xref: /linux/arch/x86/coco/tdx/tdx.c (revision 031fba65fc202abf1f193e321be7a2c274fd88ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021-2022 Intel Corporation */
3 
4 #undef pr_fmt
5 #define pr_fmt(fmt)     "tdx: " fmt
6 
7 #include <linux/cpufeature.h>
8 #include <linux/export.h>
9 #include <linux/io.h>
10 #include <asm/coco.h>
11 #include <asm/tdx.h>
12 #include <asm/vmx.h>
13 #include <asm/insn.h>
14 #include <asm/insn-eval.h>
15 #include <asm/pgtable.h>
16 
17 /* MMIO direction */
18 #define EPT_READ	0
19 #define EPT_WRITE	1
20 
21 /* Port I/O direction */
22 #define PORT_READ	0
23 #define PORT_WRITE	1
24 
25 /* See Exit Qualification for I/O Instructions in VMX documentation */
26 #define VE_IS_IO_IN(e)		((e) & BIT(3))
27 #define VE_GET_IO_SIZE(e)	(((e) & GENMASK(2, 0)) + 1)
28 #define VE_GET_PORT_NUM(e)	((e) >> 16)
29 #define VE_IS_IO_STRING(e)	((e) & BIT(4))
30 
31 #define ATTR_DEBUG		BIT(0)
32 #define ATTR_SEPT_VE_DISABLE	BIT(28)
33 
34 /* TDX Module call error codes */
35 #define TDCALL_RETURN_CODE(a)	((a) >> 32)
36 #define TDCALL_INVALID_OPERAND	0xc0000100
37 
38 #define TDREPORT_SUBTYPE_0	0
39 
40 /* Called from __tdx_hypercall() for unrecoverable failure */
41 noinstr void __noreturn __tdx_hypercall_failed(void)
42 {
43 	instrumentation_begin();
44 	panic("TDVMCALL failed. TDX module bug?");
45 }
46 
47 #ifdef CONFIG_KVM_GUEST
48 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
49 		       unsigned long p3, unsigned long p4)
50 {
51 	struct tdx_module_args args = {
52 		.r10 = nr,
53 		.r11 = p1,
54 		.r12 = p2,
55 		.r13 = p3,
56 		.r14 = p4,
57 	};
58 
59 	return __tdx_hypercall(&args);
60 }
61 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
62 #endif
63 
64 /*
65  * Used for TDX guests to make calls directly to the TD module.  This
66  * should only be used for calls that have no legitimate reason to fail
67  * or where the kernel can not survive the call failing.
68  */
69 static inline void tdcall(u64 fn, struct tdx_module_args *args)
70 {
71 	if (__tdcall_ret(fn, args))
72 		panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
73 }
74 
75 /**
76  * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT
77  *                           subtype 0) using TDG.MR.REPORT TDCALL.
78  * @reportdata: Address of the input buffer which contains user-defined
79  *              REPORTDATA to be included into TDREPORT.
80  * @tdreport: Address of the output buffer to store TDREPORT.
81  *
82  * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module
83  * v1.0 specification for more information on TDG.MR.REPORT TDCALL.
84  * It is used in the TDX guest driver module to get the TDREPORT0.
85  *
86  * Return 0 on success, -EINVAL for invalid operands, or -EIO on
87  * other TDCALL failures.
88  */
89 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport)
90 {
91 	struct tdx_module_args args = {
92 		.rcx = virt_to_phys(tdreport),
93 		.rdx = virt_to_phys(reportdata),
94 		.r8 = TDREPORT_SUBTYPE_0,
95 	};
96 	u64 ret;
97 
98 	ret = __tdcall(TDG_MR_REPORT, &args);
99 	if (ret) {
100 		if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
101 			return -EINVAL;
102 		return -EIO;
103 	}
104 
105 	return 0;
106 }
107 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0);
108 
109 static void __noreturn tdx_panic(const char *msg)
110 {
111 	struct tdx_module_args args = {
112 		.r10 = TDX_HYPERCALL_STANDARD,
113 		.r11 = TDVMCALL_REPORT_FATAL_ERROR,
114 		.r12 = 0, /* Error code: 0 is Panic */
115 	};
116 	union {
117 		/* Define register order according to the GHCI */
118 		struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; };
119 
120 		char str[64];
121 	} message;
122 
123 	/* VMM assumes '\0' in byte 65, if the message took all 64 bytes */
124 	strtomem_pad(message.str, msg, '\0');
125 
126 	args.r8  = message.r8;
127 	args.r9  = message.r9;
128 	args.r14 = message.r14;
129 	args.r15 = message.r15;
130 	args.rdi = message.rdi;
131 	args.rsi = message.rsi;
132 	args.rbx = message.rbx;
133 	args.rdx = message.rdx;
134 
135 	/*
136 	 * This hypercall should never return and it is not safe
137 	 * to keep the guest running. Call it forever if it
138 	 * happens to return.
