used by the kernel. 220 * 221 * The Intel Software Developer's Manual describes cases when instruction 222 * length field can be used in section "Information for VM Exits Due to 223 * Instruction Execution". 224 * 225 * For TDX, it ultimately means GET_VEINFO provides reliable instruction length 226 * information if #VE occurred due to instruction execution, but not for EPT 227 * violations. 228 */ 229 static int ve_instr_len(struct ve_info *ve) 230 { 231 switch (ve->exit_reason) { 232 case EXIT_REASON_HLT: 233 case EXIT_REASON_MSR_READ: 234 case EXIT_REASON_MSR_WRITE: 235 case EXIT_REASON_CPUID: 236 case EXIT_REASON_IO_INSTRUCTION: 237 /* It is safe to use ve->instr_len for #VE due instructions */ 238 return ve->instr_len; 239 case EXIT_REASON_EPT_VIOLATION: 240 /* 241 * For EPT violations, ve->insn_len is not defined. For those, 242 * the kernel must decode instructions manually and should not 243 * be using this function. 244 */ 245 WARN_ONCE(1, "ve->instr_len is not defined for EPT violations"); 246 return 0; 247 default: 248 WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason); 249 return ve->instr_len; 250 } 251 } 252 253 static u64 __cpuidle __halt(const bool irq_disabled) 254 { 255 struct tdx_module_args args = { 256 .r10 = TDX_HYPERCALL_STANDARD, 257 .r11 = hcall_func(EXIT_REASON_HLT), 258 .r12 = irq_disabled, 259 }; 260 261 /* 262 * Emulate HLT operation via hypercall. More info about ABI 263 * can be found in TDX Guest-Host-Communication Interface 264 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>. 265 * 266 * The VMM uses the "IRQ disabled" param to understand IRQ 267 * enabled status (RFLAGS.IF) of the TD guest and to determine 268 * whether or not it should schedule the halted vCPU if an 269 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM 270 * can keep the vCPU in virtual HLT, even if an IRQ is 271 * pending, without hanging/breaking the guest. 272 */ 273 return __tdx_hypercall(&args); 274 } 275 276 static int handle_halt(struct ve_info *ve) 277 { 278 const bool irq_disabled = irqs_disabled(); 279 280 if (__halt(irq_disabled)) 281 return -EIO; 282 283 return ve_instr_len(ve); 284 } 285 286 void __cpuidle tdx_safe_halt(void) 287 { 288 const bool irq_disabled = false; 289 290 /* 291 * Use WARN_ONCE() to report the failure. 292 */ 293 if (__halt(irq_disabled)) 294 WARN_ONCE(1, "HLT instruction emulation failed\n"); 295 } 296 297 static int read_msr(struct pt_regs *regs, struct ve_info *ve) 298 { 299 struct tdx_module_args args = { 300 .r10 = TDX_HYPERCALL_STANDARD, 301 .r11 = hcall_func(EXIT_REASON_MSR_READ), 302 .r12 = regs->cx, 303 }; 304 305 /* 306 * Emulate the MSR read via hypercall. More info about ABI 307 * can be found in TDX Guest-Host-Communication Interface 308 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>". 309 */ 310 if (__tdx_hypercall(&args)) 311 return -EIO; 312 313 regs->ax = lower_32_bits(args.r11); 314 regs->dx = upper_32_bits(args.r11); 315 return ve_instr_len(ve); 316 } 317 318 static int write_msr(struct pt_regs *regs, struct ve_info *ve) 319 { 320 struct tdx_module_args args = { 321 .r10 = TDX_HYPERCALL_STANDARD, 322 .r11 = hcall_func(EXIT_REASON_MSR_WRITE), 323 .r12 = regs->cx, 324 .r13 = (u64)regs->dx << 32 | regs->ax, 325 }; 326 327 /* 328 * Emulate the MSR write via hypercall. More info about ABI 329 * can be found in TDX Guest-Host-Communication Interface 330 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>". 331 */ 332 if (__tdx_hypercall(&args)) 333 return -EIO; 334 335 return ve_instr_len(ve); 336 } 337 338 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve) 339 { 340 struct tdx_module_args args = { 341 .r10 = TDX_HYPERCALL_STANDARD, 342 .r11 = hcall_func(EXIT_REASON_CPUID), 343 .r12 = regs->ax, 344 .r13 = regs->cx, 345 }; 346 347 /* 348 * Only allow VMM to control range reserved for hypervisor 349 * communication. 