xref: /linux/arch/x86/coco/sev/core.c (revision da5b2ad1c2f18834cb1ce429e2e5a5cf5cbdf21b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/efi.h>
23 #include <linux/platform_device.h>
24 #include <linux/io.h>
25 #include <linux/psp-sev.h>
26 #include <linux/dmi.h>
27 #include <uapi/linux/sev-guest.h>
28 
29 #include <asm/init.h>
30 #include <asm/cpu_entry_area.h>
31 #include <asm/stacktrace.h>
32 #include <asm/sev.h>
33 #include <asm/insn-eval.h>
34 #include <asm/fpu/xcr.h>
35 #include <asm/processor.h>
36 #include <asm/realmode.h>
37 #include <asm/setup.h>
38 #include <asm/traps.h>
39 #include <asm/svm.h>
40 #include <asm/smp.h>
41 #include <asm/cpu.h>
42 #include <asm/apic.h>
43 #include <asm/cpuid.h>
44 #include <asm/cmdline.h>
45 
46 #define DR7_RESET_VALUE        0x400
47 
48 /* AP INIT values as documented in the APM2  section "Processor Initialization State" */
49 #define AP_INIT_CS_LIMIT		0xffff
50 #define AP_INIT_DS_LIMIT		0xffff
51 #define AP_INIT_LDTR_LIMIT		0xffff
52 #define AP_INIT_GDTR_LIMIT		0xffff
53 #define AP_INIT_IDTR_LIMIT		0xffff
54 #define AP_INIT_TR_LIMIT		0xffff
55 #define AP_INIT_RFLAGS_DEFAULT		0x2
56 #define AP_INIT_DR6_DEFAULT		0xffff0ff0
57 #define AP_INIT_GPAT_DEFAULT		0x0007040600070406ULL
58 #define AP_INIT_XCR0_DEFAULT		0x1
59 #define AP_INIT_X87_FTW_DEFAULT		0x5555
60 #define AP_INIT_X87_FCW_DEFAULT		0x0040
61 #define AP_INIT_CR0_DEFAULT		0x60000010
62 #define AP_INIT_MXCSR_DEFAULT		0x1f80
63 
64 static const char * const sev_status_feat_names[] = {
65 	[MSR_AMD64_SEV_ENABLED_BIT]		= "SEV",
66 	[MSR_AMD64_SEV_ES_ENABLED_BIT]		= "SEV-ES",
67 	[MSR_AMD64_SEV_SNP_ENABLED_BIT]		= "SEV-SNP",
68 	[MSR_AMD64_SNP_VTOM_BIT]		= "vTom",
69 	[MSR_AMD64_SNP_REFLECT_VC_BIT]		= "ReflectVC",
70 	[MSR_AMD64_SNP_RESTRICTED_INJ_BIT]	= "RI",
71 	[MSR_AMD64_SNP_ALT_INJ_BIT]		= "AI",
72 	[MSR_AMD64_SNP_DEBUG_SWAP_BIT]		= "DebugSwap",
73 	[MSR_AMD64_SNP_PREVENT_HOST_IBS_BIT]	= "NoHostIBS",
74 	[MSR_AMD64_SNP_BTB_ISOLATION_BIT]	= "BTBIsol",
75 	[MSR_AMD64_SNP_VMPL_SSS_BIT]		= "VmplSSS",
76 	[MSR_AMD64_SNP_SECURE_TSC_BIT]		= "SecureTSC",
77 	[MSR_AMD64_SNP_VMGEXIT_PARAM_BIT]	= "VMGExitParam",
78 	[MSR_AMD64_SNP_IBS_VIRT_BIT]		= "IBSVirt",
79 	[MSR_AMD64_SNP_VMSA_REG_PROT_BIT]	= "VMSARegProt",
80 	[MSR_AMD64_SNP_SMT_PROT_BIT]		= "SMTProt",
81 };
82 
83 /* For early boot hypervisor communication in SEV-ES enabled guests */
84 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
85 
86 /*
87  * Needs to be in the .data section because we need it NULL before bss is
88  * cleared
89  */
90 static struct ghcb *boot_ghcb __section(".data");
91 
92 /* Bitmap of SEV features supported by the hypervisor */
93 static u64 sev_hv_features __ro_after_init;
94 
95 /* #VC handler runtime per-CPU data */
96 struct sev_es_runtime_data {
97 	struct ghcb ghcb_page;
98 
99 	/*
100 	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
101 	 * It is needed when an NMI happens while the #VC handler uses the real
102 	 * GHCB, and the NMI handler itself is causing another #VC exception. In
103 	 * that case the GHCB content of the first handler needs to be backed up
104 	 * and restored.
105 	 */
106 	struct ghcb backup_ghcb;
107 
108 	/*
109 	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
110 	 * There is no need for it to be atomic, because nothing is written to
111 	 * the GHCB between the read and the write of ghcb_active. So it is safe
112 	 * to use it when a nested #VC exception happens before the write.
113 	 *
114 	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
115 	 * happens while the first #VC handler uses the GHCB. When the NMI code
116 	 * raises a second #VC handler it might overwrite the contents of the
117 	 * GHCB written by the first handler. To avoid this the content of the
118 	 * GHCB is saved and restored when the GHCB is detected to be in use
119 	 * already.
120 	 */
121 	bool ghcb_active;
122 	bool backup_ghcb_active;
123 
124 	/*
125 	 * Cached DR7 value - write it on DR7 writes and return it on reads.
126 	 * That value will never make it to the real hardware DR7 as debugging
127 	 * is currently unsupported in SEV-ES guests.
128 	 */
129 	unsigned long dr7;
130 };
131 
132 struct ghcb_state {
133 	struct ghcb *ghcb;
134 };
135 
136 /* For early boot SVSM communication */
137 static struct svsm_ca boot_svsm_ca_page __aligned(PAGE_SIZE);
138 
139 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
140 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
141 static DEFINE_PER_CPU(struct svsm_ca *, svsm_caa);
142 static DEFINE_PER_CPU(u64, svsm_caa_pa);
143 
144 struct sev_config {
145 	__u64 debug		: 1,
146 
147 	      /*
148 	       * Indicates when the per-CPU GHCB has been created and registered
149 	       * and thus can be used by the BSP instead of the early boot GHCB.
150 	       *
151 	       * For APs, the per-CPU GHCB is created before they are started
152 	       * and registered upon startup, so this flag can be used globally
153 	       * for the BSP and APs.
154 	       */
155 	      ghcbs_initialized	: 1,
156 
157 	      /*
158 	       * Indicates when the per-CPU SVSM CA is to be used instead of the
159 	       * boot SVSM CA.
160 	       *
161 	       * For APs, the per-CPU SVSM CA is created as part of the AP
162 	       * bringup, so this flag can be used globally for the BSP and APs.
163 	       */
164 	      use_cas		: 1,
165 
166 	      __reserved	: 61;
167 };
168 
169 static struct sev_config sev_cfg __read_mostly;
170 
171 static __always_inline bool on_vc_stack(struct pt_regs *regs)
172 {
173 	unsigned long sp = regs->sp;
174 
175 	/* User-mode RSP is not trusted */
176 	if (user_mode(regs))
177 		return false;
178 
179 	/* SYSCALL gap still has user-mode RSP */
180 	if (ip_within_syscall_gap(regs))
181 		return false;
182 
183 	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
184 }
185 
186 /*
187  * This function handles the case when an NMI is raised in the #VC
188  * exception handler entry code, before the #VC handler has switched off
189  * its IST stack. In this case, the IST entry for #VC must be adjusted,
190  * so that any nested #VC exception will not overwrite the stack
191  * contents of the interrupted #VC handler.
192  *
193  * The IST entry is adjusted unconditionally so that it can be also be
194  * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
195  * nested sev_es_ist_exit() call may adjust back the IST entry too
196  * early.
197  *
198  * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
199  * on the NMI IST stack, as they are only called from NMI handling code
200  * right now.
201  */
202 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
203 {
204 	unsigned long old_ist, new_ist;
205 
206 	/* Read old IST entry */
207 	new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
208 
209 	/*
210 	 * If NMI happened while on the #VC IST stack, set the new IST
211 	 * value below regs->sp, so that the interrupted stack frame is
212 	 * not overwritten by subsequent #VC exceptions.
213 	 */
214 	if (on_vc_stack(regs))
215 		new_ist = regs->sp;
216 
217 	/*
218 	 * Reserve additional 8 bytes and store old IST value so this
219 	 * adjustment can be unrolled in __sev_es_ist_exit().
220 	 */
221 	new_ist -= sizeof(old_ist);
222 	*(unsigned long *)new_ist = old_ist;
223 
224 	/* Set new IST entry */
225 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
226 }
227 
228 void noinstr __sev_es_ist_exit(void)
229 {
230 	unsigned long ist;
231 
232 	/* Read IST entry */
233 	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
234 
235 	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
236 		return;
237 
238 	/* Read back old IST entry and write it to the TSS */
239 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
240 }
241 
242 /*
243  * Nothing shall interrupt this code path while holding the per-CPU
244  * GHCB. The backup GHCB is only for NMIs interrupting this path.
245  *
246  * Callers must disable local interrupts around it.
247  */
248 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
249 {
250 	struct sev_es_runtime_data *data;
251 	struct ghcb *ghcb;
252 
253 	WARN_ON(!irqs_disabled());
254 
255 	data = this_cpu_read(runtime_data);
256 	ghcb = &data->ghcb_page;
257 
258 	if (unlikely(data->ghcb_active)) {
259 		/* GHCB is already in use - save its contents */
260 
261 		if (unlikely(data->backup_ghcb_active)) {
262 			/*
263 			 * Backup-GHCB is also already in use. There is no way
264 			 * to continue here so just kill the machine. To make
265 			 * panic() work, mark GHCBs inactive so that messages
266 			 * can be printed out.