139 	 */
140 	while (1)
141 		__tdx_hypercall(&args);
142 }
143 
144 static void tdx_parse_tdinfo(u64 *cc_mask)
145 {
146 	struct tdx_module_args args = {};
147 	unsigned int gpa_width;
148 	u64 td_attr;
149 
150 	/*
151 	 * TDINFO TDX module call is used to get the TD execution environment
152 	 * information like GPA width, number of available vcpus, debug mode
153 	 * information, etc. More details about the ABI can be found in TDX
154 	 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
155 	 * [TDG.VP.INFO].
156 	 */
157 	tdcall(TDG_VP_INFO, &args);
158 
159 	/*
160 	 * The highest bit of a guest physical address is the "sharing" bit.
161 	 * Set it for shared pages and clear it for private pages.
162 	 *
163 	 * The GPA width that comes out of this call is critical. TDX guests
164 	 * can not meaningfully run without it.
165 	 */
166 	gpa_width = args.rcx & GENMASK(5, 0);
167 	*cc_mask = BIT_ULL(gpa_width - 1);
168 
169 	/*
170 	 * The kernel can not handle #VE's when accessing normal kernel
171 	 * memory.  Ensure that no #VE will be delivered for accesses to
172 	 * TD-private memory.  Only VMM-shared memory (MMIO) will #VE.
173 	 */
174 	td_attr = args.rdx;
175 	if (!(td_attr & ATTR_SEPT_VE_DISABLE)) {
176 		const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set.";
177 
178 		/* Relax SEPT_VE_DISABLE check for debug TD. */
179 		if (td_attr & ATTR_DEBUG)
180 			pr_warn("%s\n", msg);
181 		else
182 			tdx_panic(msg);
183 	}
184 }
185 
186 /*
187  * The TDX module spec states that #VE may be injected for a limited set of
188  * reasons:
189  *
190  *  - Emulation of the architectural #VE injection on EPT violation;
191  *
192  *  - As a result of guest TD execution of a disallowed instruction,
193  *    a disallowed MSR access, or CPUID virtualization;
194  *
195  *  - A notification to the guest TD about anomalous behavior;
196  *
197  * The last one is opt-in and is not used by the kernel.
198  *
199  * The Intel Software Developer's Manual describes cases when instruction
200  * length field can be used in section "Information for VM Exits Due to
201  * Instruction Execution".
202  *
203  * For TDX, it ultimately means GET_VEINFO provides reliable instruction length
204  * information if #VE occurred due to instruction execution, but not for EPT
205  * violations.
206  */
207 static int ve_instr_len(struct ve_info *ve)
208 {
209 	switch (ve->exit_reason) {
210 	case EXIT_REASON_HLT:
211 	case EXIT_REASON_MSR_READ:
212 	case EXIT_REASON_MSR_WRITE:
213 	case EXIT_REASON_CPUID:
214 	case EXIT_REASON_IO_INSTRUCTION:
215 		/* It is safe to use ve->instr_len for #VE due instructions */
216 		return ve->instr_len;
217 	case EXIT_REASON_EPT_VIOLATION:
218 		/*
219 		 * For EPT violations, ve->insn_len is not defined. For those,
220 		 * the kernel must decode instructions manually and should not
221 		 * be using this function.
