xref: /linux/arch/x86/coco/sev/shared.c (revision 8838a1a2d219a86ab05e679c73f68dd75a25aca5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * AMD Encrypted Register State Support
4  *
5  * Author: Joerg Roedel <jroedel@suse.de>
6  *
7  * This file is not compiled stand-alone. It contains code shared
8  * between the pre-decompression boot code and the running Linux kernel
9  * and is included directly into both code-bases.
10  */
11 
12 #include <asm/setup_data.h>
13 
14 #ifndef __BOOT_COMPRESSED
15 #define error(v)			pr_err(v)
16 #define has_cpuflag(f)			boot_cpu_has(f)
17 #define sev_printk(fmt, ...)		printk(fmt, ##__VA_ARGS__)
18 #define sev_printk_rtl(fmt, ...)	printk_ratelimited(fmt, ##__VA_ARGS__)
19 #else
20 #undef WARN
21 #define WARN(condition, format...) (!!(condition))
22 #define sev_printk(fmt, ...)
23 #define sev_printk_rtl(fmt, ...)
24 #undef vc_forward_exception
25 #define vc_forward_exception(c)		panic("SNP: Hypervisor requested exception\n")
26 #endif
27 
28 /*
29  * SVSM related information:
30  *   When running under an SVSM, the VMPL that Linux is executing at must be
31  *   non-zero. The VMPL is therefore used to indicate the presence of an SVSM.
32  *
33  *   During boot, the page tables are set up as identity mapped and later
34  *   changed to use kernel virtual addresses. Maintain separate virtual and
35  *   physical addresses for the CAA to allow SVSM functions to be used during
36  *   early boot, both with identity mapped virtual addresses and proper kernel
37  *   virtual addresses.
38  */
39 u8 snp_vmpl __ro_after_init;
40 EXPORT_SYMBOL_GPL(snp_vmpl);
41 static struct svsm_ca *boot_svsm_caa __ro_after_init;
42 static u64 boot_svsm_caa_pa __ro_after_init;
43 
44 static struct svsm_ca *svsm_get_caa(void);
45 static u64 svsm_get_caa_pa(void);
46 static int svsm_perform_call_protocol(struct svsm_call *call);
47 
48 /* I/O parameters for CPUID-related helpers */
49 struct cpuid_leaf {
50 	u32 fn;
51 	u32 subfn;
52 	u32 eax;
53 	u32 ebx;
54 	u32 ecx;
55 	u32 edx;
56 };
57 
58 /*
59  * Individual entries of the SNP CPUID table, as defined by the SNP
60  * Firmware ABI, Revision 0.9, Section 7.1, Table 14.
61  */
62 struct snp_cpuid_fn {
63 	u32 eax_in;
64 	u32 ecx_in;
65 	u64 xcr0_in;
66 	u64 xss_in;
67 	u32 eax;
68 	u32 ebx;
69 	u32 ecx;
70 	u32 edx;
71 	u64 __reserved;
72 } __packed;
73 
74 /*
75  * SNP CPUID table, as defined by the SNP Firmware ABI, Revision 0.9,
76  * Section 8.14.2.6. Also noted there is the SNP firmware-enforced limit
77  * of 64 entries per CPUID table.
78  */
79 #define SNP_CPUID_COUNT_MAX 64
80 
81 struct snp_cpuid_table {
82 	u32 count;
83 	u32 __reserved1;
84 	u64 __reserved2;
85 	struct snp_cpuid_fn fn[SNP_CPUID_COUNT_MAX];
86 } __packed;
87 
88 /*
89  * Since feature negotiation related variables are set early in the boot
90  * process they must reside in the .data section so as not to be zeroed
91  * out when the .bss section is later cleared.
92  *
93  * GHCB protocol version negotiated with the hypervisor.
94  */
95 static u16 ghcb_version __ro_after_init;
96 
97 /* Copy of the SNP firmware's CPUID page. */
98 static struct snp_cpuid_table cpuid_table_copy __ro_after_init;
99 
100 /*
101  * These will be initialized based on CPUID table so that non-present
102  * all-zero leaves (for sparse tables) can be differentiated from
103  * invalid/out-of-range leaves. This is needed since all-zero leaves
104  * still need to be post-processed.
105  */
106 static u32 cpuid_std_range_max __ro_after_init;
107 static u32 cpuid_hyp_range_max __ro_after_init;
108 static u32 cpuid_ext_range_max __ro_after_init;
109 
110 static bool __init sev_es_check_cpu_features(void)
111 {
112 	if (!has_cpuflag(X86_FEATURE_RDRAND)) {
113 		error("RDRAND instruction not supported - no trusted source of randomness available\n");
114 		return false;
115 	}
116 
117 	return true;
118 }
119 
120 static void __head __noreturn
121 sev_es_terminate(unsigned int set, unsigned int reason)
122 {
123 	u64 val = GHCB_MSR_TERM_REQ;
124 
125 	/* Tell the hypervisor what went wrong. */
126 	val |= GHCB_SEV_TERM_REASON(set, reason);
127 
128 	/* Request Guest Termination from Hypervisor */
129 	sev_es_wr_ghcb_msr(val);
130 	VMGEXIT();
131 
132 	while (true)
133 		asm volatile("hlt\n" : : : "memory");
134 }
135 
136 /*
137  * The hypervisor features are available from GHCB version 2 onward.
138  */
139 static u64 get_hv_features(void)
140 {
141 	u64 val;
142 
143 	if (ghcb_version < 2)
144 		return 0;
145 
146 	sev_es_wr_ghcb_msr(GHCB_MSR_HV_FT_REQ);
147 	VMGEXIT();
148 
149 	val = sev_es_rd_ghcb_msr();
150 	if (GHCB_RESP_CODE(val) != GHCB_MSR_HV_FT_RESP)
151 		return 0;
152 
153 	return GHCB_MSR_HV_FT_RESP_VAL(val);
154 }
155 
156 static void snp_register_ghcb_early(unsigned long paddr)
157 {
158 	unsigned long pfn = paddr >> PAGE_SHIFT;
159 	u64 val;
160 
161 	sev_es_wr_ghcb_msr(GHCB_MSR_REG_GPA_REQ_VAL(pfn));
162 	VMGEXIT();
163 
164 	val = sev_es_rd_ghcb_msr();
165 
166 	/* If the response GPA is not ours then abort the guest */
167 	if ((GHCB_RESP_CODE(val) != GHCB_MSR_REG_GPA_RESP) ||
168 	    (GHCB_MSR_REG_GPA_RESP_VAL(val) != pfn))
169 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_REGISTER);
170 }
171 
172 static bool sev_es_negotiate_protocol(void)
173 {
174 	u64 val;
175 
176 	/* Do the GHCB protocol version negotiation */
177 	sev_es_wr_ghcb_msr(GHCB_MSR_SEV_INFO_REQ);
178 	VMGEXIT();
179 	val = sev_es_rd_ghcb_msr();
180 
181 	if (GHCB_MSR_INFO(val) != GHCB_MSR_SEV_INFO_RESP)
182 		return false;
183 
184 	if (GHCB_MSR_PROTO_MAX(val) < GHCB_PROTOCOL_MIN ||
185 	    GHCB_MSR_PROTO_MIN(val) > GHCB_PROTOCOL_MAX)
186 		return false;
187 
188 	ghcb_version = min_t(size_t, GHCB_MSR_PROTO_MAX(val), GHCB_PROTOCOL_MAX);
189 
190 	return true;
191 }
192 
193 static __always_inline void vc_ghcb_invalidate(struct ghcb *ghcb)
194 {
195 	ghcb->save.sw_exit_code = 0;
196 	__builtin_memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
197 }
198 
199 static bool vc_decoding_needed(unsigned long exit_code)
200 {
201 	/* Exceptions don't require to decode the instruction */
202 	return !(exit_code >= SVM_EXIT_EXCP_BASE &&
203 		 exit_code <= SVM_EXIT_LAST_EXCP);
204 }
205 
206 static enum es_result vc_init_em_ctxt(struct es_em_ctxt *ctxt,
207 				      struct pt_regs *regs,
208 				      unsigned long exit_code)
209 {
210 	enum es_result ret = ES_OK;
211 
212 	memset(ctxt, 0, sizeof(*ctxt));
213 	ctxt->regs = regs;
214 
215 	if (vc_decoding_needed(exit_code))
216 		ret = vc_decode_insn(ctxt);
217 
218 	return ret;
219 }
220 
221 static void vc_finish_insn(struct es_em_ctxt *ctxt)
222 {
223 	ctxt->regs->ip += ctxt->insn.length;
224 }
225 
226 static enum es_result verify_exception_info(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
227 {
228 	u32 ret;
229 
230 	ret = ghcb->save.sw_exit_info_1 & GENMASK_ULL(31, 0);
231 	if (!ret)
232 		return ES_OK;
233 
234 	if (ret == 1) {
235 		u64 info = ghcb->save.sw_exit_info_2;
236 		unsigned long v = info & SVM_EVTINJ_VEC_MASK;
237 
238 		/* Check if exception information from hypervisor is sane. */
239 		if ((info & SVM_EVTINJ_VALID) &&
240 		    ((v == X86_TRAP_GP) || (v == X86_TRAP_UD)) &&
241 		    ((info & SVM_EVTINJ_TYPE_MASK) == SVM_EVTINJ_TYPE_EXEPT)) {
242 			ctxt->fi.vector = v;
243 
244 			if (info & SVM_EVTINJ_VALID_ERR)
245 				ctxt->fi.error_code = info >> 32;
246 
247 			return ES_EXCEPTION;
248 		}
249 	}
250 
251 	return ES_VMM_ERROR;
252 }
253 
254 static inline int svsm_process_result_codes(struct svsm_call *call)
255 {
256 	switch (call->rax_out) {
257 	case SVSM_SUCCESS:
258 		return 0;
259 	case SVSM_ERR_INCOMPLETE:
260 	case SVSM_ERR_BUSY:
261 		return -EAGAIN;
262 	default:
263 		return -EINVAL;
264 	}
265 }
266 
267 /*
268  * Issue a VMGEXIT to call the SVSM:
269  *   - Load the SVSM register state (RAX, RCX, RDX, R8 and R9)
270  *   - Set the CA call pending field to 1
271  *   - Issue VMGEXIT
272  *   - Save the SVSM return register state (RAX, RCX, RDX, R8 and R9)
273  *   - Perform atomic exchange of the CA call pending field
274  *
275  *   - See the "Secure VM Service Module for SEV-SNP Guests" specification for
276  *     details on the calling convention.