267 			 */
268 			data->ghcb_active        = false;
269 			data->backup_ghcb_active = false;
270 
271 			instrumentation_begin();
272 			panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
273 			instrumentation_end();
274 		}
275 
276 		/* Mark backup_ghcb active before writing to it */
277 		data->backup_ghcb_active = true;
278 
279 		state->ghcb = &data->backup_ghcb;
280 
281 		/* Backup GHCB content */
282 		*state->ghcb = *ghcb;
283 	} else {
284 		state->ghcb = NULL;
285 		data->ghcb_active = true;
286 	}
287 
288 	return ghcb;
289 }
290 
291 static inline u64 sev_es_rd_ghcb_msr(void)
292 {
293 	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
294 }
295 
296 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
297 {
298 	u32 low, high;
299 
300 	low  = (u32)(val);
301 	high = (u32)(val >> 32);
302 
303 	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
304 }
305 
306 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
307 				unsigned char *buffer)
308 {
309 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
310 }
311 
312 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
313 {
314 	char buffer[MAX_INSN_SIZE];
315 	int insn_bytes;
316 
317 	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
318 	if (insn_bytes == 0) {
319 		/* Nothing could be copied */
320 		ctxt->fi.vector     = X86_TRAP_PF;
321 		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
322 		ctxt->fi.cr2        = ctxt->regs->ip;
323 		return ES_EXCEPTION;
324 	} else if (insn_bytes == -EINVAL) {
325 		/* Effective RIP could not be calculated */
326 		ctxt->fi.vector     = X86_TRAP_GP;
327 		ctxt->fi.error_code = 0;
328 		ctxt->fi.cr2        = 0;
329 		return ES_EXCEPTION;
330 	}
331 
332 	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
333 		return ES_DECODE_FAILED;
334 
335 	if (ctxt->insn.immediate.got)
336 		return ES_OK;
337 	else
338 		return ES_DECODE_FAILED;
339 }
340 
341 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
342 {
343 	char buffer[MAX_INSN_SIZE];
344 	int res, ret;
345 
346 	res = vc_fetch_insn_kernel(ctxt, buffer);
347 	if (res) {
348 		ctxt->fi.vector     = X86_TRAP_PF;
349 		ctxt->fi.error_code = X86_PF_INSTR;
350 		ctxt->fi.cr2        = ctxt->regs->ip;
351 		return ES_EXCEPTION;
352 	}
353 
354 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
355 	if (ret < 0)
356 		return ES_DECODE_FAILED;
357 	else
358 		return ES_OK;
359 }
360 
361 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
362 {
363 	if (user_mode(ctxt->regs))
364 		return __vc_decode_user_insn(ctxt);
365 	else
366 		return __vc_decode_kern_insn(ctxt);
367 }
368 
369 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
370 				   char *dst, char *buf, size_t size)
371 {
372 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
373 
374 	/*
375 	 * This function uses __put_user() independent of whether kernel or user
376 	 * memory is accessed. This works fine because __put_user() does no
377 	 * sanity checks of the pointer being accessed. All that it does is
378 	 * to report when the access failed.
379 	 *
380 	 * Also, this function runs in atomic context, so __put_user() is not
381 	 * allowed to sleep. The page-fault handler detects that it is running
382 	 * in atomic context and will not try to take mmap_sem and handle the
383 	 * fault, so additional pagefault_enable()/disable() calls are not
384 	 * needed.
385 	 *
386 	 * The access can't be done via copy_to_user() here because
387 	 * vc_write_mem() must not use string instructions to access unsafe
388 	 * memory. The reason is that MOVS is emulated by the #VC handler by
389 	 * splitting the move up into a read and a write and taking a nested #VC
390 	 * exception on whatever of them is the MMIO access. Using string
391 	 * instructions here would cause infinite nesting.
392 	 */
393 	switch (size) {
394 	case 1: {
395 		u8 d1;
396 		u8 __user *target = (u8 __user *)dst;
397 
398 		memcpy(&d1, buf, 1);
399 		if (__put_user(d1, target))
400 			goto fault;
401 		break;
402 	}
403 	case 2: {
404 		u16 d2;
405 		u16 __user *target = (u16 __user *)dst;
406 
407 		memcpy(&d2, buf, 2);
408 		if (__put_user(d2, target))
409 			goto fault;
410 		break;
411 	}
412 	case 4: {
413 		u32 d4;
414 		u32 __user *target = (u32 __user *)dst;
415 
416 		memcpy(&d4, buf, 4);
417 		if (__put_user(d4, target))
418 			goto fault;
419 		break;
420 	}
421 	case 8: {
422 		u64 d8;
423 		u64 __user *target = (u64 __user *)dst;
424 
425 		memcpy(&d8, buf, 8);
426 		if (__put_user(d8, target))
427 			goto fault;
428 		break;
429 	}
430 	default:
431 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
432 		return ES_UNSUPPORTED;
433 	}
434 
435 	return ES_OK;
436 
437 fault:
438 	if (user_mode(ctxt->regs))
439 		error_code |= X86_PF_USER;
440 
441 	ctxt->fi.vector = X86_TRAP_PF;
442 	ctxt->fi.error_code = error_code;
443 	ctxt->fi.cr2 = (unsigned long)dst;
444 
445 	return ES_EXCEPTION;
446 }
447 
448 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
449 				  char *src, char *buf, size_t size)
450 {
451 	unsigned long error_code = X86_PF_PROT;
452 
453 	/*
454 	 * This function uses __get_user() independent of whether kernel or user
455 	 * memory is accessed. This works fine because __get_user() does no
456 	 * sanity checks of the pointer being accessed. All that it does is
457 	 * to report when the access failed.
458 	 *
459 	 * Also, this function runs in atomic context, so __get_user() is not
460 	 * allowed to sleep. The page-fault handler detects that it is running
461 	 * in atomic context and will not try to take mmap_sem and handle the
462 	 * fault, so additional pagefault_enable()/disable() calls are not
463 	 * needed.
464 	 *
465 	 * The access can't be done via copy_from_user() here because
466 	 * vc_read_mem() must not use string instructions to access unsafe
467 	 * memory. The reason is that MOVS is emulated by the #VC handler by
468 	 * splitting the move up into a read and a write and taking a nested #VC
469 	 * exception on whatever of them is the MMIO access. Using string
470 	 * instructions here would cause infinite nesting.
471 	 */
472 	switch (size) {
473 	case 1: {
474 		u8 d1;
475 		u8 __user *s = (u8 __user *)src;
476 
477 		if (__get_user(d1, s))
478 			goto fault;
479 		memcpy(buf, &d1, 1);
480 		break;
481 	}
482 	case 2: {
483 		u16 d2;
484 		u16 __user *s = (u16 __user *)src;
485 
486 		if (__get_user(d2, s))
487 			goto fault;
488 		memcpy(buf, &d2, 2);
489 		break;
490 	}
491 	case 4: {
492 		u32 d4;
493 		u32 __user *s = (u32 __user *)src;
494 
495 		if (__get_user(d4, s))
496 			goto fault;
497 		memcpy(buf, &d4, 4);
498 		break;
499 	}
500 	case 8: {
501 		u64 d8;
502 		u64 __user *s = (u64 __user *)src;
503 		if (__get_user(d8, s))
504 			goto fault;
505 		memcpy(buf, &d8, 8);
506 		break;
507 	}
508 	default:
509 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
510 		return ES_UNSUPPORTED;
511 	}
512 
513 	return ES_OK;
514 
515 fault:
516 	if (user_mode(ctxt->regs))
517 		error_code |= X86_PF_USER;
518 
519 	ctxt->fi.vector = X86_TRAP_PF;
520 	ctxt->fi.error_code = error_code;
521 	ctxt->fi.cr2 = (unsigned long)src;
522 
523 	return ES_EXCEPTION;
524 }
525 
526 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
527 					   unsigned long vaddr, phys_addr_t *paddr)
528 {
529 	unsigned long va = (unsigned long)vaddr;
530 	unsigned int level;
531 	phys_addr_t pa;
532 	pgd_t *pgd;
533 	pte_t *pte;
534 
535 	pgd = __va(read_cr3_pa());
536 	pgd = &pgd[pgd_index(va)];
537 	pte = lookup_address_in_pgd(pgd, va, &level);
538 	if (!pte) {
539 		ctxt->fi.vector     = X86_TRAP_PF;
540 		ctxt->fi.cr2        = vaddr;
541 		ctxt->fi.error_code = 0;
542 
543 		if (user_mode(ctxt->regs))
544 			ctxt->fi.error_code |= X86_PF_USER;
545 
546 		return ES_EXCEPTION;
547 	}
548 
549 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
550 		/* Emulated MMIO to/from encrypted memory not supported */
551 		return ES_UNSUPPORTED;
552 
553 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
554 	pa |= va & ~page_level_mask(level);
555 
556 	*paddr = pa;
557 
558 	return ES_OK;
559 }
560 
561 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
562 {
563 	BUG_ON(size > 4);
564 
565 	if (user_mode(ctxt->regs)) {
566 		struct thread_struct *t = &current->thread;
567 		struct io_bitmap *iobm = t->io_bitmap;
568 		size_t idx;
569 
570 		if (!iobm)
571 			goto fault;
572 
573 		for (idx = port; idx < port + size; ++idx) {
574 			if (test_bit(idx, iobm->bitmap))
575 				goto fault;
576 		}
577 	}
578 
579 	return ES_OK;
580 
581 fault:
582 	ctxt->fi.vector = X86_TRAP_GP;
583 	ctxt->fi.error_code = 0;
584 
585 	return ES_EXCEPTION;
586 }
587 
588 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
589 {
590 	long error_code = ctxt->fi.error_code;
591 	int trapnr = ctxt->fi.vector;
592 
593 	ctxt->regs->orig_ax = ctxt->fi.error_code;
594 
595 	switch (trapnr) {
596 	case X86_TRAP_GP:
597 		exc_general_protection(ctxt->regs, error_code);
598 		break;
599 	case X86_TRAP_UD:
600 		exc_invalid_op(ctxt->regs);
601 		break;
602 	case X86_TRAP_PF:
603 		write_cr2(ctxt->fi.cr2);
604 		exc_page_fault(ctxt->regs, error_code);
605 		break;
606 	case X86_TRAP_AC:
607 		exc_alignment_check(ctxt->regs, error_code);
608 		break;
609 	default:
610 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
611 		BUG();
612 	}
613 }
614 
615 /* Include code shared with pre-decompression boot stage */
616 #include "shared.c"
617 
618 static inline struct svsm_ca *svsm_get_caa(void)
619 {
620 	/*
621 	 * Use rIP-relative references when called early in the boot. If
622 	 * ->use_cas is set, then it is late in the boot and no need
623 	 * to worry about rIP-relative references.