222 		 */
223 		WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
224 		return 0;
225 	default:
226 		WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
227 		return ve->instr_len;
228 	}
229 }
230 
231 static u64 __cpuidle __halt(const bool irq_disabled)
232 {
233 	struct tdx_module_args args = {
234 		.r10 = TDX_HYPERCALL_STANDARD,
235 		.r11 = hcall_func(EXIT_REASON_HLT),
236 		.r12 = irq_disabled,
237 	};
238 
239 	/*
240 	 * Emulate HLT operation via hypercall. More info about ABI
241 	 * can be found in TDX Guest-Host-Communication Interface
242 	 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
243 	 *
244 	 * The VMM uses the "IRQ disabled" param to understand IRQ
245 	 * enabled status (RFLAGS.IF) of the TD guest and to determine
246 	 * whether or not it should schedule the halted vCPU if an
247 	 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM
248 	 * can keep the vCPU in virtual HLT, even if an IRQ is
249 	 * pending, without hanging/breaking the guest.
250 	 */
251 	return __tdx_hypercall(&args);
252 }
253 
254 static int handle_halt(struct ve_info *ve)
255 {
256 	const bool irq_disabled = irqs_disabled();
257 
258 	if (__halt(irq_disabled))
259 		return -EIO;
260 
261 	return ve_instr_len(ve);
262 }
263 
264 void __cpuidle tdx_safe_halt(void)
265 {
266 	const bool irq_disabled = false;
267 
268 	/*
269 	 * Use WARN_ONCE() to report the failure.
270 	 */
271 	if (__halt(irq_disabled))
272 		WARN_ONCE(1, "HLT instruction emulation failed\n");
273 }
274 
275 static int read_msr(struct pt_regs *regs, struct ve_info *ve)
276 {
277 	struct tdx_module_args args = {
278 		.r10 = TDX_HYPERCALL_STANDARD,
279 		.r11 = hcall_func(EXIT_REASON_MSR_READ),
280 		.r12 = regs->cx,
281 	};
282 
283 	/*
284 	 * Emulate the MSR read via hypercall. More info about ABI
285 	 * can be found in TDX Guest-Host-Communication Interface
286 	 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
287 	 */
288 	if (__tdx_hypercall(&args))
289 		return -EIO;
290 
291 	regs->ax = lower_32_bits(args.r11);
292 	regs->dx = upper_32_bits(args.r11);
293 	return ve_instr_len(ve);
294 }
295 
296 static int write_msr(struct pt_regs *regs, struct ve_info *ve)
297 {
298 	struct tdx_module_args args = {
299 		.r10 = TDX_HYPERCALL_STANDARD,
300 		.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
301 		.r12 = regs->cx,
302 		.r13 = (u64)regs->dx << 32 | regs->ax,
303 	};
304 
305 	/*
306 	 * Emulate the MSR write via hypercall. More info about ABI
307 	 * can be found in TDX Guest-Host-Communication Interface
308 	 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
309 	 */
310 	if (__tdx_hypercall(&args))
311 		return -EIO;
312 
313 	return ve_instr_len(ve);
314 }
315 
316 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
317 {
318 	struct tdx_module_args args = {
319 		.r10 = TDX_HYPERCALL_STANDARD,
320 		.r11 = hcall_func(EXIT_REASON_CPUID),
321 		.r12 = regs->ax,
322 		.r13 = regs->cx,
323 	};
324 
325 	/*
326 	 * Only allow VMM to control range reserved for hypervisor
327 	 * communication.
328 	 *
329 	 * Return all-zeros for any CPUID outside the range. It matches CPU
330 	 * behaviour for non-supported leaf.
331 	 */
332 	if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
333 		regs->ax = regs->bx = regs->cx = regs->dx = 0;
334 		return ve_instr_len(ve);
335 	}
336 
337 	/*
338 	 * Emulate the CPUID instruction via a hypercall. More info about
339 	 * ABI can be found in TDX Guest-Host-Communication Interface
340 	 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
341 	 */
342 	if (__tdx_hypercall(&args))
343 		return -EIO;
344 
345 	/*
346 	 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
347 	 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
348 	 * So copy the register contents back to pt_regs.