277  *     - The calling convention loosely follows the Microsoft X64 calling
278  *       convention by putting arguments in RCX, RDX, R8 and R9.
279  *     - RAX specifies the SVSM protocol/callid as input and the return code
280  *       as output.
281  */
282 static __always_inline void svsm_issue_call(struct svsm_call *call, u8 *pending)
283 {
284 	register unsigned long rax asm("rax") = call->rax;
285 	register unsigned long rcx asm("rcx") = call->rcx;
286 	register unsigned long rdx asm("rdx") = call->rdx;
287 	register unsigned long r8  asm("r8")  = call->r8;
288 	register unsigned long r9  asm("r9")  = call->r9;
289 
290 	call->caa->call_pending = 1;
291 
292 	asm volatile("rep; vmmcall\n\t"
293 		     : "+r" (rax), "+r" (rcx), "+r" (rdx), "+r" (r8), "+r" (r9)
294 		     : : "memory");
295 
296 	*pending = xchg(&call->caa->call_pending, *pending);
297 
298 	call->rax_out = rax;
299 	call->rcx_out = rcx;
300 	call->rdx_out = rdx;
301 	call->r8_out  = r8;
302 	call->r9_out  = r9;
303 }
304 
305 static int svsm_perform_msr_protocol(struct svsm_call *call)
306 {
307 	u8 pending = 0;
308 	u64 val, resp;
309 
310 	/*
311 	 * When using the MSR protocol, be sure to save and restore
312 	 * the current MSR value.
313 	 */
314 	val = sev_es_rd_ghcb_msr();
315 
316 	sev_es_wr_ghcb_msr(GHCB_MSR_VMPL_REQ_LEVEL(0));
317 
318 	svsm_issue_call(call, &pending);
319 
320 	resp = sev_es_rd_ghcb_msr();
321 
322 	sev_es_wr_ghcb_msr(val);
323 
324 	if (pending)
325 		return -EINVAL;
326 
327 	if (GHCB_RESP_CODE(resp) != GHCB_MSR_VMPL_RESP)
328 		return -EINVAL;
329 
330 	if (GHCB_MSR_VMPL_RESP_VAL(resp))
331 		return -EINVAL;
332 
333 	return svsm_process_result_codes(call);
334 }
335 
336 static int svsm_perform_ghcb_protocol(struct ghcb *ghcb, struct svsm_call *call)
337 {
338 	struct es_em_ctxt ctxt;
339 	u8 pending = 0;
340 
341 	vc_ghcb_invalidate(ghcb);
342 
343 	/*
344 	 * Fill in protocol and format specifiers. This can be called very early
345 	 * in the boot, so use rip-relative references as needed.
346 	 */
347 	ghcb->protocol_version = RIP_REL_REF(ghcb_version);
348 	ghcb->ghcb_usage       = GHCB_DEFAULT_USAGE;
349 
350 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_SNP_RUN_VMPL);
351 	ghcb_set_sw_exit_info_1(ghcb, 0);
352 	ghcb_set_sw_exit_info_2(ghcb, 0);
353 
354 	sev_es_wr_ghcb_msr(__pa(ghcb));
355 
356 	svsm_issue_call(call, &pending);
357 
358 	if (pending)
359 		return -EINVAL;
360 
361 	switch (verify_exception_info(ghcb, &ctxt)) {
362 	case ES_OK:
363 		break;
364 	case ES_EXCEPTION:
365 		vc_forward_exception(&ctxt);
366 		fallthrough;
367 	default:
368 		return -EINVAL;
369 	}
370 
371 	return svsm_process_result_codes(call);
372 }
373 
374 static enum es_result sev_es_ghcb_hv_call(struct ghcb *ghcb,
375 					  struct es_em_ctxt *ctxt,
376 					  u64 exit_code, u64 exit_info_1,
377 					  u64 exit_info_2)
378 {
379 	/* Fill in protocol and format specifiers */
380 	ghcb->protocol_version = ghcb_version;
381 	ghcb->ghcb_usage       = GHCB_DEFAULT_USAGE;
382 
383 	ghcb_set_sw_exit_code(ghcb, exit_code);
384 	ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
385 	ghcb_set_sw_exit_info_2(ghcb, exit_info_2);
386 
387 	sev_es_wr_ghcb_msr(__pa(ghcb));
388 	VMGEXIT();
389 
390 	return verify_exception_info(ghcb, ctxt);
391 }
392 
393 static int __sev_cpuid_hv(u32 fn, int reg_idx, u32 *reg)
394 {
395 	u64 val;
396 
397 	sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, reg_idx));
398 	VMGEXIT();
399 	val = sev_es_rd_ghcb_msr();
400 	if (GHCB_RESP_CODE(val) != GHCB_MSR_CPUID_RESP)
401 		return -EIO;
402 
403 	*reg = (val >> 32);
404 
405 	return 0;
406 }
407 
408 static int __sev_cpuid_hv_msr(struct cpuid_leaf *leaf)
409 {
410 	int ret;
411 
412 	/*
413 	 * MSR protocol does not support fetching non-zero subfunctions, but is
414 	 * sufficient to handle current early-boot cases. Should that change,
415 	 * make sure to report an error rather than ignoring the index and
416 	 * grabbing random values. If this issue arises in the future, handling
417 	 * can be added here to use GHCB-page protocol for cases that occur late
418 	 * enough in boot that GHCB page is available.