624 	 */
625 	if (RIP_REL_REF(sev_cfg).use_cas)
626 		return this_cpu_read(svsm_caa);
627 	else
628 		return RIP_REL_REF(boot_svsm_caa);
629 }
630 
631 static u64 svsm_get_caa_pa(void)
632 {
633 	/*
634 	 * Use rIP-relative references when called early in the boot. If
635 	 * ->use_cas is set, then it is late in the boot and no need
636 	 * to worry about rIP-relative references.
637 	 */
638 	if (RIP_REL_REF(sev_cfg).use_cas)
639 		return this_cpu_read(svsm_caa_pa);
640 	else
641 		return RIP_REL_REF(boot_svsm_caa_pa);
642 }
643 
644 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
645 {
646 	struct sev_es_runtime_data *data;
647 	struct ghcb *ghcb;
648 
649 	WARN_ON(!irqs_disabled());
650 
651 	data = this_cpu_read(runtime_data);
652 	ghcb = &data->ghcb_page;
653 
654 	if (state->ghcb) {
655 		/* Restore GHCB from Backup */
656 		*ghcb = *state->ghcb;
657 		data->backup_ghcb_active = false;
658 		state->ghcb = NULL;
659 	} else {
660 		/*
661 		 * Invalidate the GHCB so a VMGEXIT instruction issued
662 		 * from userspace won't appear to be valid.
663 		 */
664 		vc_ghcb_invalidate(ghcb);
665 		data->ghcb_active = false;
666 	}
667 }
668 
669 static int svsm_perform_call_protocol(struct svsm_call *call)
670 {
671 	struct ghcb_state state;
672 	unsigned long flags;
673 	struct ghcb *ghcb;
674 	int ret;
675 
676 	/*
677 	 * This can be called very early in the boot, use native functions in
678 	 * order to avoid paravirt issues.
679 	 */
680 	flags = native_local_irq_save();
681 
682 	/*
683 	 * Use rip-relative references when called early in the boot. If
684 	 * ghcbs_initialized is set, then it is late in the boot and no need
685 	 * to worry about rip-relative references in called functions.
686 	 */
687 	if (RIP_REL_REF(sev_cfg).ghcbs_initialized)
688 		ghcb = __sev_get_ghcb(&state);
689 	else if (RIP_REL_REF(boot_ghcb))
690 		ghcb = RIP_REL_REF(boot_ghcb);
691 	else
692 		ghcb = NULL;
693 
694 	do {
695 		ret = ghcb ? svsm_perform_ghcb_protocol(ghcb, call)
696 			   : svsm_perform_msr_protocol(call);
697 	} while (ret == -EAGAIN);
698 
699 	if (RIP_REL_REF(sev_cfg).ghcbs_initialized)
700 		__sev_put_ghcb(&state);
701 
702 	native_local_irq_restore(flags);
703 
704 	return ret;
705 }
706 
707 void noinstr __sev_es_nmi_complete(void)
708 {
709 	struct ghcb_state state;
710 	struct ghcb *ghcb;
711 
712 	ghcb = __sev_get_ghcb(&state);
713 
714 	vc_ghcb_invalidate(ghcb);
715 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
716 	ghcb_set_sw_exit_info_1(ghcb, 0);
717 	ghcb_set_sw_exit_info_2(ghcb, 0);
718 
719 	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
720 	VMGEXIT();
721 
722 	__sev_put_ghcb(&state);
723 }
724 
725 static u64 __init get_secrets_page(void)
726 {
727 	u64 pa_data = boot_params.cc_blob_address;
728 	struct cc_blob_sev_info info;
729 	void *map;
730 
731 	/*
732 	 * The CC blob contains the address of the secrets page, check if the
733 	 * blob is present.
734 	 */
735 	if (!pa_data)
736 		return 0;
737 
738 	map = early_memremap(pa_data, sizeof(info));
739 	if (!map) {
740 		pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
741 		return 0;
742 	}
743 	memcpy(&info, map, sizeof(info));
744 	early_memunmap(map, sizeof(info));
745 
746 	/* smoke-test the secrets page passed */
747 	if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
748 		return 0;
749 
750 	return info.secrets_phys;
751 }
752 
753 static u64 __init get_snp_jump_table_addr(void)
754 {
755 	struct snp_secrets_page *secrets;
756 	void __iomem *mem;
757 	u64 pa, addr;
758 
759 	pa = get_secrets_page();
760 	if (!pa)
761 		return 0;
762 
763 	mem = ioremap_encrypted(pa, PAGE_SIZE);
764 	if (!mem) {
765 		pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
766 		return 0;
767 	}
768 
769 	secrets = (__force struct snp_secrets_page *)mem;
770 
771 	addr = secrets->os_area.ap_jump_table_pa;
772 	iounmap(mem);
773 
774 	return addr;
775 }
776 
777 static u64 __init get_jump_table_addr(void)
778 {
779 	struct ghcb_state state;
780 	unsigned long flags;
781 	struct ghcb *ghcb;
782 	u64 ret = 0;
783 
784 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
785 		return get_snp_jump_table_addr();
786 
787 	local_irq_save(flags);
788 
789 	ghcb = __sev_get_ghcb(&state);
790 
791 	vc_ghcb_invalidate(ghcb);
792 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
793 	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
794 	ghcb_set_sw_exit_info_2(ghcb, 0);
795 
796 	sev_es_wr_ghcb_msr(__pa(ghcb));
797 	VMGEXIT();
798 
799 	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
800 	    ghcb_sw_exit_info_2_is_valid(ghcb))
801 		ret = ghcb->save.sw_exit_info_2;
802 
803 	__sev_put_ghcb(&state);
804 
805 	local_irq_restore(flags);
806 
807 	return ret;
808 }
809 
810 static void __head
811 early_set_pages_state(unsigned long vaddr, unsigned long paddr,
812 		      unsigned long npages, enum psc_op op)
813 {
814 	unsigned long paddr_end;
815 	u64 val;
816 
817 	vaddr = vaddr & PAGE_MASK;
818 
819 	paddr = paddr & PAGE_MASK;
820 	paddr_end = paddr + (npages << PAGE_SHIFT);
821 
822 	while (paddr < paddr_end) {
823 		/* Page validation must be rescinded before changing to shared */
824 		if (op == SNP_PAGE_STATE_SHARED)
825 			pvalidate_4k_page(vaddr, paddr, false);
826 
827 		/*
828 		 * Use the MSR protocol because this function can be called before
829 		 * the GHCB is established.
830 		 */
831 		sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
832 		VMGEXIT();
833 
834 		val = sev_es_rd_ghcb_msr();
835 
836 		if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
837 			 "Wrong PSC response code: 0x%x\n",
838 			 (unsigned int)GHCB_RESP_CODE(val)))
839 			goto e_term;
840 
841 		if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
842 			 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
843 			 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
844 			 paddr, GHCB_MSR_PSC_RESP_VAL(val)))
845 			goto e_term;
846 
847 		/* Page validation must be performed after changing to private */
848 		if (op == SNP_PAGE_STATE_PRIVATE)
849 			pvalidate_4k_page(vaddr, paddr, true);
850 
851 		vaddr += PAGE_SIZE;
852 		paddr += PAGE_SIZE;
853 	}
854 
855 	return;
856 
857 e_term:
858 	sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
859 }
860 
861 void __head early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
862 					 unsigned long npages)
863 {
864 	/*
865 	 * This can be invoked in early boot while running identity mapped, so
866 	 * use an open coded check for SNP instead of using cc_platform_has().
867 	 * This eliminates worries about jump tables or checking boot_cpu_data
868 	 * in the cc_platform_has() function.
869 	 */
870 	if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
871 		return;
872 
873 	 /*
874 	  * Ask the hypervisor to mark the memory pages as private in the RMP
875 	  * table.
876 	  */
877 	early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_PRIVATE);
878 }
879 
880 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
881 					unsigned long npages)
882 {
883 	/*
884 	 * This can be invoked in early boot while running identity mapped, so
885 	 * use an open coded check for SNP instead of using cc_platform_has().
886 	 * This eliminates worries about jump tables or checking boot_cpu_data
887 	 * in the cc_platform_has() function.