349 	 */
350 	regs->ax = args.r12;
351 	regs->bx = args.r13;
352 	regs->cx = args.r14;
353 	regs->dx = args.r15;
354 
355 	return ve_instr_len(ve);
356 }
357 
358 static bool mmio_read(int size, unsigned long addr, unsigned long *val)
359 {
360 	struct tdx_module_args args = {
361 		.r10 = TDX_HYPERCALL_STANDARD,
362 		.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
363 		.r12 = size,
364 		.r13 = EPT_READ,
365 		.r14 = addr,
366 		.r15 = *val,
367 	};
368 
369 	if (__tdx_hypercall(&args))
370 		return false;
371 
372 	*val = args.r11;
373 	return true;
374 }
375 
376 static bool mmio_write(int size, unsigned long addr, unsigned long val)
377 {
378 	return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
379 			       EPT_WRITE, addr, val);
380 }
381 
382 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
383 {
384 	unsigned long *reg, val, vaddr;
385 	char buffer[MAX_INSN_SIZE];
386 	enum insn_mmio_type mmio;
387 	struct insn insn = {};
388 	int size, extend_size;
389 	u8 extend_val = 0;
390 
391 	/* Only in-kernel MMIO is supported */
392 	if (WARN_ON_ONCE(user_mode(regs)))
393 		return -EFAULT;
394 
395 	if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
396 		return -EFAULT;
397 
398 	if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
399 		return -EINVAL;
400 
401 	mmio = insn_decode_mmio(&insn, &size);
402 	if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED))
403 		return -EINVAL;
404 
405 	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
406 		reg = insn_get_modrm_reg_ptr(&insn, regs);
407 		if (!reg)
408 			return -EINVAL;
409 	}
410 
411 	/*
412 	 * Reject EPT violation #VEs that split pages.
413 	 *
414 	 * MMIO accesses are supposed to be naturally aligned and therefore
415 	 * never cross page boundaries. Seeing split page accesses indicates
416 	 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
417 	 *
418 	 * load_unaligned_zeropad() will recover using exception fixups.
419 	 */
420 	vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
421 	if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
422 		return -EFAULT;
423 
424 	/* Handle writes first */
425 	switch (mmio) {
426 	case INSN_MMIO_WRITE:
427 		memcpy(&val, reg, size);
428 		if (!mmio_write(size, ve->gpa, val))
429 			return -EIO;
430 		return insn.length;
431 	case INSN_MMIO_WRITE_IMM:
432 		val = insn.immediate.value;
433 		if (!mmio_write(size, ve->gpa, val))
434 			return -EIO;
435 		return insn.length;
436 	case INSN_MMIO_READ:
437 	case INSN_MMIO_READ_ZERO_EXTEND:
438 	case INSN_MMIO_READ_SIGN_EXTEND:
439 		/* Reads are handled below */
440 		break;
441 	case INSN_MMIO_MOVS:
442 	case INSN_MMIO_DECODE_FAILED:
443 		/*
444 		 * MMIO was accessed with an instruction that could not be
445 		 * decoded or handled properly. It was likely not using io.h
446 		 * helpers or accessed MMIO accidentally.
447 		 */
448 		return -EINVAL;
449 	default:
450 		WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
451 		return -EINVAL;
452 	}
453 
454 	/* Handle reads */
455 	if (!mmio_read(size, ve->gpa, &val))
456 		return -EIO;
457 
458 	switch (mmio) {
459 	case INSN_MMIO_READ:
460 		/* Zero-extend for 32-bit operation */
461 		extend_size = size == 4 ? sizeof(*reg) : 0;
462 		break;
463 	case INSN_MMIO_READ_ZERO_EXTEND:
464 		/* Zero extend based on operand size */
465 		extend_size = insn.opnd_bytes;
466 		break;
467 	case INSN_MMIO_READ_SIGN_EXTEND:
468 		/* Sign extend based on operand size */
469 		extend_size = insn.opnd_bytes;
470 		if (size == 1 && val & BIT(7))
471 			extend_val = 0xFF;
472 		else if (size > 1 && val & BIT(15))
473 			extend_val = 0xFF;
474 		break;
475 	default:
476 		/* All other cases has to be covered with the first switch() */
477 		WARN_ON_ONCE(1);
478 		return -EINVAL;
479 	}
480 
481 	if (extend_size)
482 		memset(reg, extend_val, extend_size);
483 	memcpy(reg, &val, size);
484 	return insn.length;
485 }
486 
487 static bool handle_in(struct pt_regs *regs, int size, int port)
488 {
489 	struct tdx_module_args args = {
490 		.r10 = TDX_HYPERCALL_STANDARD,
491 		.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
492 		.r12 = size,
493 		.r13 = PORT_READ,
494 		.r14 = port,
495 	};
496 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
497 	bool success;
498 
499 	/*
500 	 * Emulate the I/O read via hypercall. More info about ABI can be found
501 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
502 	 * "TDG.VP.VMCALL<Instruction.IO>".