419 	 */
420 	if (cpuid_function_is_indexed(leaf->fn) && leaf->subfn)
421 		return -EINVAL;
422 
423 	ret =         __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EAX, &leaf->eax);
424 	ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EBX, &leaf->ebx);
425 	ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_ECX, &leaf->ecx);
426 	ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EDX, &leaf->edx);
427 
428 	return ret;
429 }
430 
431 static int __sev_cpuid_hv_ghcb(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
432 {
433 	u32 cr4 = native_read_cr4();
434 	int ret;
435 
436 	ghcb_set_rax(ghcb, leaf->fn);
437 	ghcb_set_rcx(ghcb, leaf->subfn);
438 
439 	if (cr4 & X86_CR4_OSXSAVE)
440 		/* Safe to read xcr0 */
441 		ghcb_set_xcr0(ghcb, xgetbv(XCR_XFEATURE_ENABLED_MASK));
442 	else
443 		/* xgetbv will cause #UD - use reset value for xcr0 */
444 		ghcb_set_xcr0(ghcb, 1);
445 
446 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, 0, 0);
447 	if (ret != ES_OK)
448 		return ret;
449 
450 	if (!(ghcb_rax_is_valid(ghcb) &&
451 	      ghcb_rbx_is_valid(ghcb) &&
452 	      ghcb_rcx_is_valid(ghcb) &&
453 	      ghcb_rdx_is_valid(ghcb)))
454 		return ES_VMM_ERROR;
455 
456 	leaf->eax = ghcb->save.rax;
457 	leaf->ebx = ghcb->save.rbx;
458 	leaf->ecx = ghcb->save.rcx;
459 	leaf->edx = ghcb->save.rdx;
460 
461 	return ES_OK;
462 }
463 
464 static int sev_cpuid_hv(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
465 {
466 	return ghcb ? __sev_cpuid_hv_ghcb(ghcb, ctxt, leaf)
467 		    : __sev_cpuid_hv_msr(leaf);
468 }
469 
470 /*
471  * This may be called early while still running on the initial identity
472  * mapping. Use RIP-relative addressing to obtain the correct address
473  * while running with the initial identity mapping as well as the
474  * switch-over to kernel virtual addresses later.
475  */
476 static const struct snp_cpuid_table *snp_cpuid_get_table(void)
477 {
478 	return &RIP_REL_REF(cpuid_table_copy);
479 }
480 
481 /*
482  * The SNP Firmware ABI, Revision 0.9, Section 7.1, details the use of
483  * XCR0_IN and XSS_IN to encode multiple versions of 0xD subfunctions 0
484  * and 1 based on the corresponding features enabled by a particular
485  * combination of XCR0 and XSS registers so that a guest can look up the
486  * version corresponding to the features currently enabled in its XCR0/XSS
487  * registers. The only values that differ between these versions/table
488  * entries is the enabled XSAVE area size advertised via EBX.
489  *
490  * While hypervisors may choose to make use of this support, it is more
491  * robust/secure for a guest to simply find the entry corresponding to the
492  * base/legacy XSAVE area size (XCR0=1 or XCR0=3), and then calculate the
493  * XSAVE area size using subfunctions 2 through 64, as documented in APM
494  * Volume 3, Rev 3.31, Appendix E.3.8, which is what is done here.
495  *
496  * Since base/legacy XSAVE area size is documented as 0x240, use that value
497  * directly rather than relying on the base size in the CPUID table.
498  *
499  * Return: XSAVE area size on success, 0 otherwise.
500  */
501 static u32 snp_cpuid_calc_xsave_size(u64 xfeatures_en, bool compacted)
502 {
503 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
504 	u64 xfeatures_found = 0;
505 	u32 xsave_size = 0x240;
506 	int i;
507 
508 	for (i = 0; i < cpuid_table->count; i++) {
509 		const struct snp_cpuid_fn *e = &cpuid_table->fn[i];
510 
511 		if (!(e->eax_in == 0xD && e->ecx_in > 1 && e->ecx_in < 64))
512 			continue;
513 		if (!(xfeatures_en & (BIT_ULL(e->ecx_in))))
514 			continue;
515 		if (xfeatures_found & (BIT_ULL(e->ecx_in)))
516 			continue;
517 
518 		xfeatures_found |= (BIT_ULL(e->ecx_in));
519 
520 		if (compacted)
521 			xsave_size += e->eax;
522 		else
523 			xsave_size = max(xsave_size, e->eax + e->ebx);
524 	}
525 
526 	/*
527 	 * Either the guest set unsupported XCR0/XSS bits, or the corresponding
528 	 * entries in the CPUID table were not present. This is not a valid
529 	 * state to be in.
530 	 */
531 	if (xfeatures_found != (xfeatures_en & GENMASK_ULL(63, 2)))
532 		return 0;
533 
534 	return xsave_size;
535 }
536 
537 static bool __head
538 snp_cpuid_get_validated_func(struct cpuid_leaf *leaf)
539 {
540 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
541 	int i;
542 
543 	for (i = 0; i < cpuid_table->count; i++) {
544 		const struct snp_cpuid_fn *e = &cpuid_table->fn[i];
545 
546 		if (e->eax_in != leaf->fn)
547 			continue;
548 
549 		if (cpuid_function_is_indexed(leaf->fn) && e->ecx_in != leaf->subfn)
550 			continue;
551 
552 		/*
553 		 * For 0xD subfunctions 0 and 1, only use the entry corresponding
554 		 * to the base/legacy XSAVE area size (XCR0=1 or XCR0=3, XSS=0).
555 		 * See the comments above snp_cpuid_calc_xsave_size() for more
556 		 * details.
557 		 */
558 		if (e->eax_in == 0xD && (e->ecx_in == 0 || e->ecx_in == 1))
559 			if (!(e->xcr0_in == 1 || e->xcr0_in == 3) || e->xss_in)
560 				continue;
561 
562 		leaf->eax = e->eax;
563 		leaf->ebx = e->ebx;
564 		leaf->ecx = e->ecx;
565 		leaf->edx = e->edx;
566 
567 		return true;
568 	}
569 
570 	return false;
571 }
572 
573 static void snp_cpuid_hv(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
574 {
575 	if (sev_cpuid_hv(ghcb, ctxt, leaf))
576 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID_HV);
577 }
578 
579 static int snp_cpuid_postprocess(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
580 				 struct cpuid_leaf *leaf)
581 {
582 	struct cpuid_leaf leaf_hv = *leaf;
583 
584 	switch (leaf->fn) {
585 	case 0x1:
586 		snp_cpuid_hv(ghcb, ctxt, &leaf_hv);
587 
588 		/* initial APIC ID */
589 		leaf->ebx = (leaf_hv.ebx & GENMASK(31, 24)) | (leaf->ebx & GENMASK(23, 0));
590 		/* APIC enabled bit */
591 		leaf->edx = (leaf_hv.edx & BIT(9)) | (leaf->edx & ~BIT(9));
592 
593 		/* OSXSAVE enabled bit */
594 		if (native_read_cr4() & X86_CR4_OSXSAVE)
595 			leaf->ecx |= BIT(27);
596 		break;
597 	case 0x7:
598 		/* OSPKE enabled bit */
599 		leaf->ecx &= ~BIT(4);
600 		if (native_read_cr4() & X86_CR4_PKE)
601 			leaf->ecx |= BIT(4);
602 		break;
603 	case 0xB:
604 		leaf_hv.subfn = 0;
605 		snp_cpuid_hv(ghcb, ctxt, &leaf_hv);
606 
607 		/* extended APIC ID */
608 		leaf->edx = leaf_hv.edx;
609 		break;
610 	case 0xD: {
611 		bool compacted = false;
612 		u64 xcr0 = 1, xss = 0;
613 		u32 xsave_size;
614 
615 		if (leaf->subfn != 0 && leaf->subfn != 1)
616 			return 0;
617 
618 		if (native_read_cr4() & X86_CR4_OSXSAVE)
619 			xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
620 		if (leaf->subfn == 1) {
621 			/* Get XSS value if XSAVES is enabled. */
622 			if (leaf->eax & BIT(3)) {
623 				unsigned long lo, hi;
624 
625 				asm volatile("rdmsr" : "=a" (lo), "=d" (hi)
626 						     : "c" (MSR_IA32_XSS));
627 				xss = (hi << 32) | lo;
628 			}
629 
630 			/*
631 			 * The PPR and APM aren't clear on what size should be
632 			 * encoded in 0xD:0x1:EBX when compaction is not enabled
633 			 * by either XSAVEC (feature bit 1) or XSAVES (feature
634 			 * bit 3) since SNP-capable hardware has these feature
635 			 * bits fixed as 1. KVM sets it to 0 in this case, but
636 			 * to avoid this becoming an issue it's safer to simply
637 			 * treat this as unsupported for SNP guests.
638 			 */
639 			if (!(leaf->eax & (BIT(1) | BIT(3))))
640 				return -EINVAL;
641 
642 			compacted = true;
643 		}
644 
645 		xsave_size = snp_cpuid_calc_xsave_size(xcr0 | xss, compacted);
646 		if (!xsave_size)
647 			return -EINVAL;
648 
649 		leaf->ebx = xsave_size;
650 		}
651 		break;
652 	case 0x8000001E:
653 		snp_cpuid_hv(ghcb, ctxt, &leaf_hv);
654 
655 		/* extended APIC ID */
656 		leaf->eax = leaf_hv.eax;
657 		/* compute ID */
658 		leaf->ebx = (leaf->ebx & GENMASK(31, 8)) | (leaf_hv.ebx & GENMASK(7, 0));
659 		/* node ID */
660 		leaf->ecx = (leaf->ecx & GENMASK(31, 8)) | (leaf_hv.ecx & GENMASK(7, 0));
661 		break;
662 	default:
663 		/* No fix-ups needed, use values as-is. */
664 		break;
665 	}
666 
667 	return 0;
668 }
669 
670 /*
671  * Returns -EOPNOTSUPP if feature not enabled. Any other non-zero return value
672  * should be treated as fatal by caller.