888 	 */
889 	if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
890 		return;
891 
892 	 /* Ask hypervisor to mark the memory pages shared in the RMP table. */
893 	early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_SHARED);
894 }
895 
896 static unsigned long __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
897 				       unsigned long vaddr_end, int op)
898 {
899 	struct ghcb_state state;
900 	bool use_large_entry;
901 	struct psc_hdr *hdr;
902 	struct psc_entry *e;
903 	unsigned long flags;
904 	unsigned long pfn;
905 	struct ghcb *ghcb;
906 	int i;
907 
908 	hdr = &data->hdr;
909 	e = data->entries;
910 
911 	memset(data, 0, sizeof(*data));
912 	i = 0;
913 
914 	while (vaddr < vaddr_end && i < ARRAY_SIZE(data->entries)) {
915 		hdr->end_entry = i;
916 
917 		if (is_vmalloc_addr((void *)vaddr)) {
918 			pfn = vmalloc_to_pfn((void *)vaddr);
919 			use_large_entry = false;
920 		} else {
921 			pfn = __pa(vaddr) >> PAGE_SHIFT;
922 			use_large_entry = true;
923 		}
924 
925 		e->gfn = pfn;
926 		e->operation = op;
927 
928 		if (use_large_entry && IS_ALIGNED(vaddr, PMD_SIZE) &&
929 		    (vaddr_end - vaddr) >= PMD_SIZE) {
930 			e->pagesize = RMP_PG_SIZE_2M;
931 			vaddr += PMD_SIZE;
932 		} else {
933 			e->pagesize = RMP_PG_SIZE_4K;
934 			vaddr += PAGE_SIZE;
935 		}
936 
937 		e++;
938 		i++;
939 	}
940 
941 	/* Page validation must be rescinded before changing to shared */
942 	if (op == SNP_PAGE_STATE_SHARED)
943 		pvalidate_pages(data);
944 
945 	local_irq_save(flags);
946 
947 	if (sev_cfg.ghcbs_initialized)
948 		ghcb = __sev_get_ghcb(&state);
949 	else
950 		ghcb = boot_ghcb;
951 
952 	/* Invoke the hypervisor to perform the page state changes */
953 	if (!ghcb || vmgexit_psc(ghcb, data))
954 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
955 
956 	if (sev_cfg.ghcbs_initialized)
957 		__sev_put_ghcb(&state);
958 
959 	local_irq_restore(flags);
960 
961 	/* Page validation must be performed after changing to private */
962 	if (op == SNP_PAGE_STATE_PRIVATE)
963 		pvalidate_pages(data);
964 
965 	return vaddr;
966 }
967 
968 static void set_pages_state(unsigned long vaddr, unsigned long npages, int op)
969 {
970 	struct snp_psc_desc desc;
971 	unsigned long vaddr_end;
972 
973 	/* Use the MSR protocol when a GHCB is not available. */
974 	if (!boot_ghcb)
975 		return early_set_pages_state(vaddr, __pa(vaddr), npages, op);
976 
977 	vaddr = vaddr & PAGE_MASK;
978 	vaddr_end = vaddr + (npages << PAGE_SHIFT);
979 
980 	while (vaddr < vaddr_end)
981 		vaddr = __set_pages_state(&desc, vaddr, vaddr_end, op);
982 }
983 
984 void snp_set_memory_shared(unsigned long vaddr, unsigned long npages)
985 {
986 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
987 		return;
988 
989 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
990 }
991 
992 void snp_set_memory_private(unsigned long vaddr, unsigned long npages)
993 {
994 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
995 		return;
996 
997 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
998 }
999 
1000 void snp_accept_memory(phys_addr_t start, phys_addr_t end)
1001 {
1002 	unsigned long vaddr, npages;
1003 
1004 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1005 		return;
1006 
1007 	vaddr = (unsigned long)__va(start);
1008 	npages = (end - start) >> PAGE_SHIFT;
1009 
1010 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
1011 }
1012 
1013 static int snp_set_vmsa(void *va, void *caa, int apic_id, bool make_vmsa)
1014 {
1015 	int ret;
1016 
1017 	if (snp_vmpl) {
1018 		struct svsm_call call = {};
1019 		unsigned long flags;
1020 
1021 		local_irq_save(flags);
1022 
1023 		call.caa = this_cpu_read(svsm_caa);
1024 		call.rcx = __pa(va);
1025 
1026 		if (make_vmsa) {
1027 			/* Protocol 0, Call ID 2 */
1028 			call.rax = SVSM_CORE_CALL(SVSM_CORE_CREATE_VCPU);
1029 			call.rdx = __pa(caa);
1030 			call.r8  = apic_id;
1031 		} else {
1032 			/* Protocol 0, Call ID 3 */
1033 			call.rax = SVSM_CORE_CALL(SVSM_CORE_DELETE_VCPU);
1034 		}
1035 
1036 		ret = svsm_perform_call_protocol(&call);
1037 
1038 		local_irq_restore(flags);
1039 	} else {
1040 		/*
1041 		 * If the kernel runs at VMPL0, it can change the VMSA
1042 		 * bit for a page using the RMPADJUST instruction.
1043 		 * However, for the instruction to succeed it must
1044 		 * target the permissions of a lesser privileged (higher
1045 		 * numbered) VMPL level, so use VMPL1.
1046 		 */
1047 		u64 attrs = 1;
1048 
1049 		if (make_vmsa)
1050 			attrs |= RMPADJUST_VMSA_PAGE_BIT;
1051 
1052 		ret = rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
1053 	}
1054 
1055 	return ret;
1056 }
1057 
1058 #define __ATTR_BASE		(SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
1059 #define INIT_CS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
1060 #define INIT_DS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
1061 
1062 #define INIT_LDTR_ATTRIBS	(SVM_SELECTOR_P_MASK | 2)
1063 #define INIT_TR_ATTRIBS		(SVM_SELECTOR_P_MASK | 3)
1064 
1065 static void *snp_alloc_vmsa_page(int cpu)
1066 {
1067 	struct page *p;
1068 
1069 	/*
1070 	 * Allocate VMSA page to work around the SNP erratum where the CPU will
1071 	 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
1072 	 * collides with the RMP entry of VMSA page. The recommended workaround
1073 	 * is to not use a large page.
1074 	 *
1075 	 * Allocate an 8k page which is also 8k-aligned.
1076 	 */
1077 	p = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
1078 	if (!p)
1079 		return NULL;
1080 
1081 	split_page(p, 1);
1082 
1083 	/* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
1084 	__free_page(p);
1085 
1086 	return page_address(p + 1);
1087 }
1088 
1089 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa, int apic_id)
1090 {
1091 	int err;
1092 
1093 	err = snp_set_vmsa(vmsa, NULL, apic_id, false);
1094 	if (err)
1095 		pr_err("clear VMSA page failed (%u), leaking page\n", err);
1096 	else
1097 		free_page((unsigned long)vmsa);
1098 }
1099 
1100 static int wakeup_cpu_via_vmgexit(u32 apic_id, unsigned long start_ip)
1101 {
1102 	struct sev_es_save_area *cur_vmsa, *vmsa;
1103 	struct ghcb_state state;
1104 	struct svsm_ca *caa;
1105 	unsigned long flags;
1106 	struct ghcb *ghcb;
1107 	u8 sipi_vector;
1108 	int cpu, ret;
1109 	u64 cr4;
1110 
1111 	/*
1112 	 * The hypervisor SNP feature support check has happened earlier, just check
1113 	 * the AP_CREATION one here.
1114 	 */
1115 	if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
1116 		return -EOPNOTSUPP;
1117 
1118 	/*
1119 	 * Verify the desired start IP against the known trampoline start IP
1120 	 * to catch any future new trampolines that may be introduced that
1121 	 * would require a new protected guest entry point.
1122 	 */
1123 	if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
1124 		      "Unsupported SNP start_ip: %lx\n", start_ip))
1125 		return -EINVAL;
1126 
1127 	/* Override start_ip with known protected guest start IP */
1128 	start_ip = real_mode_header->sev_es_trampoline_start;
1129 
1130 	/* Find the logical CPU for the APIC ID */
1131 	for_each_present_cpu(cpu) {
1132 		if (arch_match_cpu_phys_id(cpu, apic_id))
1133 			break;
1134 	}
1135 	if (cpu >= nr_cpu_ids)
1136 		return -EINVAL;
1137 
1138 	cur_vmsa = per_cpu(sev_vmsa, cpu);
1139 
1140 	/*
1141 	 * A new VMSA is created each time because there is no guarantee that
1142 	 * the current VMSA is the kernels or that the vCPU is not running. If
1143 	 * an attempt was done to use the current VMSA with a running vCPU, a
1144 	 * #VMEXIT of that vCPU would wipe out all of the settings being done
1145 	 * here.
1146 	 */
1147 	vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page(cpu);
1148 	if (!vmsa)
1149 		return -ENOMEM;
1150 
1151 	/* If an SVSM is present, the SVSM per-CPU CAA will be !NULL */
1152 	caa = per_cpu(svsm_caa, cpu);
1153 
1154 	/* CR4 should maintain the MCE value */
1155 	cr4 = native_read_cr4() & X86_CR4_MCE;
1156 
1157 	/* Set the CS value based on the start_ip converted to a SIPI vector */
1158 	sipi_vector		= (start_ip >> 12);
1159 	vmsa->cs.base		= sipi_vector << 12;
1160 	vmsa->cs.limit		= AP_INIT_CS_LIMIT;
1161 	vmsa->cs.attrib		= INIT_CS_ATTRIBS;
1162 	vmsa->cs.selector	= sipi_vector << 8;
1163 
1164 	/* Set the RIP value based on start_ip */
1165 	vmsa->rip		= start_ip & 0xfff;
1166 
1167 	/* Set AP INIT defaults as documented in the APM */
1168 	vmsa->ds.limit		= AP_INIT_DS_LIMIT;
1169 	vmsa->ds.attrib		= INIT_DS_ATTRIBS;
1170 	vmsa->es		= vmsa->ds;
1171 	vmsa->fs		= vmsa->ds;
1172 	vmsa->gs		= vmsa->ds;
1173 	vmsa->ss		= vmsa->ds;
1174 
1175 	vmsa->gdtr.limit	= AP_INIT_GDTR_LIMIT;
1176 	vmsa->ldtr.limit	= AP_INIT_LDTR_LIMIT;
1177 	vmsa->ldtr.attrib	= INIT_LDTR_ATTRIBS;
1178 	vmsa->idtr.limit	= AP_INIT_IDTR_LIMIT;
1179 	vmsa->tr.limit		= AP_INIT_TR_LIMIT;
1180 	vmsa->tr.attrib		= INIT_TR_ATTRIBS;
1181 
1182 	vmsa->cr4		= cr4;
1183 	vmsa->cr0		= AP_INIT_CR0_DEFAULT;
1184 	vmsa->dr7		= DR7_RESET_VALUE;
1185 	vmsa->dr6		= AP_INIT_DR6_DEFAULT;
1186 	vmsa->rflags		= AP_INIT_RFLAGS_DEFAULT;
1187 	vmsa->g_pat		= AP_INIT_GPAT_DEFAULT;
1188 	vmsa->xcr0		= AP_INIT_XCR0_DEFAULT;
1189 	vmsa->mxcsr		= AP_INIT_MXCSR_DEFAULT;
1190 	vmsa->x87_ftw		= AP_INIT_X87_FTW_DEFAULT;
1191 	vmsa->x87_fcw		= AP_INIT_X87_FCW_DEFAULT;
1192 
1193 	/* SVME must be set. */
1194 	vmsa->efer		= EFER_SVME;
1195 
1196 	/*
1197 	 * Set the SNP-specific fields for this VMSA:
1198 	 *   VMPL level
1199 	 *   SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
1200 	 */
1201 	vmsa->vmpl		= snp_vmpl;
1202 	vmsa->sev_features	= sev_status >> 2;
1203 
1204 	/* Switch the page over to a VMSA page now that it is initialized */
1205 	ret = snp_set_vmsa(vmsa, caa, apic_id, true);
1206 	if (ret) {
1207 		pr_err("set VMSA page failed (%u)\n", ret);
1208 		free_page((unsigned long)vmsa);
1209 
1210 		return -EINVAL;
1211 	}
1212 
1213 	/* Issue VMGEXIT AP Creation NAE event */
1214 	local_irq_save(flags);
1215 
1216 	ghcb = __sev_get_ghcb(&state);
1217 
1218 	vc_ghcb_invalidate(ghcb);
1219 	ghcb_set_rax(ghcb, vmsa->sev_features);
1220 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
1221 	ghcb_set_sw_exit_info_1(ghcb,
1222 				((u64)apic_id << 32)	|
1223 				((u64)snp_vmpl << 16)	|
1224 				SVM_VMGEXIT_AP_CREATE);
1225 	ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
1226 
1227 	sev_es_wr_ghcb_msr(__pa(ghcb));
1228 	VMGEXIT();
1229 
1230 	if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
1231 	    lower_32_bits(ghcb->save.sw_exit_info_1)) {
1232 		pr_err("SNP AP Creation error\n");
1233 		ret = -EINVAL;
1234 	}
1235 
1236 	__sev_put_ghcb(&state);
1237 
1238 	local_irq_restore(flags);
1239 
1240 	/* Perform cleanup if there was an error */
1241 	if (ret) {
1242 		snp_cleanup_vmsa(vmsa, apic_id);
1243 		vmsa = NULL;
1244 	}
1245 
1246 	/* Free up any previous VMSA page */
1247 	if (cur_vmsa)
1248 		snp_cleanup_vmsa(cur_vmsa, apic_id);
1249 
1250 	/* Record the current VMSA page */
1251 	per_cpu(sev_vmsa, cpu) = vmsa;
1252 
1253 	return ret;
1254 }
1255 
1256 void __init snp_set_wakeup_secondary_cpu(void)
1257 {
1258 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1259 		return;
1260 
1261 	/*
1262 	 * Always set this override if SNP is enabled. This makes it the
1263 	 * required method to start APs under SNP. If the hypervisor does
1264 	 * not support AP creation, then no APs will be started.