503 	 */
504 	success = !__tdx_hypercall(&args);
505 
506 	/* Update part of the register affected by the emulated instruction */
507 	regs->ax &= ~mask;
508 	if (success)
509 		regs->ax |= args.r11 & mask;
510 
511 	return success;
512 }
513 
514 static bool handle_out(struct pt_regs *regs, int size, int port)
515 {
516 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
517 
518 	/*
519 	 * Emulate the I/O write via hypercall. More info about ABI can be found
520 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
521 	 * "TDG.VP.VMCALL<Instruction.IO>".
522 	 */
523 	return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
524 			       PORT_WRITE, port, regs->ax & mask);
525 }
526 
527 /*
528  * Emulate I/O using hypercall.
529  *
530  * Assumes the IO instruction was using ax, which is enforced
531  * by the standard io.h macros.
532  *
533  * Return True on success or False on failure.
534  */
535 static int handle_io(struct pt_regs *regs, struct ve_info *ve)
536 {
537 	u32 exit_qual = ve->exit_qual;
538 	int size, port;
539 	bool in, ret;
540 
541 	if (VE_IS_IO_STRING(exit_qual))
542 		return -EIO;
543 
544 	in   = VE_IS_IO_IN(exit_qual);
545 	size = VE_GET_IO_SIZE(exit_qual);
546 	port = VE_GET_PORT_NUM(exit_qual);
547 
548 
549 	if (in)
550 		ret = handle_in(regs, size, port);
551 	else
552 		ret = handle_out(regs, size, port);
553 	if (!ret)
554 		return -EIO;
555 
556 	return ve_instr_len(ve);
557 }
558 
559 /*
560  * Early #VE exception handler. Only handles a subset of port I/O.
561  * Intended only for earlyprintk. If failed, return false.
562  */
563 __init bool tdx_early_handle_ve(struct pt_regs *regs)
564 {
565 	struct ve_info ve;
566 	int insn_len;
567 
568 	tdx_get_ve_info(&ve);
569 
570 	if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
571 		return false;
572 
573 	insn_len = handle_io(regs, &ve);
574 	if (insn_len < 0)
575 		return false;
576 
577 	regs->ip += insn_len;
578 	return true;
579 }
580 
581 void tdx_get_ve_info(struct ve_info *ve)
582 {
583 	struct tdx_module_args args = {};
584 
585 	/*
586 	 * Called during #VE handling to retrieve the #VE info from the
587 	 * TDX module.
588 	 *
589 	 * This has to be called early in #VE handling.  A "nested" #VE which
590 	 * occurs before this will raise a #DF and is not recoverable.
591 	 *
592 	 * The call retrieves the #VE info from the TDX module, which also
593 	 * clears the "#VE valid" flag. This must be done before anything else
594 	 * because any #VE that occurs while the valid flag is set will lead to
595 	 * #DF.
596 	 *
597 	 * Note, the TDX module treats virtual NMIs as inhibited if the #VE
598 	 * valid flag is set. It means that NMI=>#VE will not result in a #DF.
599 	 */
600 	tdcall(TDG_VP_VEINFO_GET, &args);
601 
602 	/* Transfer the output parameters */
603 	ve->exit_reason = args.rcx;
604 	ve->exit_qual   = args.rdx;
605 	ve->gla         = args.r8;
606 	ve->gpa         = args.r9;
607 	ve->instr_len   = lower_32_bits(args.r10);
608 	ve->instr_info  = upper_32_bits(args.r10);
609 }
610 
611 /*
612  * Handle the user initiated #VE.
613  *
614  * On success, returns the number of bytes RIP should be incremented (>=0)
615  * or -errno on error.
616  */
617 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
618 {
619 	switch (ve->exit_reason) {
620 	case EXIT_REASON_CPUID:
621 		return handle_cpuid(regs, ve);
622 	default:
623 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
624 		return -EIO;
625 	}
626 }
627 
628 static inline bool is_private_gpa(u64 gpa)
629 {
630 	return gpa == cc_mkenc(gpa);
631 }
632 
633 /*
634  * Handle the kernel #VE.