673  */
674 static int __head
675 snp_cpuid(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
676 {
677 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
678 
679 	if (!cpuid_table->count)
680 		return -EOPNOTSUPP;
681 
682 	if (!snp_cpuid_get_validated_func(leaf)) {
683 		/*
684 		 * Some hypervisors will avoid keeping track of CPUID entries
685 		 * where all values are zero, since they can be handled the
686 		 * same as out-of-range values (all-zero). This is useful here
687 		 * as well as it allows virtually all guest configurations to
688 		 * work using a single SNP CPUID table.
689 		 *
690 		 * To allow for this, there is a need to distinguish between
691 		 * out-of-range entries and in-range zero entries, since the
692 		 * CPUID table entries are only a template that may need to be
693 		 * augmented with additional values for things like
694 		 * CPU-specific information during post-processing. So if it's
695 		 * not in the table, set the values to zero. Then, if they are
696 		 * within a valid CPUID range, proceed with post-processing
697 		 * using zeros as the initial values. Otherwise, skip
698 		 * post-processing and just return zeros immediately.
699 		 */
700 		leaf->eax = leaf->ebx = leaf->ecx = leaf->edx = 0;
701 
702 		/* Skip post-processing for out-of-range zero leafs. */
703 		if (!(leaf->fn <= RIP_REL_REF(cpuid_std_range_max) ||
704 		      (leaf->fn >= 0x40000000 && leaf->fn <= RIP_REL_REF(cpuid_hyp_range_max)) ||
705 		      (leaf->fn >= 0x80000000 && leaf->fn <= RIP_REL_REF(cpuid_ext_range_max))))
706 			return 0;
707 	}
708 
709 	return snp_cpuid_postprocess(ghcb, ctxt, leaf);
710 }
711 
712 /*
713  * Boot VC Handler - This is the first VC handler during boot, there is no GHCB
714  * page yet, so it only supports the MSR based communication with the
715  * hypervisor and only the CPUID exit-code.
716  */
717 void __head do_vc_no_ghcb(struct pt_regs *regs, unsigned long exit_code)
718 {
719 	unsigned int subfn = lower_bits(regs->cx, 32);
720 	unsigned int fn = lower_bits(regs->ax, 32);
721 	u16 opcode = *(unsigned short *)regs->ip;
722 	struct cpuid_leaf leaf;
723 	int ret;
724 
725 	/* Only CPUID is supported via MSR protocol */
726 	if (exit_code != SVM_EXIT_CPUID)
727 		goto fail;
728 
729 	/* Is it really a CPUID insn? */
730 	if (opcode != 0xa20f)
731 		goto fail;
732 
733 	leaf.fn = fn;
734 	leaf.subfn = subfn;
735 
736 	ret = snp_cpuid(NULL, NULL, &leaf);
737 	if (!ret)
738 		goto cpuid_done;
739 
740 	if (ret != -EOPNOTSUPP)
741 		goto fail;
742 
743 	if (__sev_cpuid_hv_msr(&leaf))
744 		goto fail;
745 
746 cpuid_done:
747 	regs->ax = leaf.eax;
748 	regs->bx = leaf.ebx;
749 	regs->cx = leaf.ecx;
750 	regs->dx = leaf.edx;
751 
752 	/*
753 	 * This is a VC handler and the #VC is only raised when SEV-ES is
754 	 * active, which means SEV must be active too. Do sanity checks on the
755 	 * CPUID results to make sure the hypervisor does not trick the kernel
756 	 * into the no-sev path. This could map sensitive data unencrypted and
757 	 * make it accessible to the hypervisor.
758 	 *
759 	 * In particular, check for:
760 	 *	- Availability of CPUID leaf 0x8000001f
761 	 *	- SEV CPUID bit.
762 	 *
763 	 * The hypervisor might still report the wrong C-bit position, but this
764 	 * can't be checked here.
765 	 */
766 
767 	if (fn == 0x80000000 && (regs->ax < 0x8000001f))
768 		/* SEV leaf check */
769 		goto fail;
770 	else if ((fn == 0x8000001f && !(regs->ax & BIT(1))))
771 		/* SEV bit */
772 		goto fail;
773 
774 	/* Skip over the CPUID two-byte opcode */
775 	regs->ip += 2;
776 
777 	return;
778 
779 fail:
780 	/* Terminate the guest */
781 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
782 }
783 
784 static enum es_result vc_insn_string_check(struct es_em_ctxt *ctxt,
785 					   unsigned long address,
786 					   bool write)
787 {
788 	if (user_mode(ctxt->regs) && fault_in_kernel_space(address)) {
789 		ctxt->fi.vector     = X86_TRAP_PF;
790 		ctxt->fi.error_code = X86_PF_USER;
791 		ctxt->fi.cr2        = address;
792 		if (write)
793 			ctxt->fi.error_code |= X86_PF_WRITE;
794 
795 		return ES_EXCEPTION;
796 	}
797 
798 	return ES_OK;
799 }
800 
801 static enum es_result vc_insn_string_read(struct es_em_ctxt *ctxt,
802 					  void *src, char *buf,
803 					  unsigned int data_size,
804 					  unsigned int count,
805 					  bool backwards)
806 {
807 	int i, b = backwards ? -1 : 1;
808 	unsigned long address = (unsigned long)src;
809 	enum es_result ret;
810 
811 	ret = vc_insn_string_check(ctxt, address, false);
812 	if (ret != ES_OK)
813 		return ret;
814 
815 	for (i = 0; i < count; i++) {
816 		void *s = src + (i * data_size * b);
817 		char *d = buf + (i * data_size);
818 
819 		ret = vc_read_mem(ctxt, s, d, data_size);
820 		if (ret != ES_OK)
821 			break;
822 	}
823 
824 	return ret;
825 }
826 
827 static enum es_result vc_insn_string_write(struct es_em_ctxt *ctxt,
828 					   void *dst, char *buf,
829 					   unsigned int data_size,
830 					   unsigned int count,
831 					   bool backwards)
832 {
833 	int i, s = backwards ? -1 : 1;
834 	unsigned long address = (unsigned long)dst;
835 	enum es_result ret;
836 
837 	ret = vc_insn_string_check(ctxt, address, true);
838 	if (ret != ES_OK)
839 		return ret;
840 
841 	for (i = 0; i < count; i++) {
842 		void *d = dst + (i * data_size * s);
843 		char *b = buf + (i * data_size);
844 
845 		ret = vc_write_mem(ctxt, d, b, data_size);
846 		if (ret != ES_OK)
847 			break;
848 	}
849 
850 	return ret;
851 }
852 
853 #define IOIO_TYPE_STR  BIT(2)
854 #define IOIO_TYPE_IN   1
855 #define IOIO_TYPE_INS  (IOIO_TYPE_IN | IOIO_TYPE_STR)
856 #define IOIO_TYPE_OUT  0
857 #define IOIO_TYPE_OUTS (IOIO_TYPE_OUT | IOIO_TYPE_STR)
858 
859 #define IOIO_REP       BIT(3)
860 
861 #define IOIO_ADDR_64   BIT(9)
862 #define IOIO_ADDR_32   BIT(8)
863 #define IOIO_ADDR_16   BIT(7)
864 
865 #define IOIO_DATA_32   BIT(6)
866 #define IOIO_DATA_16   BIT(5)
867 #define IOIO_DATA_8    BIT(4)
868 
869 #define IOIO_SEG_ES    (0 << 10)
870 #define IOIO_SEG_DS    (3 << 10)
871 
872 static enum es_result vc_ioio_exitinfo(struct es_em_ctxt *ctxt, u64 *exitinfo)
873 {
874 	struct insn *insn = &ctxt->insn;
875 	size_t size;
876 	u64 port;
877 
878 	*exitinfo = 0;
879 
880 	switch (insn->opcode.bytes[0]) {
881 	/* INS opcodes */
882 	case 0x6c:
883 	case 0x6d:
884 		*exitinfo |= IOIO_TYPE_INS;
885 		*exitinfo |= IOIO_SEG_ES;
886 		port	   = ctxt->regs->dx & 0xffff;
887 		break;
888 
889 	/* OUTS opcodes */
890 	case 0x6e:
891 	case 0x6f:
892 		*exitinfo |= IOIO_TYPE_OUTS;
893 		*exitinfo |= IOIO_SEG_DS;
894 		port	   = ctxt->regs->dx & 0xffff;
895 		break;
896 
897 	/* IN immediate opcodes */
898 	case 0xe4:
899 	case 0xe5:
900 		*exitinfo |= IOIO_TYPE_IN;
901 		port	   = (u8)insn->immediate.value & 0xffff;
902 		break;
903 
904 	/* OUT immediate opcodes */
905 	case 0xe6:
906 	case 0xe7:
907 		*exitinfo |= IOIO_TYPE_OUT;
908 		port	   = (u8)insn->immediate.value & 0xffff;
909 		break;
910 
911 	/* IN register opcodes */
912 	case 0xec:
913 	case 0xed:
914 		*exitinfo |= IOIO_TYPE_IN;
915 		port	   = ctxt->regs->dx & 0xffff;
916 		break;
917 
918 	/* OUT register opcodes */
919 	case 0xee:
920 	case 0xef:
921 		*exitinfo |= IOIO_TYPE_OUT;
922 		port	   = ctxt->regs->dx & 0xffff;
923 		break;
924 
925 	default:
926 		return ES_DECODE_FAILED;
927 	}
928 
929 	*exitinfo |= port << 16;
930 
931 	switch (insn->opcode.bytes[0]) {
932 	case 0x6c:
933 	case 0x6e:
934 	case 0xe4:
935 	case 0xe6:
936 	case 0xec:
937 	case 0xee:
938 		/* Single byte opcodes */
939 		*exitinfo |= IOIO_DATA_8;
940 		size       = 1;
941 		break;
942 	default:
943 		/* Length determined by instruction parsing */
944 		*exitinfo |= (insn->opnd_bytes == 2) ? IOIO_DATA_16
945 						     : IOIO_DATA_32;
946 		size       = (insn->opnd_bytes == 2) ? 2 : 4;
947 	}
948 
949 	switch (insn->addr_bytes) {
950 	case 2:
951 		*exitinfo |= IOIO_ADDR_16;
952 		break;
953 	case 4:
954 		*exitinfo |= IOIO_ADDR_32;
955 		break;
956 	case 8:
957 		*exitinfo |= IOIO_ADDR_64;
958 		break;
959 	}
960 
961 	if (insn_has_rep_prefix(insn))
962 		*exitinfo |= IOIO_REP;
963 
964 	return vc_ioio_check(ctxt, (u16)port, size);
965 }
966 
967 static enum es_result vc_handle_ioio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
968 {
969 	struct pt_regs *regs = ctxt->regs;
970 	u64 exit_info_1, exit_info_2;
971 	enum es_result ret;
972 
973 	ret = vc_ioio_exitinfo(ctxt, &exit_info_1);
974 	if (ret != ES_OK)
975 		return ret;
976 
977 	if (exit_info_1 & IOIO_TYPE_STR) {
978 
979 		/* (REP) INS/OUTS */
980 
981 		bool df = ((regs->flags & X86_EFLAGS_DF) == X86_EFLAGS_DF);
982 		unsigned int io_bytes, exit_bytes;
983 		unsigned int ghcb_count, op_count;
984 		unsigned long es_base;
985 		u64 sw_scratch;
986 
987 		/*
988 		 * For the string variants with rep prefix the amount of in/out
989 		 * operations per #VC exception is limited so that the kernel
990 		 * has a chance to take interrupts and re-schedule while the
991 		 * instruction is emulated.
992 		 */
993 		io_bytes   = (exit_info_1 >> 4) & 0x7;
994 		ghcb_count = sizeof(ghcb->shared_buffer) / io_bytes;
995 
996 		op_count    = (exit_info_1 & IOIO_REP) ? regs->cx : 1;
997 		exit_info_2 = min(op_count, ghcb_count);
998 		exit_bytes  = exit_info_2 * io_bytes;
999 
1000 		es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
1001 
1002 		/* Read bytes of OUTS into the shared buffer */
1003 		if (!(exit_info_1 & IOIO_TYPE_IN)) {
1004 			ret = vc_insn_string_read(ctxt,
1005 					       (void *)(es_base + regs->si),
1006 					       ghcb->shared_buffer, io_bytes,
1007 					       exit_info_2, df);
1008 			if (ret)
1009 				return ret;
1010 		}
1011 
1012 		/*
1013 		 * Issue an VMGEXIT to the HV to consume the bytes from the
1014 		 * shared buffer or to have it write them into the shared buffer
1015 		 * depending on the instruction: OUTS or INS.
1016 		 */
1017 		sw_scratch = __pa(ghcb) + offsetof(struct ghcb, shared_buffer);
1018 		ghcb_set_sw_scratch(ghcb, sw_scratch);
1019 		ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO,
1020 					  exit_info_1, exit_info_2);
1021 		if (ret != ES_OK)
1022 			return ret;
1023 
1024 		/* Read bytes from shared buffer into the guest's destination. */
1025 		if (exit_info_1 & IOIO_TYPE_IN) {
1026 			ret = vc_insn_string_write(ctxt,
1027 						   (void *)(es_base + regs->di),
1028 						   ghcb->shared_buffer, io_bytes,
1029 						   exit_info_2, df);
1030 			if (ret)
1031 				return ret;
1032 
1033 			if (df)
1034 				regs->di -= exit_bytes;
1035 			else
1036 				regs->di += exit_bytes;
1037 		} else {
1038 			if (df)
1039 				regs->si -= exit_bytes;
1040 			else
1041 				regs->si += exit_bytes;
1042 		}
1043 
1044 		if (exit_info_1 & IOIO_REP)
1045 			regs->cx -= exit_info_2;
1046 
1047 		ret = regs->cx ? ES_RETRY : ES_OK;
1048 
1049 	} else {
1050 
1051 		/* IN/OUT into/from rAX */
1052 
1053 		int bits = (exit_info_1 & 0x70) >> 1;
1054 		u64 rax = 0;
1055 
1056 		if (!(exit_info_1 & IOIO_TYPE_IN))
1057 			rax = lower_bits(regs->ax, bits);
1058 
1059 		ghcb_set_rax(ghcb, rax);
1060 
1061 		ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO, exit_info_1, 0);
1062 		if (ret != ES_OK)
1063 			return ret;
1064 
1065 		if (exit_info_1 & IOIO_TYPE_IN) {
1066 			if (!ghcb_rax_is_valid(ghcb))
1067 				return ES_VMM_ERROR;
1068 			regs->ax = lower_bits(ghcb->save.rax, bits);
1069 		}
1070 	}
1071 
1072 	return ret;
1073 }
1074 
1075 static int vc_handle_cpuid_snp(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1076 {
1077 	struct pt_regs *regs = ctxt->regs;
1078 	struct cpuid_leaf leaf;
1079 	int ret;
1080 
1081 	leaf.fn = regs->ax;
1082 	leaf.subfn = regs->cx;
1083 	ret = snp_cpuid(ghcb, ctxt, &leaf);
1084 	if (!ret) {
1085 		regs->ax = leaf.eax;
1086 		regs->bx = leaf.ebx;
1087 		regs->cx = leaf.ecx;
1088 		regs->dx = leaf.edx;
1089 	}
1090 
1091 	return ret;
1092 }
1093 
1094 static enum es_result vc_handle_cpuid(struct ghcb *ghcb,
1095 				      struct es_em_ctxt *ctxt)
1096 {
1097 	struct pt_regs *regs = ctxt->regs;
1098 	u32 cr4 = native_read_cr4();
1099 	enum es_result ret;
1100 	int snp_cpuid_ret;
1101 
1102 	snp_cpuid_ret = vc_handle_cpuid_snp(ghcb, ctxt);
1103 	if (!snp_cpuid_ret)
1104 		return ES_OK;
1105 	if (snp_cpuid_ret != -EOPNOTSUPP)
1106 		return ES_VMM_ERROR;
1107 
1108 	ghcb_set_rax(ghcb, regs->ax);
1109 	ghcb_set_rcx(ghcb, regs->cx);
1110 
1111 	if (cr4 & X86_CR4_OSXSAVE)
1112 		/* Safe to read xcr0 */
1113 		ghcb_set_xcr0(ghcb, xgetbv(XCR_XFEATURE_ENABLED_MASK));
1114 	else
1115 		/* xgetbv will cause #GP - use reset value for xcr0 */
1116 		ghcb_set_xcr0(ghcb, 1);
1117 
1118 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, 0, 0);
1119 	if (ret != ES_OK)
1120 		return ret;
1121 
1122 	if (!(ghcb_rax_is_valid(ghcb) &&
1123 	      ghcb_rbx_is_valid(ghcb) &&
1124 	      ghcb_rcx_is_valid(ghcb) &&
1125 	      ghcb_rdx_is_valid(ghcb)))
1126 		return ES_VMM_ERROR;
1127 
1128 	regs->ax = ghcb->save.rax;
1129 	regs->bx = ghcb->save.rbx;
1130 	regs->cx = ghcb->save.rcx;
1131 	regs->dx = ghcb->save.rdx;
1132 
1133 	return ES_OK;
1134 }
1135 
1136 static enum es_result vc_handle_rdtsc(struct ghcb *ghcb,
1137 				      struct es_em_ctxt *ctxt,
1138 				      unsigned long exit_code)
1139 {
1140 	bool rdtscp = (exit_code == SVM_EXIT_RDTSCP);
1141 	enum es_result ret;
1142 
1143 	/*
1144 	 * The hypervisor should not be intercepting RDTSC/RDTSCP when Secure
1145 	 * TSC is enabled. A #VC exception will be generated if the RDTSC/RDTSCP
1146 	 * instructions are being intercepted. If this should occur and Secure
1147 	 * TSC is enabled, guest execution should be terminated as the guest
1148 	 * cannot rely on the TSC value provided by the hypervisor.