350 * 351 * Return all-zeros for any CPUID outside the range. It matches CPU 352 * behaviour for non-supported leaf. 353 */ 354 if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) { 355 regs->ax = regs->bx = regs->cx = regs->dx = 0; 356 return ve_instr_len(ve); 357 } 358 359 /* 360 * Emulate the CPUID instruction via a hypercall. More info about 361 * ABI can be found in TDX Guest-Host-Communication Interface 362 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>". 363 */ 364 if (__tdx_hypercall(&args)) 365 return -EIO; 366 367 /* 368 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of 369 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution. 370 * So copy the register contents back to pt_regs. 371 */ 372 regs->ax = args.r12; 373 regs->bx = args.r13; 374 regs->cx = args.r14; 375 regs->dx = args.r15; 376 377 return ve_instr_len(ve); 378 } 379 380 static bool mmio_read(int size, unsigned long addr, unsigned long *val) 381 { 382 struct tdx_module_args args = { 383 .r10 = TDX_HYPERCALL_STANDARD, 384 .r11 = hcall_func(EXIT_REASON_EPT_VIOLATION), 385 .r12 = size, 386 .r13 = EPT_READ, 387 .r14 = addr, 388 .r15 = *val, 389 }; 390 391 if (__tdx_hypercall(&args)) 392 return false; 393 394 *val = args.r11; 395 return true; 396 } 397 398 static bool mmio_write(int size, unsigned long addr, unsigned long val) 399 { 400 return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size, 401 EPT_WRITE, addr, val); 402 } 403 404 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve) 405 { 406 unsigned long *reg, val, vaddr; 407 char buffer[MAX_INSN_SIZE]; 408 enum insn_mmio_type mmio; 409 struct insn insn = {}; 410 int size, extend_size; 411 u8 extend_val = 0; 412 413 /* Only in-kernel MMIO is supported */ 414 if (WARN_ON_ONCE(user_mode(regs))) 415 return -EFAULT; 416 417 if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE)) 418 return -EFAULT; 419 420 if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64)) 421 return -EINVAL; 422 423 mmio = insn_decode_mmio(&insn, &size); 424 if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED)) 425 return -EINVAL; 426 427 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) { 428 reg = insn_get_modrm_reg_ptr(&insn, regs); 429 if (!reg) 430 return -EINVAL; 431 } 432 433 /* 434 * Reject EPT violation #VEs that split pages. 435 * 436 * MMIO accesses are supposed to be naturally aligned and therefore 437 * never cross page boundaries. Seeing split page accesses indicates 438 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page. 439 * 440 * load_unaligned_zeropad() will recover using exception fixups. 441 */ 442 vaddr = (unsigned long)insn_get_addr_ref(&insn, regs); 443 if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE) 444 return -EFAULT; 445 446 /* Handle writes first */ 447 switch (mmio) { 448 case INSN_MMIO_WRITE: 449 memcpy(&val, reg, size); 450 if (!mmio_write(size, ve->gpa, val)) 451 return -EIO; 452 return insn.length; 453 case INSN_MMIO_WRITE_IMM: 454 val = insn.immediate.value; 455 if (!mmio_write(size, ve->gpa, val)) 456 return -EIO; 457 return insn.length; 458 case INSN_MMIO_READ: 459 case INSN_MMIO_READ_ZERO_EXTEND: 460 case INSN_MMIO_READ_SIGN_EXTEND: 461 /* Reads are handled below */ 462 break; 463 case INSN_MMIO_MOVS: 464 case INSN_MMIO_DECODE_FAILED: 465 /* 466 * MMIO was accessed with an instruction that could not be 467 * decoded or handled properly. It was likely not using io.h 468 * helpers or accessed MMIO accidentally. 