635  *
636  * On success, returns the number of bytes RIP should be incremented (>=0)
637  * or -errno on error.
638  */
639 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
640 {
641 	switch (ve->exit_reason) {
642 	case EXIT_REASON_HLT:
643 		return handle_halt(ve);
644 	case EXIT_REASON_MSR_READ:
645 		return read_msr(regs, ve);
646 	case EXIT_REASON_MSR_WRITE:
647 		return write_msr(regs, ve);
648 	case EXIT_REASON_CPUID:
649 		return handle_cpuid(regs, ve);
650 	case EXIT_REASON_EPT_VIOLATION:
651 		if (is_private_gpa(ve->gpa))
652 			panic("Unexpected EPT-violation on private memory.");
653 		return handle_mmio(regs, ve);
654 	case EXIT_REASON_IO_INSTRUCTION:
655 		return handle_io(regs, ve);
656 	default:
657 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
658 		return -EIO;
659 	}
660 }
661 
662 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
663 {
664 	int insn_len;
665 
666 	if (user_mode(regs))
667 		insn_len = virt_exception_user(regs, ve);
668 	else
669 		insn_len = virt_exception_kernel(regs, ve);
670 	if (insn_len < 0)
671 		return false;
672 
673 	/* After successful #VE handling, move the IP */
674 	regs->ip += insn_len;
675 
676 	return true;
677 }
678 
679 static bool tdx_tlb_flush_required(bool private)
680 {
681 	/*
682 	 * TDX guest is responsible for flushing TLB on private->shared
683 	 * transition. VMM is responsible for flushing on shared->private.
684 	 *
685 	 * The VMM _can't_ flush private addresses as it can't generate PAs
686 	 * with the guest's HKID.  Shared memory isn't subject to integrity
687 	 * checking, i.e. the VMM doesn't need to flush for its own protection.
688 	 *
689 	 * There's no need to flush when converting from shared to private,
690 	 * as flushing is the VMM's responsibility in this case, e.g. it must
691 	 * flush to avoid integrity failures in the face of a buggy or
692 	 * malicious guest.
693 	 */
694 	return !private;
695 }
696 
697 static bool tdx_cache_flush_required(void)
698 {
699 	/*
700 	 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
701 	 * TDX doesn't have such capability.
702 	 *
703 	 * Flush cache unconditionally.
704 	 */
705 	return true;
706 }
707 
708 /*
709  * Notify the VMM about page mapping conversion. More info about ABI
710  * can be found in TDX Guest-Host-Communication Interface (GHCI),
711  * section "TDG.VP.VMCALL<MapGPA>".
712  */
713 static bool tdx_map_gpa(phys_addr_t start, phys_addr_t end, bool enc)
714 {
715 	/* Retrying the hypercall a second time should succeed; use 3 just in case */
716 	const int max_retries_per_page = 3;
717 	int retry_count = 0;
718 
719 	if (!enc) {
720 		/* Set the shared (decrypted) bits: */
721 		start |= cc_mkdec(0);
722 		end   |= cc_mkdec(0);
723 	}
724 
725 	while (retry_count < max_retries_per_page) {
726 		struct tdx_module_args args = {
727 			.r10 = TDX_HYPERCALL_STANDARD,
728 			.r11 = TDVMCALL_MAP_GPA,
729 			.r12 = start,
730 			.r13 = end - start };
731 
732 		u64 map_fail_paddr;
733 		u64 ret = __tdx_hypercall(&args);
734 
735 		if (ret != TDVMCALL_STATUS_RETRY)
736 			return !ret;
737 		/*
738 		 * The guest must retry the operation for the pages in the
739 		 * region starting at the GPA specified in R11. R11 comes
740 		 * from the untrusted VMM. Sanity check it.
741 		 */
742 		map_fail_paddr = args.r11;
743 		if (map_fail_paddr < start || map_fail_paddr >= end)
744 			return false;
745 
746 		/* "Consume" a retry without forward progress */
747 		if (map_fail_paddr == start) {
748 			retry_count++;
749 			continue;
750 		}
751 
752 		start = map_fail_paddr;
753 		retry_count = 0;
754 	}
755 
756 	return false;
757 }
758 
759 /*
760  * Inform the VMM of the guest's intent for this physical page: shared with
761  * the VMM or private to the guest.  The VMM is expected to change its mapping
762  * of the page in response.