1265 	 */
1266 	apic_update_callback(wakeup_secondary_cpu, wakeup_cpu_via_vmgexit);
1267 }
1268 
1269 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
1270 {
1271 	u16 startup_cs, startup_ip;
1272 	phys_addr_t jump_table_pa;
1273 	u64 jump_table_addr;
1274 	u16 __iomem *jump_table;
1275 
1276 	jump_table_addr = get_jump_table_addr();
1277 
1278 	/* On UP guests there is no jump table so this is not a failure */
1279 	if (!jump_table_addr)
1280 		return 0;
1281 
1282 	/* Check if AP Jump Table is page-aligned */
1283 	if (jump_table_addr & ~PAGE_MASK)
1284 		return -EINVAL;
1285 
1286 	jump_table_pa = jump_table_addr & PAGE_MASK;
1287 
1288 	startup_cs = (u16)(rmh->trampoline_start >> 4);
1289 	startup_ip = (u16)(rmh->sev_es_trampoline_start -
1290 			   rmh->trampoline_start);
1291 
1292 	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
1293 	if (!jump_table)
1294 		return -EIO;
1295 
1296 	writew(startup_ip, &jump_table[0]);
1297 	writew(startup_cs, &jump_table[1]);
1298 
1299 	iounmap(jump_table);
1300 
1301 	return 0;
1302 }
1303 
1304 /*
1305  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
1306  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
1307  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
1308  */
1309 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
1310 {
1311 	struct sev_es_runtime_data *data;
1312 	unsigned long address, pflags;
1313 	int cpu;
1314 	u64 pfn;
1315 
1316 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1317 		return 0;
1318 
1319 	pflags = _PAGE_NX | _PAGE_RW;
1320 
1321 	for_each_possible_cpu(cpu) {
1322 		data = per_cpu(runtime_data, cpu);
1323 
1324 		address = __pa(&data->ghcb_page);
1325 		pfn = address >> PAGE_SHIFT;
1326 
1327 		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
1328 			return 1;
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1335 {
1336 	struct pt_regs *regs = ctxt->regs;
1337 	enum es_result ret;
1338 	u64 exit_info_1;
1339 
1340 	/* Is it a WRMSR? */
1341 	exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
1342 
1343 	if (regs->cx == MSR_SVSM_CAA) {
1344 		/* Writes to the SVSM CAA msr are ignored */
1345 		if (exit_info_1)
1346 			return ES_OK;
1347 
1348 		regs->ax = lower_32_bits(this_cpu_read(svsm_caa_pa));
1349 		regs->dx = upper_32_bits(this_cpu_read(svsm_caa_pa));
1350 
1351 		return ES_OK;
1352 	}
1353 
1354 	ghcb_set_rcx(ghcb, regs->cx);
1355 	if (exit_info_1) {
1356 		ghcb_set_rax(ghcb, regs->ax);
1357 		ghcb_set_rdx(ghcb, regs->dx);
1358 	}
1359 
1360 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
1361 
1362 	if ((ret == ES_OK) && (!exit_info_1)) {
1363 		regs->ax = ghcb->save.rax;
1364 		regs->dx = ghcb->save.rdx;
1365 	}
1366 
1367 	return ret;
1368 }
1369 
1370 static void snp_register_per_cpu_ghcb(void)
1371 {
1372 	struct sev_es_runtime_data *data;
1373 	struct ghcb *ghcb;
1374 
1375 	data = this_cpu_read(runtime_data);
1376 	ghcb = &data->ghcb_page;
1377 
1378 	snp_register_ghcb_early(__pa(ghcb));
1379 }
1380 
1381 void setup_ghcb(void)
1382 {
1383 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1384 		return;
1385 
1386 	/*
1387 	 * Check whether the runtime #VC exception handler is active. It uses
1388 	 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
1389 	 *
1390 	 * If SNP is active, register the per-CPU GHCB page so that the runtime
1391 	 * exception handler can use it.
1392 	 */
1393 	if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
1394 		if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1395 			snp_register_per_cpu_ghcb();
1396 
1397 		sev_cfg.ghcbs_initialized = true;
1398 
1399 		return;
1400 	}
1401 
1402 	/*
1403 	 * Make sure the hypervisor talks a supported protocol.
1404 	 * This gets called only in the BSP boot phase.
1405 	 */
1406 	if (!sev_es_negotiate_protocol())
1407 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1408 
1409 	/*
1410 	 * Clear the boot_ghcb. The first exception comes in before the bss
1411 	 * section is cleared.
1412 	 */
1413 	memset(&boot_ghcb_page, 0, PAGE_SIZE);
1414 
1415 	/* Alright - Make the boot-ghcb public */
1416 	boot_ghcb = &boot_ghcb_page;
1417 
1418 	/* SNP guest requires that GHCB GPA must be registered. */
1419 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1420 		snp_register_ghcb_early(__pa(&boot_ghcb_page));
1421 }
1422 
1423 #ifdef CONFIG_HOTPLUG_CPU
1424 static void sev_es_ap_hlt_loop(void)
1425 {
1426 	struct ghcb_state state;
1427 	struct ghcb *ghcb;
1428 
1429 	ghcb = __sev_get_ghcb(&state);
1430 
1431 	while (true) {
1432 		vc_ghcb_invalidate(ghcb);
1433 		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
1434 		ghcb_set_sw_exit_info_1(ghcb, 0);
1435 		ghcb_set_sw_exit_info_2(ghcb, 0);
1436 
1437 		sev_es_wr_ghcb_msr(__pa(ghcb));
1438 		VMGEXIT();
1439 
1440 		/* Wakeup signal? */
1441 		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
1442 		    ghcb->save.sw_exit_info_2)
1443 			break;
1444 	}
1445 
1446 	__sev_put_ghcb(&state);
1447 }
1448 
1449 /*
1450  * Play_dead handler when running under SEV-ES. This is needed because
1451  * the hypervisor can't deliver an SIPI request to restart the AP.
1452  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
1453  * hypervisor wakes it up again.
1454  */
1455 static void sev_es_play_dead(void)
1456 {
1457 	play_dead_common();
1458 
1459 	/* IRQs now disabled */
1460 
1461 	sev_es_ap_hlt_loop();
1462 
1463 	/*
1464 	 * If we get here, the VCPU was woken up again. Jump to CPU
1465 	 * startup code to get it back online.
1466 	 */
1467 	soft_restart_cpu();
1468 }
1469 #else  /* CONFIG_HOTPLUG_CPU */
1470 #define sev_es_play_dead	native_play_dead
1471 #endif /* CONFIG_HOTPLUG_CPU */
1472 
1473 #ifdef CONFIG_SMP
1474 static void __init sev_es_setup_play_dead(void)
1475 {
1476 	smp_ops.play_dead = sev_es_play_dead;
1477 }
1478 #else
1479 static inline void sev_es_setup_play_dead(void) { }
1480 #endif
1481 
1482 static void __init alloc_runtime_data(int cpu)
1483 {
1484 	struct sev_es_runtime_data *data;
1485 
1486 	data = memblock_alloc_node(sizeof(*data), PAGE_SIZE, cpu_to_node(cpu));
1487 	if (!data)
1488 		panic("Can't allocate SEV-ES runtime data");
1489 
1490 	per_cpu(runtime_data, cpu) = data;
1491 
1492 	if (snp_vmpl) {
1493 		struct svsm_ca *caa;
1494 
1495 		/* Allocate the SVSM CA page if an SVSM is present */
1496 		caa = memblock_alloc(sizeof(*caa), PAGE_SIZE);
1497 		if (!caa)
1498 			panic("Can't allocate SVSM CA page\n");
1499 
1500 		per_cpu(svsm_caa, cpu) = caa;
1501 		per_cpu(svsm_caa_pa, cpu) = __pa(caa);
1502 	}
1503 }
1504 
1505 static void __init init_ghcb(int cpu)
1506 {
1507 	struct sev_es_runtime_data *data;
1508 	int err;
1509 
1510 	data = per_cpu(runtime_data, cpu);
1511 
1512 	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
1513 					 sizeof(data->ghcb_page));
1514 	if (err)
1515 		panic("Can't map GHCBs unencrypted");
1516 
1517 	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
1518 
1519 	data->ghcb_active = false;
1520 	data->backup_ghcb_active = false;
1521 }
1522 
1523 void __init sev_es_init_vc_handling(void)
1524 {
1525 	int cpu;
1526 
1527 	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
1528 
1529 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1530 		return;
1531 
1532 	if (!sev_es_check_cpu_features())
1533 		panic("SEV-ES CPU Features missing");
1534 
1535 	/*
1536 	 * SNP is supported in v2 of the GHCB spec which mandates support for HV
1537 	 * features.