469 */ 470 return -EINVAL; 471 default: 472 WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?"); 473 return -EINVAL; 474 } 475 476 /* Handle reads */ 477 if (!mmio_read(size, ve->gpa, &val)) 478 return -EIO; 479 480 switch (mmio) { 481 case INSN_MMIO_READ: 482 /* Zero-extend for 32-bit operation */ 483 extend_size = size == 4 ? sizeof(*reg) : 0; 484 break; 485 case INSN_MMIO_READ_ZERO_EXTEND: 486 /* Zero extend based on operand size */ 487 extend_size = insn.opnd_bytes; 488 break; 489 case INSN_MMIO_READ_SIGN_EXTEND: 490 /* Sign extend based on operand size */ 491 extend_size = insn.opnd_bytes; 492 if (size == 1 && val & BIT(7)) 493 extend_val = 0xFF; 494 else if (size > 1 && val & BIT(15)) 495 extend_val = 0xFF; 496 break; 497 default: 498 /* All other cases has to be covered with the first switch() */ 499 WARN_ON_ONCE(1); 500 return -EINVAL; 501 } 502 503 if (extend_size) 504 memset(reg, extend_val, extend_size); 505 memcpy(reg, &val, size); 506 return insn.length; 507 } 508 509 static bool handle_in(struct pt_regs *regs, int size, int port) 510 { 511 struct tdx_module_args args = { 512 .r10 = TDX_HYPERCALL_STANDARD, 513 .r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION), 514 .r12 = size, 515 .r13 = PORT_READ, 516 .r14 = port, 517 }; 518 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 519 bool success; 520 521 /* 522 * Emulate the I/O read via hypercall. More info about ABI can be found 523 * in TDX Guest-Host-Communication Interface (GHCI) section titled 524 * "TDG.VP.VMCALL<Instruction.IO>". 525 */ 526 success = !__tdx_hypercall(&args); 527 528 /* Update part of the register affected by the emulated instruction */ 529 regs->ax &= ~mask; 530 if (success) 531 regs->ax |= args.r11 & mask; 532 533 return success; 534 } 535 536 static bool handle_out(struct pt_regs *regs, int size, int port) 537 { 538 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 539 540 /* 541 * Emulate the I/O write via hypercall. More info about ABI can be found 542 * in TDX Guest-Host-Communication Interface (GHCI) section titled 543 * "TDG.VP.VMCALL<Instruction.IO>". 544 */ 545 return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size, 546 PORT_WRITE, port, regs->ax & mask); 547 } 548 549 /* 550 * Emulate I/O using hypercall. 551 * 552 * Assumes the IO instruction was using ax, which is enforced 553 * by the standard io.h macros. 554 * 555 * Return True on success or False on failure. 556 */ 557 static int handle_io(struct pt_regs *regs, struct ve_info *ve) 558 { 559 u32 exit_qual = ve->exit_qual; 560 int size, port; 561 bool in, ret; 562 563 if (VE_IS_IO_STRING(exit_qual)) 564 return -EIO; 565 566 in = VE_IS_IO_IN(exit_qual); 567 size = VE_GET_IO_SIZE(exit_qual); 568 port = VE_GET_PORT_NUM(exit_qual); 569 570 571 if (in) 572 ret = handle_in(regs, size, port); 573 else 574 ret = handle_out(regs, size, port); 575 if (!ret) 576 return -EIO; 577 578 return ve_instr_len(ve); 579 } 580 581 /* 582 * Early #VE exception handler. Only handles a subset of port I/O. 583 * Intended only for earlyprintk. If failed, return false. 584 */ 585 __init bool tdx_early_handle_ve(struct pt_regs *regs) 586 { 587 struct ve_info ve; 588 int insn_len; 589 590 tdx_get_ve_info(&ve); 591 592 if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION) 593 return false; 594 595 insn_len = handle_io(regs, &ve); 596 if (insn_len < 0) 597 return false; 598 599 regs->ip += insn_len; 600 return true; 601 } 602 603 void tdx_get_ve_info(struct ve_info *ve) 604 { 605 struct tdx_module_args args = {}; 606 607 /* 608 * Called during #VE handling to retrieve the #VE info from the 609 * TDX module. 610 * 611 * This has to be called early in #VE handling. A "nested" #VE which 612 * occurs before this will raise a #DF and is not recoverable. 613 * 614 * The call retrieves the #VE info from the TDX module, which also 615 * clears the "#VE valid" flag. This must be done before anything else 616 * because any #VE that occurs while the valid flag is set will lead to 617 * #DF. 618 * 619 * Note, the TDX module treats virtual NMIs as inhibited if the #VE 620 * valid flag is set. It means that NMI=>#VE will not result in a #DF. 621 */ 622 tdcall(TDG_VP_VEINFO_GET, &args); 623 624 /* Transfer the output parameters */ 625 ve->exit_reason = args.rcx; 626 ve->exit_qual = args.rdx; 627 ve->gla = args.r8; 628 ve->gpa = args.r9; 629 ve->instr_len = lower_32_bits(args.r10); 630 ve->instr_info = upper_32_bits(args.r10); 631 } 632 633 /* 634 * Handle the user initiated #VE. 635 * 636 * On success, returns the number of bytes RIP should be incremented (>=0) 637 * or -errno on error. 