1149 	 */
1150 	if (sev_status & MSR_AMD64_SNP_SECURE_TSC)
1151 		return ES_VMM_ERROR;
1152 
1153 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, 0, 0);
1154 	if (ret != ES_OK)
1155 		return ret;
1156 
1157 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb) &&
1158 	     (!rdtscp || ghcb_rcx_is_valid(ghcb))))
1159 		return ES_VMM_ERROR;
1160 
1161 	ctxt->regs->ax = ghcb->save.rax;
1162 	ctxt->regs->dx = ghcb->save.rdx;
1163 	if (rdtscp)
1164 		ctxt->regs->cx = ghcb->save.rcx;
1165 
1166 	return ES_OK;
1167 }
1168 
1169 struct cc_setup_data {
1170 	struct setup_data header;
1171 	u32 cc_blob_address;
1172 };
1173 
1174 /*
1175  * Search for a Confidential Computing blob passed in as a setup_data entry
1176  * via the Linux Boot Protocol.
1177  */
1178 static __head
1179 struct cc_blob_sev_info *find_cc_blob_setup_data(struct boot_params *bp)
1180 {
1181 	struct cc_setup_data *sd = NULL;
1182 	struct setup_data *hdr;
1183 
1184 	hdr = (struct setup_data *)bp->hdr.setup_data;
1185 
1186 	while (hdr) {
1187 		if (hdr->type == SETUP_CC_BLOB) {
1188 			sd = (struct cc_setup_data *)hdr;
1189 			return (struct cc_blob_sev_info *)(unsigned long)sd->cc_blob_address;
1190 		}
1191 		hdr = (struct setup_data *)hdr->next;
1192 	}
1193 
1194 	return NULL;
1195 }
1196 
1197 /*
1198  * Initialize the kernel's copy of the SNP CPUID table, and set up the
1199  * pointer that will be used to access it.
1200  *
1201  * Maintaining a direct mapping of the SNP CPUID table used by firmware would
1202  * be possible as an alternative, but the approach is brittle since the
1203  * mapping needs to be updated in sync with all the changes to virtual memory
1204  * layout and related mapping facilities throughout the boot process.
1205  */
1206 static void __head setup_cpuid_table(const struct cc_blob_sev_info *cc_info)
1207 {
1208 	const struct snp_cpuid_table *cpuid_table_fw, *cpuid_table;
1209 	int i;
1210 
1211 	if (!cc_info || !cc_info->cpuid_phys || cc_info->cpuid_len < PAGE_SIZE)
1212 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);
1213 
1214 	cpuid_table_fw = (const struct snp_cpuid_table *)cc_info->cpuid_phys;
1215 	if (!cpuid_table_fw->count || cpuid_table_fw->count > SNP_CPUID_COUNT_MAX)
1216 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);
1217 
1218 	cpuid_table = snp_cpuid_get_table();
1219 	memcpy((void *)cpuid_table, cpuid_table_fw, sizeof(*cpuid_table));
1220 
1221 	/* Initialize CPUID ranges for range-checking. */
1222 	for (i = 0; i < cpuid_table->count; i++) {
1223 		const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
1224 
1225 		if (fn->eax_in == 0x0)
1226 			RIP_REL_REF(cpuid_std_range_max) = fn->eax;
1227 		else if (fn->eax_in == 0x40000000)
1228 			RIP_REL_REF(cpuid_hyp_range_max) = fn->eax;
1229 		else if (fn->eax_in == 0x80000000)
1230 			RIP_REL_REF(cpuid_ext_range_max) = fn->eax;
1231 	}
1232 }
1233 
1234 static inline void __pval_terminate(u64 pfn, bool action, unsigned int page_size,
1235 				    int ret, u64 svsm_ret)
1236 {
1237 	WARN(1, "PVALIDATE failure: pfn: 0x%llx, action: %u, size: %u, ret: %d, svsm_ret: 0x%llx\n",
1238 	     pfn, action, page_size, ret, svsm_ret);
1239 
1240 	sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
1241 }
1242 
1243 static void svsm_pval_terminate(struct svsm_pvalidate_call *pc, int ret, u64 svsm_ret)
1244 {
1245 	unsigned int page_size;
1246 	bool action;
1247 	u64 pfn;
1248 
1249 	pfn = pc->entry[pc->cur_index].pfn;
1250 	action = pc->entry[pc->cur_index].action;
1251 	page_size = pc->entry[pc->cur_index].page_size;
1252 
1253 	__pval_terminate(pfn, action, page_size, ret, svsm_ret);
1254 }
1255 
1256 static void svsm_pval_4k_page(unsigned long paddr, bool validate)
1257 {
1258 	struct svsm_pvalidate_call *pc;
1259 	struct svsm_call call = {};
1260 	unsigned long flags;
1261 	u64 pc_pa;
1262 	int ret;
1263 
1264 	/*
1265 	 * This can be called very early in the boot, use native functions in
1266 	 * order to avoid paravirt issues.
1267 	 */
1268 	flags = native_local_irq_save();
1269 
1270 	call.caa = svsm_get_caa();
1271 
1272 	pc = (struct svsm_pvalidate_call *)call.caa->svsm_buffer;
1273 	pc_pa = svsm_get_caa_pa() + offsetof(struct svsm_ca, svsm_buffer);
1274 
1275 	pc->num_entries = 1;
1276 	pc->cur_index   = 0;
1277 	pc->entry[0].page_size = RMP_PG_SIZE_4K;
1278 	pc->entry[0].action    = validate;
1279 	pc->entry[0].ignore_cf = 0;
1280 	pc->entry[0].pfn       = paddr >> PAGE_SHIFT;
1281 
1282 	/* Protocol 0, Call ID 1 */
1283 	call.rax = SVSM_CORE_CALL(SVSM_CORE_PVALIDATE);
1284 	call.rcx = pc_pa;
1285 
1286 	ret = svsm_perform_call_protocol(&call);
1287 	if (ret)
1288 		svsm_pval_terminate(pc, ret, call.rax_out);
1289 
1290 	native_local_irq_restore(flags);
1291 }
1292 
1293 static void pvalidate_4k_page(unsigned long vaddr, unsigned long paddr, bool validate)
1294 {
1295 	int ret;
1296 
1297 	/*
1298 	 * This can be called very early during boot, so use rIP-relative
1299 	 * references as needed.