1538 	 */
1539 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
1540 		sev_hv_features = get_hv_features();
1541 
1542 		if (!(sev_hv_features & GHCB_HV_FT_SNP))
1543 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
1544 	}
1545 
1546 	/* Initialize per-cpu GHCB pages */
1547 	for_each_possible_cpu(cpu) {
1548 		alloc_runtime_data(cpu);
1549 		init_ghcb(cpu);
1550 	}
1551 
1552 	/* If running under an SVSM, switch to the per-cpu CA */
1553 	if (snp_vmpl) {
1554 		struct svsm_call call = {};
1555 		unsigned long flags;
1556 		int ret;
1557 
1558 		local_irq_save(flags);
1559 
1560 		/*
1561 		 * SVSM_CORE_REMAP_CA call:
1562 		 *   RAX = 0 (Protocol=0, CallID=0)
1563 		 *   RCX = New CA GPA
1564 		 */
1565 		call.caa = svsm_get_caa();
1566 		call.rax = SVSM_CORE_CALL(SVSM_CORE_REMAP_CA);
1567 		call.rcx = this_cpu_read(svsm_caa_pa);
1568 		ret = svsm_perform_call_protocol(&call);
1569 		if (ret)
1570 			panic("Can't remap the SVSM CA, ret=%d, rax_out=0x%llx\n",
1571 			      ret, call.rax_out);
1572 
1573 		sev_cfg.use_cas = true;
1574 
1575 		local_irq_restore(flags);
1576 	}
1577 
1578 	sev_es_setup_play_dead();
1579 
1580 	/* Secondary CPUs use the runtime #VC handler */
1581 	initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
1582 }
1583 
1584 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
1585 {
1586 	int trapnr = ctxt->fi.vector;
1587 
1588 	if (trapnr == X86_TRAP_PF)
1589 		native_write_cr2(ctxt->fi.cr2);
1590 
1591 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1592 	do_early_exception(ctxt->regs, trapnr);
1593 }
1594 
1595 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
1596 {
1597 	long *reg_array;
1598 	int offset;
1599 
1600 	reg_array = (long *)ctxt->regs;
1601 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
1602 
1603 	if (offset < 0)
1604 		return NULL;
1605 
1606 	offset /= sizeof(long);
1607 
1608 	return reg_array + offset;
1609 }
1610 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
1611 				 unsigned int bytes, bool read)
1612 {
1613 	u64 exit_code, exit_info_1, exit_info_2;
1614 	unsigned long ghcb_pa = __pa(ghcb);
1615 	enum es_result res;
1616 	phys_addr_t paddr;
1617 	void __user *ref;
1618 
1619 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
1620 	if (ref == (void __user *)-1L)
1621 		return ES_UNSUPPORTED;
1622 
1623 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
1624 
1625 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
1626 	if (res != ES_OK) {
1627 		if (res == ES_EXCEPTION && !read)
1628 			ctxt->fi.error_code |= X86_PF_WRITE;
1629 
1630 		return res;
1631 	}
1632 
1633 	exit_info_1 = paddr;
1634 	/* Can never be greater than 8 */
1635 	exit_info_2 = bytes;
1636 
1637 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
1638 
1639 	return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
1640 }
1641 
1642 /*
1643  * The MOVS instruction has two memory operands, which raises the
1644  * problem that it is not known whether the access to the source or the
1645  * destination caused the #VC exception (and hence whether an MMIO read
1646  * or write operation needs to be emulated).
1647  *
1648  * Instead of playing games with walking page-tables and trying to guess
1649  * whether the source or destination is an MMIO range, split the move
1650  * into two operations, a read and a write with only one memory operand.
1651  * This will cause a nested #VC exception on the MMIO address which can
1652  * then be handled.
1653  *
1654  * This implementation has the benefit that it also supports MOVS where
1655  * source _and_ destination are MMIO regions.
1656  *
1657  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
1658  * rare operation. If it turns out to be a performance problem the split
1659  * operations can be moved to memcpy_fromio() and memcpy_toio().
1660  */
1661 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
1662 					  unsigned int bytes)
1663 {
1664 	unsigned long ds_base, es_base;
1665 	unsigned char *src, *dst;
1666 	unsigned char buffer[8];
1667 	enum es_result ret;
1668 	bool rep;
1669 	int off;
1670 
1671 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
1672 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
1673 
1674 	if (ds_base == -1L || es_base == -1L) {
1675 		ctxt->fi.vector = X86_TRAP_GP;
1676 		ctxt->fi.error_code = 0;
1677 		return ES_EXCEPTION;
1678 	}
1679 
1680 	src = ds_base + (unsigned char *)ctxt->regs->si;
1681 	dst = es_base + (unsigned char *)ctxt->regs->di;
1682 
1683 	ret = vc_read_mem(ctxt, src, buffer, bytes);
1684 	if (ret != ES_OK)
1685 		return ret;
1686 
1687 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
1688 	if (ret != ES_OK)
1689 		return ret;
1690 
1691 	if (ctxt->regs->flags & X86_EFLAGS_DF)
1692 		off = -bytes;
1693 	else
1694 		off =  bytes;
1695 
1696 	ctxt->regs->si += off;
1697 	ctxt->regs->di += off;
1698 
1699 	rep = insn_has_rep_prefix(&ctxt->insn);
1700 	if (rep)
1701 		ctxt->regs->cx -= 1;
1702 
1703 	if (!rep || ctxt->regs->cx == 0)
1704 		return ES_OK;
1705 	else
1706 		return ES_RETRY;
1707 }
1708 
1709 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1710 {
1711 	struct insn *insn = &ctxt->insn;
1712 	enum insn_mmio_type mmio;
1713 	unsigned int bytes = 0;
1714 	enum es_result ret;
1715 	u8 sign_byte;
1716 	long *reg_data;
1717 
1718 	mmio = insn_decode_mmio(insn, &bytes);
1719 	if (mmio == INSN_MMIO_DECODE_FAILED)
1720 		return ES_DECODE_FAILED;
1721 
1722 	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
1723 		reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
1724 		if (!reg_data)
1725 			return ES_DECODE_FAILED;
1726 	}
1727 
1728 	if (user_mode(ctxt->regs))
1729 		return ES_UNSUPPORTED;
1730 
1731 	switch (mmio) {
1732 	case INSN_MMIO_WRITE:
1733 		memcpy(ghcb->shared_buffer, reg_data, bytes);
1734 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1735 		break;
1736 	case INSN_MMIO_WRITE_IMM:
1737 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1738 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1739 		break;
1740 	case INSN_MMIO_READ:
1741 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1742 		if (ret)
1743 			break;
1744 
1745 		/* Zero-extend for 32-bit operation */
1746 		if (bytes == 4)
1747 			*reg_data = 0;
1748 
1749 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1750 		break;
1751 	case INSN_MMIO_READ_ZERO_EXTEND:
1752 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1753 		if (ret)
1754 			break;
1755 
1756 		/* Zero extend based on operand size */
1757 		memset(reg_data, 0, insn->opnd_bytes);
1758 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1759 		break;
1760 	case INSN_MMIO_READ_SIGN_EXTEND:
1761 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1762 		if (ret)
1763 			break;
1764 
1765 		if (bytes == 1) {
1766 			u8 *val = (u8 *)ghcb->shared_buffer;
1767 
1768 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
1769 		} else {
1770 			u16 *val = (u16 *)ghcb->shared_buffer;
1771 
1772 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
1773 		}
1774 
1775 		/* Sign extend based on operand size */
1776 		memset(reg_data, sign_byte, insn->opnd_bytes);
1777 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1778 		break;
1779 	case INSN_MMIO_MOVS:
1780 		ret = vc_handle_mmio_movs(ctxt, bytes);
1781 		break;
1782 	default:
1783 		ret = ES_UNSUPPORTED;
1784 		break;
1785 	}
1786 
1787 	return ret;
1788 }
1789 
1790 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1791 					  struct es_em_ctxt *ctxt)
1792 {
1793 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1794 	long val, *reg = vc_insn_get_rm(ctxt);
1795 	enum es_result ret;
1796 
1797 	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1798 		return ES_VMM_ERROR;
1799 
1800 	if (!reg)
1801 		return ES_DECODE_FAILED;
1802 
1803 	val = *reg;
1804 
1805 	/* Upper 32 bits must be written as zeroes */
1806 	if (val >> 32) {
1807 		ctxt->fi.vector = X86_TRAP_GP;
1808 		ctxt->fi.error_code = 0;
1809 		return ES_EXCEPTION;
1810 	}
1811 
1812 	/* Clear out other reserved bits and set bit 10 */
1813 	val = (val & 0xffff23ffL) | BIT(10);
1814 
1815 	/* Early non-zero writes to DR7 are not supported */
1816 	if (!data && (val & ~DR7_RESET_VALUE))
1817 		return ES_UNSUPPORTED;
1818 
1819 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
1820 	ghcb_set_rax(ghcb, val);
1821 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1822 	if (ret != ES_OK)
1823 		return ret;
1824 
1825 	if (data)
1826 		data->dr7 = val;
1827 
1828 	return ES_OK;
1829 }
1830 
1831 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1832 					 struct es_em_ctxt *ctxt)
1833 {
1834 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1835 	long *reg = vc_insn_get_rm(ctxt);
1836 
1837 	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1838 		return ES_VMM_ERROR;
1839 
1840 	if (!reg)
1841 		return ES_DECODE_FAILED;
1842 
1843 	if (data)
1844 		*reg = data->dr7;
1845 	else
1846 		*reg = DR7_RESET_VALUE;
1847 
1848 	return ES_OK;
1849 }
1850 
1851 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1852 				       struct es_em_ctxt *ctxt)
1853 {
1854 	return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1855 }
1856 
1857 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1858 {
1859 	enum es_result ret;
1860 
1861 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
1862 
1863 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1864 	if (ret != ES_OK)
1865 		return ret;
1866 
1867 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1868 		return ES_VMM_ERROR;
1869 
1870 	ctxt->regs->ax = ghcb->save.rax;
1871 	ctxt->regs->dx = ghcb->save.rdx;
1872 
1873 	return ES_OK;
1874 }
1875 
1876 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1877 					struct es_em_ctxt *ctxt)
1878 {
1879 	/*
1880 	 * Treat it as a NOP and do not leak a physical address to the
1881 	 * hypervisor.