763  */
764 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
765 {
766 	phys_addr_t start = __pa(vaddr);
767 	phys_addr_t end   = __pa(vaddr + numpages * PAGE_SIZE);
768 
769 	if (!tdx_map_gpa(start, end, enc))
770 		return false;
771 
772 	/* shared->private conversion requires memory to be accepted before use */
773 	if (enc)
774 		return tdx_accept_memory(start, end);
775 
776 	return true;
777 }
778 
779 static bool tdx_enc_status_change_prepare(unsigned long vaddr, int numpages,
780 					  bool enc)
781 {
782 	/*
783 	 * Only handle shared->private conversion here.
784 	 * See the comment in tdx_early_init().
785 	 */
786 	if (enc)
787 		return tdx_enc_status_changed(vaddr, numpages, enc);
788 	return true;
789 }
790 
791 static bool tdx_enc_status_change_finish(unsigned long vaddr, int numpages,
792 					 bool enc)
793 {
794 	/*
795 	 * Only handle private->shared conversion here.
796 	 * See the comment in tdx_early_init().
797 	 */
798 	if (!enc)
799 		return tdx_enc_status_changed(vaddr, numpages, enc);
800 	return true;
801 }
802 
803 void __init tdx_early_init(void)
804 {
805 	struct tdx_module_args args = {
806 		.rdx = TDCS_NOTIFY_ENABLES,
807 		.r9 = -1ULL,
808 	};
809 	u64 cc_mask;
810 	u32 eax, sig[3];
811 
812 	cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2],  &sig[1]);
813 
814 	if (memcmp(TDX_IDENT, sig, sizeof(sig)))
815 		return;
816 
817 	setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
818 
819 	/* TSC is the only reliable clock in TDX guest */
820 	setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
821 
822 	cc_vendor = CC_VENDOR_INTEL;
823 	tdx_parse_tdinfo(&cc_mask);
824 	cc_set_mask(cc_mask);
825 
826 	/* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */
827 	tdcall(TDG_VM_WR, &args);
828 
829 	/*
830 	 * All bits above GPA width are reserved and kernel treats shared bit
831 	 * as flag, not as part of physical address.
832 	 *
833 	 * Adjust physical mask to only cover valid GPA bits.
834 	 */
835 	physical_mask &= cc_mask - 1;
836 
837 	/*
838 	 * The kernel mapping should match the TDX metadata for the page.
839 	 * load_unaligned_zeropad() can touch memory *adjacent* to that which is
840 	 * owned by the caller and can catch even _momentary_ mismatches.  Bad
841 	 * things happen on mismatch:
842 	 *
843 	 *   - Private mapping => Shared Page  == Guest shutdown
844          *   - Shared mapping  => Private Page == Recoverable #VE
845 	 *
846 	 * guest.enc_status_change_prepare() converts the page from
847 	 * shared=>private before the mapping becomes private.
848 	 *
849 	 * guest.enc_status_change_finish() converts the page from
850 	 * private=>shared after the mapping becomes private.
851 	 *
852 	 * In both cases there is a temporary shared mapping to a private page,
853 	 * which can result in a #VE.  But, there is never a private mapping to
854 	 * a shared page.
855 	 */
856 	x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare;
857 	x86_platform.guest.enc_status_change_finish  = tdx_enc_status_change_finish;
858 
859 	x86_platform.guest.enc_cache_flush_required  = tdx_cache_flush_required;
860 	x86_platform.guest.enc_tlb_flush_required    = tdx_tlb_flush_required;
861 
862 	/*
863 	 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel
864 	 * bringup low level code. That raises #VE which cannot be handled
865 	 * there.
866 	 *
867 	 * Intel-TDX has a secure RDMSR hypercall, but that needs to be
868 	 * implemented seperately in the low level startup ASM code.
869 	 * Until that is in place, disable parallel bringup for TDX.
870 	 */
871 	x86_cpuinit.parallel_bringup = false;
872 
873 	pr_info("Guest detected\n");
874 }
875