638 */ 639 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve) 640 { 641 switch (ve->exit_reason) { 642 case EXIT_REASON_CPUID: 643 return handle_cpuid(regs, ve); 644 default: 645 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 646 return -EIO; 647 } 648 } 649 650 static inline bool is_private_gpa(u64 gpa) 651 { 652 return gpa == cc_mkenc(gpa); 653 } 654 655 /* 656 * Handle the kernel #VE. 657 * 658 * On success, returns the number of bytes RIP should be incremented (>=0) 659 * or -errno on error. 660 */ 661 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve) 662 { 663 switch (ve->exit_reason) { 664 case EXIT_REASON_HLT: 665 return handle_halt(ve); 666 case EXIT_REASON_MSR_READ: 667 return read_msr(regs, ve); 668 case EXIT_REASON_MSR_WRITE: 669 return write_msr(regs, ve); 670 case EXIT_REASON_CPUID: 671 return handle_cpuid(regs, ve); 672 case EXIT_REASON_EPT_VIOLATION: 673 if (is_private_gpa(ve->gpa)) 674 panic("Unexpected EPT-violation on private memory."); 675 return handle_mmio(regs, ve); 676 case EXIT_REASON_IO_INSTRUCTION: 677 return handle_io(regs, ve); 678 default: 679 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 680 return -EIO; 681 } 682 } 683 684 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve) 685 { 686 int insn_len; 687 688 if (user_mode(regs)) 689 insn_len = virt_exception_user(regs, ve); 690 else 691 insn_len = virt_exception_kernel(regs, ve); 692 if (insn_len < 0) 693 return false; 694 695 /* After successful #VE handling, move the IP */ 696 regs->ip += insn_len; 697 698 return true; 699 } 700 701 static bool tdx_tlb_flush_required(bool private) 702 { 703 /* 704 * TDX guest is responsible for flushing TLB on private->shared 705 * transition. VMM is responsible for flushing on shared->private. 706 * 707 * The VMM _can't_ flush private addresses as it can't generate PAs 708 * with the guest's HKID. Shared memory isn't subject to integrity 709 * checking, i.e. the VMM doesn't need to flush for its own protection. 710 * 711 * There's no need to flush when converting from shared to private, 712 * as flushing is the VMM's responsibility in this case, e.g. it must 713 * flush to avoid integrity failures in the face of a buggy or 714 * malicious guest. 715 */ 716 return !private; 717 } 718 719 static bool tdx_cache_flush_required(void) 720 { 721 /* 722 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence. 723 * TDX doesn't have such capability. 724 * 725 * Flush cache unconditionally. 726 */ 727 return true; 728 } 729 730 /* 731 * Notify the VMM about page mapping conversion. More info about ABI 732 * can be found in TDX Guest-Host-Communication Interface (GHCI), 733 * section "TDG.VP.VMCALL<MapGPA>". 734 */ 735 static bool tdx_map_gpa(phys_addr_t start, phys_addr_t end, bool enc) 736 { 737 /* Retrying the hypercall a second time should succeed; use 3 just in case */ 738 const int max_retries_per_page = 3; 739 int retry_count = 0; 740 741 if (!enc) { 742 /* Set the shared (decrypted) bits: */ 743 start |= cc_mkdec(0); 744 end |= cc_mkdec(0); 745 } 746 747 while (retry_count < max_retries_per_page) { 748 struct tdx_module_args args = { 749 .r10 = TDX_HYPERCALL_STANDARD, 750 .r11 = TDVMCALL_MAP_GPA, 751 .r12 = start, 752 .r13 = end - start }; 753 754 u64 map_fail_paddr; 755 u64 ret = __tdx_hypercall(&args); 756 757 if (ret != TDVMCALL_STATUS_RETRY) 758 return !ret; 759 /* 760 * The guest must retry the operation for the pages in the 761 * region starting at the GPA specified in R11. R11 comes 762 * from the untrusted VMM. Sanity check it. 763 */ 764 map_fail_paddr = args.r11; 765 if (map_fail_paddr < start || map_fail_paddr >= end) 766 return false; 767 768 /* "Consume" a retry without forward progress */ 769 if (map_fail_paddr == start) { 770 retry_count++; 771 continue; 772 } 773 774 start = map_fail_paddr; 775 retry_count = 0; 776 } 777 778 return false; 779 } 780 781 /* 782 * Inform the VMM of the guest's intent for this physical page: shared with 783 * the VMM or private to the guest. The VMM is expected to change its mapping 784 * of the page in response. 