1882 	 */
1883 	return ES_OK;
1884 }
1885 
1886 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1887 				      struct es_em_ctxt *ctxt)
1888 {
1889 	/* Treat the same as MONITOR/MONITORX */
1890 	return ES_OK;
1891 }
1892 
1893 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1894 					struct es_em_ctxt *ctxt)
1895 {
1896 	enum es_result ret;
1897 
1898 	ghcb_set_rax(ghcb, ctxt->regs->ax);
1899 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1900 
1901 	if (x86_platform.hyper.sev_es_hcall_prepare)
1902 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1903 
1904 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1905 	if (ret != ES_OK)
1906 		return ret;
1907 
1908 	if (!ghcb_rax_is_valid(ghcb))
1909 		return ES_VMM_ERROR;
1910 
1911 	ctxt->regs->ax = ghcb->save.rax;
1912 
1913 	/*
1914 	 * Call sev_es_hcall_finish() after regs->ax is already set.
1915 	 * This allows the hypervisor handler to overwrite it again if
1916 	 * necessary.
1917 	 */
1918 	if (x86_platform.hyper.sev_es_hcall_finish &&
1919 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1920 		return ES_VMM_ERROR;
1921 
1922 	return ES_OK;
1923 }
1924 
1925 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1926 					struct es_em_ctxt *ctxt)
1927 {
1928 	/*
1929 	 * Calling ecx_alignment_check() directly does not work, because it
1930 	 * enables IRQs and the GHCB is active. Forward the exception and call
1931 	 * it later from vc_forward_exception().
1932 	 */
1933 	ctxt->fi.vector = X86_TRAP_AC;
1934 	ctxt->fi.error_code = 0;
1935 	return ES_EXCEPTION;
1936 }
1937 
1938 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1939 					 struct ghcb *ghcb,
1940 					 unsigned long exit_code)
1941 {
1942 	enum es_result result = vc_check_opcode_bytes(ctxt, exit_code);
1943 
1944 	if (result != ES_OK)
1945 		return result;
1946 
1947 	switch (exit_code) {
1948 	case SVM_EXIT_READ_DR7:
1949 		result = vc_handle_dr7_read(ghcb, ctxt);
1950 		break;
1951 	case SVM_EXIT_WRITE_DR7:
1952 		result = vc_handle_dr7_write(ghcb, ctxt);
1953 		break;
1954 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1955 		result = vc_handle_trap_ac(ghcb, ctxt);
1956 		break;
1957 	case SVM_EXIT_RDTSC:
1958 	case SVM_EXIT_RDTSCP:
1959 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1960 		break;
1961 	case SVM_EXIT_RDPMC:
1962 		result = vc_handle_rdpmc(ghcb, ctxt);
1963 		break;
1964 	case SVM_EXIT_INVD:
1965 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1966 		result = ES_UNSUPPORTED;
1967 		break;
1968 	case SVM_EXIT_CPUID:
1969 		result = vc_handle_cpuid(ghcb, ctxt);
1970 		break;
1971 	case SVM_EXIT_IOIO:
1972 		result = vc_handle_ioio(ghcb, ctxt);
1973 		break;
1974 	case SVM_EXIT_MSR:
1975 		result = vc_handle_msr(ghcb, ctxt);
1976 		break;
1977 	case SVM_EXIT_VMMCALL:
1978 		result = vc_handle_vmmcall(ghcb, ctxt);
1979 		break;
1980 	case SVM_EXIT_WBINVD:
1981 		result = vc_handle_wbinvd(ghcb, ctxt);
1982 		break;
1983 	case SVM_EXIT_MONITOR:
1984 		result = vc_handle_monitor(ghcb, ctxt);
1985 		break;
1986 	case SVM_EXIT_MWAIT:
1987 		result = vc_handle_mwait(ghcb, ctxt);
1988 		break;
1989 	case SVM_EXIT_NPF:
1990 		result = vc_handle_mmio(ghcb, ctxt);
1991 		break;
1992 	default:
1993 		/*
1994 		 * Unexpected #VC exception
1995 		 */
1996 		result = ES_UNSUPPORTED;
1997 	}
1998 
1999 	return result;
2000 }
2001 
2002 static __always_inline bool is_vc2_stack(unsigned long sp)
2003 {
2004 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
2005 }
2006 
2007 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
2008 {
2009 	unsigned long sp, prev_sp;
2010 
2011 	sp      = (unsigned long)regs;
2012 	prev_sp = regs->sp;
2013 
2014 	/*
2015 	 * If the code was already executing on the VC2 stack when the #VC
2016 	 * happened, let it proceed to the normal handling routine. This way the
2017 	 * code executing on the VC2 stack can cause #VC exceptions to get handled.
2018 	 */
2019 	return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
2020 }
2021 
2022 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
2023 {
2024 	struct ghcb_state state;
2025 	struct es_em_ctxt ctxt;
2026 	enum es_result result;
2027 	struct ghcb *ghcb;
2028 	bool ret = true;
2029 
2030 	ghcb = __sev_get_ghcb(&state);
2031 
2032 	vc_ghcb_invalidate(ghcb);
2033 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
2034 
2035 	if (result == ES_OK)
2036 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
2037 
2038 	__sev_put_ghcb(&state);
2039 
2040 	/* Done - now check the result */
2041 	switch (result) {
2042 	case ES_OK:
2043 		vc_finish_insn(&ctxt);
2044 		break;
2045 	case ES_UNSUPPORTED:
2046 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
2047 				   error_code, regs->ip);
2048 		ret = false;
2049 		break;
2050 	case ES_VMM_ERROR:
2051 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2052 				   error_code, regs->ip);
2053 		ret = false;
2054 		break;
2055 	case ES_DECODE_FAILED:
2056 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2057 				   error_code, regs->ip);
2058 		ret = false;
2059 		break;
2060 	case ES_EXCEPTION:
2061 		vc_forward_exception(&ctxt);
2062 		break;
2063 	case ES_RETRY:
2064 		/* Nothing to do */
2065 		break;
2066 	default:
2067 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
2068 		/*
2069 		 * Emulating the instruction which caused the #VC exception
2070 		 * failed - can't continue so print debug information
2071 		 */
2072 		BUG();
2073 	}
2074 
2075 	return ret;
2076 }
2077 
2078 static __always_inline bool vc_is_db(unsigned long error_code)
2079 {
2080 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
2081 }
2082 
2083 /*
2084  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
2085  * and will panic when an error happens.
2086  */
2087 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
2088 {
2089 	irqentry_state_t irq_state;
2090 
2091 	/*
2092 	 * With the current implementation it is always possible to switch to a
2093 	 * safe stack because #VC exceptions only happen at known places, like
2094 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
2095 	 * also happen with code instrumentation when the hypervisor intercepts
2096 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
2097 	 * exceptions currently also only happen in safe places.
2098 	 *
2099 	 * But keep this here in case the noinstr annotations are violated due
2100 	 * to bug elsewhere.
2101 	 */
2102 	if (unlikely(vc_from_invalid_context(regs))) {
2103 		instrumentation_begin();
2104 		panic("Can't handle #VC exception from unsupported context\n");
2105 		instrumentation_end();
2106 	}
2107 
2108 	/*
2109 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
2110 	 */
2111 	if (vc_is_db(error_code)) {
2112 		exc_debug(regs);
2113 		return;
2114 	}
2115 
2116 	irq_state = irqentry_nmi_enter(regs);
2117 
2118 	instrumentation_begin();
2119 
2120 	if (!vc_raw_handle_exception(regs, error_code)) {
2121 		/* Show some debug info */
2122 		show_regs(regs);
2123 
2124 		/* Ask hypervisor to sev_es_terminate */
2125 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2126 
2127 		/* If that fails and we get here - just panic */
2128 		panic("Returned from Terminate-Request to Hypervisor\n");
2129 	}
2130 
2131 	instrumentation_end();
2132 	irqentry_nmi_exit(regs, irq_state);
2133 }
2134 
2135 /*
2136  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
2137  * and will kill the current task with SIGBUS when an error happens.
2138  */
2139 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
2140 {
2141 	/*
2142 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
2143 	 */
2144 	if (vc_is_db(error_code)) {
2145 		noist_exc_debug(regs);
2146 		return;
2147 	}
2148 
2149 	irqentry_enter_from_user_mode(regs);
2150 	instrumentation_begin();
2151 
2152 	if (!vc_raw_handle_exception(regs, error_code)) {
2153 		/*
2154 		 * Do not kill the machine if user-space triggered the
2155 		 * exception. Send SIGBUS instead and let user-space deal with
2156 		 * it.
2157 		 */
2158 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
2159 	}
2160 
2161 	instrumentation_end();
2162 	irqentry_exit_to_user_mode(regs);
2163 }
2164 
2165 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
2166 {
2167 	unsigned long exit_code = regs->orig_ax;
2168 	struct es_em_ctxt ctxt;
2169 	enum es_result result;
2170 
2171 	vc_ghcb_invalidate(boot_ghcb);
2172 
2173 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
2174 	if (result == ES_OK)
2175 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
2176 
2177 	/* Done - now check the result */
2178 	switch (result) {
2179 	case ES_OK:
2180 		vc_finish_insn(&ctxt);
2181 		break;
2182 	case ES_UNSUPPORTED:
2183 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
2184 				exit_code, regs->ip);
2185 		goto fail;
2186 	case ES_VMM_ERROR:
2187 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2188 				exit_code, regs->ip);
2189 		goto fail;
2190 	case ES_DECODE_FAILED:
2191 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2192 				exit_code, regs->ip);
2193 		goto fail;
2194 	case ES_EXCEPTION:
2195 		vc_early_forward_exception(&ctxt);
2196 		break;
2197 	case ES_RETRY:
2198 		/* Nothing to do */
2199 		break;
2200 	default:
2201 		BUG();
2202 	}
2203 
2204 	return true;
2205 
2206 fail:
2207 	show_regs(regs);
2208 
2209 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2210 }
2211 
2212 /*
2213  * Initial set up of SNP relies on information provided by the
2214  * Confidential Computing blob, which can be passed to the kernel
2215  * in the following ways, depending on how it is booted:
2216  *
2217  * - when booted via the boot/decompress kernel:
2218  *   - via boot_params
2219  *
2220  * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
2221  *   - via a setup_data entry, as defined by the Linux Boot Protocol
2222  *
2223  * Scan for the blob in that order.