1300 	 */
1301 	if (RIP_REL_REF(snp_vmpl)) {
1302 		svsm_pval_4k_page(paddr, validate);
1303 	} else {
1304 		ret = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
1305 		if (ret)
1306 			__pval_terminate(PHYS_PFN(paddr), validate, RMP_PG_SIZE_4K, ret, 0);
1307 	}
1308 }
1309 
1310 static void pval_pages(struct snp_psc_desc *desc)
1311 {
1312 	struct psc_entry *e;
1313 	unsigned long vaddr;
1314 	unsigned int size;
1315 	unsigned int i;
1316 	bool validate;
1317 	u64 pfn;
1318 	int rc;
1319 
1320 	for (i = 0; i <= desc->hdr.end_entry; i++) {
1321 		e = &desc->entries[i];
1322 
1323 		pfn = e->gfn;
1324 		vaddr = (unsigned long)pfn_to_kaddr(pfn);
1325 		size = e->pagesize ? RMP_PG_SIZE_2M : RMP_PG_SIZE_4K;
1326 		validate = e->operation == SNP_PAGE_STATE_PRIVATE;
1327 
1328 		rc = pvalidate(vaddr, size, validate);
1329 		if (!rc)
1330 			continue;
1331 
1332 		if (rc == PVALIDATE_FAIL_SIZEMISMATCH && size == RMP_PG_SIZE_2M) {
1333 			unsigned long vaddr_end = vaddr + PMD_SIZE;
1334 
1335 			for (; vaddr < vaddr_end; vaddr += PAGE_SIZE, pfn++) {
1336 				rc = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
1337 				if (rc)
1338 					__pval_terminate(pfn, validate, RMP_PG_SIZE_4K, rc, 0);
1339 			}
1340 		} else {
1341 			__pval_terminate(pfn, validate, size, rc, 0);
1342 		}
1343 	}
1344 }
1345 
1346 static u64 svsm_build_ca_from_pfn_range(u64 pfn, u64 pfn_end, bool action,
1347 					struct svsm_pvalidate_call *pc)
1348 {
1349 	struct svsm_pvalidate_entry *pe;
1350 
1351 	/* Nothing in the CA yet */
1352 	pc->num_entries = 0;
1353 	pc->cur_index   = 0;
1354 
1355 	pe = &pc->entry[0];
1356 
1357 	while (pfn < pfn_end) {
1358 		pe->page_size = RMP_PG_SIZE_4K;
1359 		pe->action    = action;
1360 		pe->ignore_cf = 0;
1361 		pe->pfn       = pfn;
1362 
1363 		pe++;
1364 		pfn++;
1365 
1366 		pc->num_entries++;
1367 		if (pc->num_entries == SVSM_PVALIDATE_MAX_COUNT)
1368 			break;
1369 	}
1370 
1371 	return pfn;
1372 }
1373 
1374 static int svsm_build_ca_from_psc_desc(struct snp_psc_desc *desc, unsigned int desc_entry,
1375 				       struct svsm_pvalidate_call *pc)
1376 {
1377 	struct svsm_pvalidate_entry *pe;
1378 	struct psc_entry *e;
1379 
1380 	/* Nothing in the CA yet */
1381 	pc->num_entries = 0;
1382 	pc->cur_index   = 0;
1383 
1384 	pe = &pc->entry[0];
1385 	e  = &desc->entries[desc_entry];
1386 
1387 	while (desc_entry <= desc->hdr.end_entry) {
1388 		pe->page_size = e->pagesize ? RMP_PG_SIZE_2M : RMP_PG_SIZE_4K;
1389 		pe->action    = e->operation == SNP_PAGE_STATE_PRIVATE;
1390 		pe->ignore_cf = 0;
1391 		pe->pfn       = e->gfn;
1392 
1393 		pe++;
1394 		e++;
1395 
1396 		desc_entry++;
1397 		pc->num_entries++;
1398 		if (pc->num_entries == SVSM_PVALIDATE_MAX_COUNT)
1399 			break;
1400 	}
1401 
1402 	return desc_entry;
1403 }
1404 
1405 static void svsm_pval_pages(struct snp_psc_desc *desc)
1406 {
1407 	struct svsm_pvalidate_entry pv_4k[VMGEXIT_PSC_MAX_ENTRY];
1408 	unsigned int i, pv_4k_count = 0;
1409 	struct svsm_pvalidate_call *pc;
1410 	struct svsm_call call = {};
1411 	unsigned long flags;
1412 	bool action;
1413 	u64 pc_pa;
1414 	int ret;
1415 
1416 	/*
1417 	 * This can be called very early in the boot, use native functions in
1418 	 * order to avoid paravirt issues.
1419 	 */
1420 	flags = native_local_irq_save();
1421 
1422 	/*
1423 	 * The SVSM calling area (CA) can support processing 510 entries at a
1424 	 * time. Loop through the Page State Change descriptor until the CA is
1425 	 * full or the last entry in the descriptor is reached, at which time
1426 	 * the SVSM is invoked. This repeats until all entries in the descriptor
1427 	 * are processed.
1428 	 */
1429 	call.caa = svsm_get_caa();
1430 
1431 	pc = (struct svsm_pvalidate_call *)call.caa->svsm_buffer;
1432 	pc_pa = svsm_get_caa_pa() + offsetof(struct svsm_ca, svsm_buffer);
1433 
1434 	/* Protocol 0, Call ID 1 */
1435 	call.rax = SVSM_CORE_CALL(SVSM_CORE_PVALIDATE);
1436 	call.rcx = pc_pa;
1437 
1438 	for (i = 0; i <= desc->hdr.end_entry;) {
1439 		i = svsm_build_ca_from_psc_desc(desc, i, pc);
1440 
1441 		do {
1442 			ret = svsm_perform_call_protocol(&call);
1443 			if (!ret)
1444 				continue;
1445 
1446 			/*
1447 			 * Check if the entry failed because of an RMP mismatch (a
1448 			 * PVALIDATE at 2M was requested, but the page is mapped in
1449 			 * the RMP as 4K).
1450 			 */
1451 
1452 			if (call.rax_out == SVSM_PVALIDATE_FAIL_SIZEMISMATCH &&
1453 			    pc->entry[pc->cur_index].page_size == RMP_PG_SIZE_2M) {
1454 				/* Save this entry for post-processing at 4K */
1455 				pv_4k[pv_4k_count++] = pc->entry[pc->cur_index];
1456 
1457 				/* Skip to the next one unless at the end of the list */
1458 				pc->cur_index++;
1459 				if (pc->cur_index < pc->num_entries)
1460 					ret = -EAGAIN;
1461 				else
1462 					ret = 0;
1463 			}
1464 		} while (ret == -EAGAIN);
1465 
1466 		if (ret)
1467 			svsm_pval_terminate(pc, ret, call.rax_out);
1468 	}
1469 
1470 	/* Process any entries that failed to be validated at 2M and validate them at 4K */
1471 	for (i = 0; i < pv_4k_count; i++) {
1472 		u64 pfn, pfn_end;
1473 
1474 		action  = pv_4k[i].action;
1475 		pfn     = pv_4k[i].pfn;
1476 		pfn_end = pfn + 512;
1477 
1478 		while (pfn < pfn_end) {
1479 			pfn = svsm_build_ca_from_pfn_range(pfn, pfn_end, action, pc);
1480 
1481 			ret = svsm_perform_call_protocol(&call);
1482 			if (ret)
1483 				svsm_pval_terminate(pc, ret, call.rax_out);
1484 		}
1485 	}
1486 
1487 	native_local_irq_restore(flags);
1488 }
1489 
1490 static void pvalidate_pages(struct snp_psc_desc *desc)
1491 {
1492 	if (snp_vmpl)
1493 		svsm_pval_pages(desc);
1494 	else
1495 		pval_pages(desc);
1496 }
1497 
1498 static int vmgexit_psc(struct ghcb *ghcb, struct snp_psc_desc *desc)
1499 {
1500 	int cur_entry, end_entry, ret = 0;
1501 	struct snp_psc_desc *data;
1502 	struct es_em_ctxt ctxt;
1503 
1504 	vc_ghcb_invalidate(ghcb);
1505 
1506 	/* Copy the input desc into GHCB shared buffer */
1507 	data = (struct snp_psc_desc *)ghcb->shared_buffer;
1508 	memcpy(ghcb->shared_buffer, desc, min_t(int, GHCB_SHARED_BUF_SIZE, sizeof(*desc)));
1509 
1510 	/*
1511 	 * As per the GHCB specification, the hypervisor can resume the guest
1512 	 * before processing all the entries. Check whether all the entries
1513 	 * are processed. If not, then keep retrying. Note, the hypervisor
1514 	 * will update the data memory directly to indicate the status, so
1515 	 * reference the data->hdr everywhere.
1516 	 *
1517 	 * The strategy here is to wait for the hypervisor to change the page
1518 	 * state in the RMP table before guest accesses the memory pages. If the
1519 	 * page state change was not successful, then later memory access will
1520 	 * result in a crash.