785 */ 786 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc) 787 { 788 phys_addr_t start = __pa(vaddr); 789 phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE); 790 791 if (!tdx_map_gpa(start, end, enc)) 792 return false; 793 794 /* shared->private conversion requires memory to be accepted before use */ 795 if (enc) 796 return tdx_accept_memory(start, end); 797 798 return true; 799 } 800 801 static bool tdx_enc_status_change_prepare(unsigned long vaddr, int numpages, 802 bool enc) 803 { 804 /* 805 * Only handle shared->private conversion here. 806 * See the comment in tdx_early_init(). 807 */ 808 if (enc) 809 return tdx_enc_status_changed(vaddr, numpages, enc); 810 return true; 811 } 812 813 static bool tdx_enc_status_change_finish(unsigned long vaddr, int numpages, 814 bool enc) 815 { 816 /* 817 * Only handle private->shared conversion here. 818 * See the comment in tdx_early_init(). 819 */ 820 if (!enc) 821 return tdx_enc_status_changed(vaddr, numpages, enc); 822 return true; 823 } 824 825 void __init tdx_early_init(void) 826 { 827 struct tdx_module_args args = { 828 .rdx = TDCS_NOTIFY_ENABLES, 829 .r9 = -1ULL, 830 }; 831 u64 cc_mask; 832 u32 eax, sig[3]; 833 834 cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]); 835 836 if (memcmp(TDX_IDENT, sig, sizeof(sig))) 837 return; 838 839 setup_force_cpu_cap(X86_FEATURE_TDX_GUEST); 840 841 /* TSC is the only reliable clock in TDX guest */ 842 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); 843 844 cc_vendor = CC_VENDOR_INTEL; 845 tdx_parse_tdinfo(&cc_mask); 846 cc_set_mask(cc_mask); 847 848 /* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */ 849 tdcall(TDG_VM_WR, &args); 850 851 /* 852 * All bits above GPA width are reserved and kernel treats shared bit 853 * as flag, not as part of physical address. 854 * 855 * Adjust physical mask to only cover valid GPA bits. 856 */ 857 physical_mask &= cc_mask - 1; 858 859 /* 860 * The kernel mapping should match the TDX metadata for the page. 861 * load_unaligned_zeropad() can touch memory *adjacent* to that which is 862 * owned by the caller and can catch even _momentary_ mismatches. Bad 863 * things happen on mismatch: 864 * 865 * - Private mapping => Shared Page == Guest shutdown 866 * - Shared mapping => Private Page == Recoverable #VE 867 * 868 * guest.enc_status_change_prepare() converts the page from 869 * shared=>private before the mapping becomes private. 870 * 871 * guest.enc_status_change_finish() converts the page from 872 * private=>shared after the mapping becomes private. 873 * 874 * In both cases there is a temporary shared mapping to a private page, 875 * which can result in a #VE. But, there is never a private mapping to 876 * a shared page. 877 */ 878 x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare; 879 x86_platform.guest.enc_status_change_finish = tdx_enc_status_change_finish; 880 881 x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required; 882 x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required; 883 884 /* 885 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel 886 * bringup low level code. That raises #VE which cannot be handled 887 * there. 888 * 889 * Intel-TDX has a secure RDMSR hypercall, but that needs to be 890 * implemented seperately in the low level startup ASM code. 891 * Until that is in place, disable parallel bringup for TDX. 892 */ 893 x86_cpuinit.parallel_bringup = false; 894 895 pr_info("Guest detected\n"); 896 } 897