1521 	 */
1522 	cur_entry = data->hdr.cur_entry;
1523 	end_entry = data->hdr.end_entry;
1524 
1525 	while (data->hdr.cur_entry <= data->hdr.end_entry) {
1526 		ghcb_set_sw_scratch(ghcb, (u64)__pa(data));
1527 
1528 		/* This will advance the shared buffer data points to. */
1529 		ret = sev_es_ghcb_hv_call(ghcb, &ctxt, SVM_VMGEXIT_PSC, 0, 0);
1530 
1531 		/*
1532 		 * Page State Change VMGEXIT can pass error code through
1533 		 * exit_info_2.
1534 		 */
1535 		if (WARN(ret || ghcb->save.sw_exit_info_2,
1536 			 "SNP: PSC failed ret=%d exit_info_2=%llx\n",
1537 			 ret, ghcb->save.sw_exit_info_2)) {
1538 			ret = 1;
1539 			goto out;
1540 		}
1541 
1542 		/* Verify that reserved bit is not set */
1543 		if (WARN(data->hdr.reserved, "Reserved bit is set in the PSC header\n")) {
1544 			ret = 1;
1545 			goto out;
1546 		}
1547 
1548 		/*
1549 		 * Sanity check that entry processing is not going backwards.
1550 		 * This will happen only if hypervisor is tricking us.
1551 		 */
1552 		if (WARN(data->hdr.end_entry > end_entry || cur_entry > data->hdr.cur_entry,
1553 "SNP: PSC processing going backward, end_entry %d (got %d) cur_entry %d (got %d)\n",
1554 			 end_entry, data->hdr.end_entry, cur_entry, data->hdr.cur_entry)) {
1555 			ret = 1;
1556 			goto out;
1557 		}
1558 	}
1559 
1560 out:
1561 	return ret;
1562 }
1563 
1564 static enum es_result vc_check_opcode_bytes(struct es_em_ctxt *ctxt,
1565 					    unsigned long exit_code)
1566 {
1567 	unsigned int opcode = (unsigned int)ctxt->insn.opcode.value;
1568 	u8 modrm = ctxt->insn.modrm.value;
1569 
1570 	switch (exit_code) {
1571 
1572 	case SVM_EXIT_IOIO:
1573 	case SVM_EXIT_NPF:
1574 		/* handled separately */
1575 		return ES_OK;
1576 
1577 	case SVM_EXIT_CPUID:
1578 		if (opcode == 0xa20f)
1579 			return ES_OK;
1580 		break;
1581 
1582 	case SVM_EXIT_INVD:
1583 		if (opcode == 0x080f)
1584 			return ES_OK;
1585 		break;
1586 
1587 	case SVM_EXIT_MONITOR:
1588 		/* MONITOR and MONITORX instructions generate the same error code */
1589 		if (opcode == 0x010f && (modrm == 0xc8 || modrm == 0xfa))
1590 			return ES_OK;
1591 		break;
1592 
1593 	case SVM_EXIT_MWAIT:
1594 		/* MWAIT and MWAITX instructions generate the same error code */
1595 		if (opcode == 0x010f && (modrm == 0xc9 || modrm == 0xfb))
1596 			return ES_OK;
1597 		break;
1598 
1599 	case SVM_EXIT_MSR:
1600 		/* RDMSR */
1601 		if (opcode == 0x320f ||
1602 		/* WRMSR */
1603 		    opcode == 0x300f)
1604 			return ES_OK;
1605 		break;
1606 
1607 	case SVM_EXIT_RDPMC:
1608 		if (opcode == 0x330f)
1609 			return ES_OK;
1610 		break;
1611 
1612 	case SVM_EXIT_RDTSC:
1613 		if (opcode == 0x310f)
1614 			return ES_OK;
1615 		break;
1616 
1617 	case SVM_EXIT_RDTSCP:
1618 		if (opcode == 0x010f && modrm == 0xf9)
1619 			return ES_OK;
1620 		break;
1621 
1622 	case SVM_EXIT_READ_DR7:
1623 		if (opcode == 0x210f &&
1624 		    X86_MODRM_REG(ctxt->insn.modrm.value) == 7)
1625 			return ES_OK;
1626 		break;
1627 
1628 	case SVM_EXIT_VMMCALL:
1629 		if (opcode == 0x010f && modrm == 0xd9)
1630 			return ES_OK;
1631 
1632 		break;
1633 
1634 	case SVM_EXIT_WRITE_DR7:
1635 		if (opcode == 0x230f &&
1636 		    X86_MODRM_REG(ctxt->insn.modrm.value) == 7)
1637 			return ES_OK;
1638 		break;
1639 
1640 	case SVM_EXIT_WBINVD:
1641 		if (opcode == 0x90f)
1642 			return ES_OK;
1643 		break;
1644 
1645 	default:
1646 		break;
1647 	}
1648 
1649 	sev_printk(KERN_ERR "Wrong/unhandled opcode bytes: 0x%x, exit_code: 0x%lx, rIP: 0x%lx\n",
1650 		   opcode, exit_code, ctxt->regs->ip);
1651 
1652 	return ES_UNSUPPORTED;
1653 }
1654 
1655 /*
1656  * Maintain the GPA of the SVSM Calling Area (CA) in order to utilize the SVSM
1657  * services needed when not running in VMPL0.
1658  */
1659 static bool __head svsm_setup_ca(const struct cc_blob_sev_info *cc_info)
1660 {
1661 	struct snp_secrets_page *secrets_page;
1662 	struct snp_cpuid_table *cpuid_table;
1663 	unsigned int i;
1664 	u64 caa;
1665 
1666 	BUILD_BUG_ON(sizeof(*secrets_page) != PAGE_SIZE);
1667 
1668 	/*
1669 	 * Check if running at VMPL0.
1670 	 *
1671 	 * Use RMPADJUST (see the rmpadjust() function for a description of what
1672 	 * the instruction does) to update the VMPL1 permissions of a page. If
1673 	 * the guest is running at VMPL0, this will succeed and implies there is
1674 	 * no SVSM. If the guest is running at any other VMPL, this will fail.
1675 	 * Linux SNP guests only ever run at a single VMPL level so permission mask
1676 	 * changes of a lesser-privileged VMPL are a don't-care.
1677 	 *
1678 	 * Use a rip-relative reference to obtain the proper address, since this
1679 	 * routine is running identity mapped when called, both by the decompressor
1680 	 * code and the early kernel code.
1681 	 */
1682 	if (!rmpadjust((unsigned long)&RIP_REL_REF(boot_ghcb_page), RMP_PG_SIZE_4K, 1))
1683 		return false;
1684 
1685 	/*
1686 	 * Not running at VMPL0, ensure everything has been properly supplied
1687 	 * for running under an SVSM.
1688 	 */
1689 	if (!cc_info || !cc_info->secrets_phys || cc_info->secrets_len != PAGE_SIZE)
1690 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SECRETS_PAGE);
1691 
1692 	secrets_page = (struct snp_secrets_page *)cc_info->secrets_phys;
1693 	if (!secrets_page->svsm_size)
1694 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NO_SVSM);
1695 
1696 	if (!secrets_page->svsm_guest_vmpl)
1697 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SVSM_VMPL0);
1698 
1699 	RIP_REL_REF(snp_vmpl) = secrets_page->svsm_guest_vmpl;
1700 
1701 	caa = secrets_page->svsm_caa;
1702 
1703 	/*
1704 	 * An open-coded PAGE_ALIGNED() in order to avoid including
1705 	 * kernel-proper headers into the decompressor.
1706 	 */
1707 	if (caa & (PAGE_SIZE - 1))
1708 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SVSM_CAA);
1709 
1710 	/*
1711 	 * The CA is identity mapped when this routine is called, both by the
1712 	 * decompressor code and the early kernel code.
1713 	 */
1714 	RIP_REL_REF(boot_svsm_caa) = (struct svsm_ca *)caa;
1715 	RIP_REL_REF(boot_svsm_caa_pa) = caa;
1716 
1717 	/* Advertise the SVSM presence via CPUID. */
1718 	cpuid_table = (struct snp_cpuid_table *)snp_cpuid_get_table();
1719 	for (i = 0; i < cpuid_table->count; i++) {
1720 		struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
1721 
1722 		if (fn->eax_in == 0x8000001f)
1723 			fn->eax |= BIT(28);
1724 	}
1725 
1726 	return true;
1727 }
1728