2224  */
2225 static __head struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
2226 {
2227 	struct cc_blob_sev_info *cc_info;
2228 
2229 	/* Boot kernel would have passed the CC blob via boot_params. */
2230 	if (bp->cc_blob_address) {
2231 		cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
2232 		goto found_cc_info;
2233 	}
2234 
2235 	/*
2236 	 * If kernel was booted directly, without the use of the
2237 	 * boot/decompression kernel, the CC blob may have been passed via
2238 	 * setup_data instead.
2239 	 */
2240 	cc_info = find_cc_blob_setup_data(bp);
2241 	if (!cc_info)
2242 		return NULL;
2243 
2244 found_cc_info:
2245 	if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
2246 		snp_abort();
2247 
2248 	return cc_info;
2249 }
2250 
2251 static __head void svsm_setup(struct cc_blob_sev_info *cc_info)
2252 {
2253 	struct svsm_call call = {};
2254 	int ret;
2255 	u64 pa;
2256 
2257 	/*
2258 	 * Record the SVSM Calling Area address (CAA) if the guest is not
2259 	 * running at VMPL0. The CA will be used to communicate with the
2260 	 * SVSM to perform the SVSM services.
2261 	 */
2262 	if (!svsm_setup_ca(cc_info))
2263 		return;
2264 
2265 	/*
2266 	 * It is very early in the boot and the kernel is running identity
2267 	 * mapped but without having adjusted the pagetables to where the
2268 	 * kernel was loaded (physbase), so the get the CA address using
2269 	 * RIP-relative addressing.
2270 	 */
2271 	pa = (u64)&RIP_REL_REF(boot_svsm_ca_page);
2272 
2273 	/*
2274 	 * Switch over to the boot SVSM CA while the current CA is still
2275 	 * addressable. There is no GHCB at this point so use the MSR protocol.
2276 	 *
2277 	 * SVSM_CORE_REMAP_CA call:
2278 	 *   RAX = 0 (Protocol=0, CallID=0)
2279 	 *   RCX = New CA GPA
2280 	 */
2281 	call.caa = svsm_get_caa();
2282 	call.rax = SVSM_CORE_CALL(SVSM_CORE_REMAP_CA);
2283 	call.rcx = pa;
2284 	ret = svsm_perform_call_protocol(&call);
2285 	if (ret)
2286 		panic("Can't remap the SVSM CA, ret=%d, rax_out=0x%llx\n", ret, call.rax_out);
2287 
2288 	RIP_REL_REF(boot_svsm_caa) = (struct svsm_ca *)pa;
2289 	RIP_REL_REF(boot_svsm_caa_pa) = pa;
2290 }
2291 
2292 bool __head snp_init(struct boot_params *bp)
2293 {
2294 	struct cc_blob_sev_info *cc_info;
2295 
2296 	if (!bp)
2297 		return false;
2298 
2299 	cc_info = find_cc_blob(bp);
2300 	if (!cc_info)
2301 		return false;
2302 
2303 	setup_cpuid_table(cc_info);
2304 
2305 	svsm_setup(cc_info);
2306 
2307 	/*
2308 	 * The CC blob will be used later to access the secrets page. Cache
2309 	 * it here like the boot kernel does.
2310 	 */
2311 	bp->cc_blob_address = (u32)(unsigned long)cc_info;
2312 
2313 	return true;
2314 }
2315 
2316 void __head __noreturn snp_abort(void)
2317 {
2318 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
2319 }
2320 
2321 /*
2322  * SEV-SNP guests should only execute dmi_setup() if EFI_CONFIG_TABLES are
2323  * enabled, as the alternative (fallback) logic for DMI probing in the legacy
2324  * ROM region can cause a crash since this region is not pre-validated.
2325  */
2326 void __init snp_dmi_setup(void)
2327 {
2328 	if (efi_enabled(EFI_CONFIG_TABLES))
2329 		dmi_setup();
2330 }
2331 
2332 static void dump_cpuid_table(void)
2333 {
2334 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2335 	int i = 0;
2336 
2337 	pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
2338 		cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
2339 
2340 	for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
2341 		const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
2342 
2343 		pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
2344 			i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
2345 			fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
2346 	}
2347 }
2348 
2349 /*
2350  * It is useful from an auditing/testing perspective to provide an easy way
2351  * for the guest owner to know that the CPUID table has been initialized as
2352  * expected, but that initialization happens too early in boot to print any
2353  * sort of indicator, and there's not really any other good place to do it,
2354  * so do it here.
2355  *
2356  * If running as an SNP guest, report the current VM privilege level (VMPL).
2357  */
2358 static int __init report_snp_info(void)
2359 {
2360 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2361 
2362 	if (cpuid_table->count) {
2363 		pr_info("Using SNP CPUID table, %d entries present.\n",
2364 			cpuid_table->count);
2365 
2366 		if (sev_cfg.debug)
2367 			dump_cpuid_table();
2368 	}
2369 
2370 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2371 		pr_info("SNP running at VMPL%u.\n", snp_vmpl);
2372 
2373 	return 0;
2374 }
2375 arch_initcall(report_snp_info);
2376 
2377 static int __init init_sev_config(char *str)
2378 {
2379 	char *s;
2380 
2381 	while ((s = strsep(&str, ","))) {
2382 		if (!strcmp(s, "debug")) {
2383 			sev_cfg.debug = true;
2384 			continue;
2385 		}
2386 
2387 		pr_info("SEV command-line option '%s' was not recognized\n", s);
2388 	}
2389 
2390 	return 1;
2391 }
2392 __setup("sev=", init_sev_config);
2393 
2394 static void update_attest_input(struct svsm_call *call, struct svsm_attest_call *input)
2395 {
2396 	/* If (new) lengths have been returned, propagate them up */
2397 	if (call->rcx_out != call->rcx)
2398 		input->manifest_buf.len = call->rcx_out;
2399 
2400 	if (call->rdx_out != call->rdx)
2401 		input->certificates_buf.len = call->rdx_out;
2402 
2403 	if (call->r8_out != call->r8)
2404 		input->report_buf.len = call->r8_out;
2405 }
2406 
2407 int snp_issue_svsm_attest_req(u64 call_id, struct svsm_call *call,
2408 			      struct svsm_attest_call *input)
2409 {
2410 	struct svsm_attest_call *ac;
2411 	unsigned long flags;
2412 	u64 attest_call_pa;
2413 	int ret;
2414 
2415 	if (!snp_vmpl)
2416 		return -EINVAL;
2417 
2418 	local_irq_save(flags);
2419 
2420 	call->caa = svsm_get_caa();
2421 
2422 	ac = (struct svsm_attest_call *)call->caa->svsm_buffer;
2423 	attest_call_pa = svsm_get_caa_pa() + offsetof(struct svsm_ca, svsm_buffer);
2424 
2425 	*ac = *input;
2426 
2427 	/*
2428 	 * Set input registers for the request and set RDX and R8 to known
2429 	 * values in order to detect length values being returned in them.
2430 	 */
2431 	call->rax = call_id;
2432 	call->rcx = attest_call_pa;
2433 	call->rdx = -1;
2434 	call->r8 = -1;
2435 	ret = svsm_perform_call_protocol(call);
2436 	update_attest_input(call, input);
2437 
2438 	local_irq_restore(flags);
2439 
2440 	return ret;
2441 }
2442 EXPORT_SYMBOL_GPL(snp_issue_svsm_attest_req);
2443 
2444 int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, struct snp_guest_request_ioctl *rio)
2445 {
2446 	struct ghcb_state state;
2447 	struct es_em_ctxt ctxt;
2448 	unsigned long flags;
2449 	struct ghcb *ghcb;
2450 	int ret;
2451 
2452 	rio->exitinfo2 = SEV_RET_NO_FW_CALL;
2453 
2454 	/*
2455 	 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
2456 	 * a per-CPU GHCB.
2457 	 */
2458 	local_irq_save(flags);
2459 
2460 	ghcb = __sev_get_ghcb(&state);
2461 	if (!ghcb) {
2462 		ret = -EIO;
2463 		goto e_restore_irq;
2464 	}
2465 
2466 	vc_ghcb_invalidate(ghcb);
2467 
2468 	if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2469 		ghcb_set_rax(ghcb, input->data_gpa);
2470 		ghcb_set_rbx(ghcb, input->data_npages);
2471 	}
2472 
2473 	ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
2474 	if (ret)
2475 		goto e_put;
2476 
2477 	rio->exitinfo2 = ghcb->save.sw_exit_info_2;
2478 	switch (rio->exitinfo2) {
2479 	case 0:
2480 		break;
2481 
2482 	case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_BUSY):
2483 		ret = -EAGAIN;
2484 		break;
2485 
2486 	case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN):
2487 		/* Number of expected pages are returned in RBX */
2488 		if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2489 			input->data_npages = ghcb_get_rbx(ghcb);
2490 			ret = -ENOSPC;
2491 			break;
2492 		}
2493 		fallthrough;
2494 	default:
2495 		ret = -EIO;
2496 		break;
2497 	}
2498 
2499 e_put:
2500 	__sev_put_ghcb(&state);
2501 e_restore_irq:
2502 	local_irq_restore(flags);
2503 
2504 	return ret;
2505 }
2506 EXPORT_SYMBOL_GPL(snp_issue_guest_request);
2507 
2508 static struct platform_device sev_guest_device = {
2509 	.name		= "sev-guest",
2510 	.id		= -1,
2511 };
2512 
2513 static int __init snp_init_platform_device(void)
2514 {
2515 	struct sev_guest_platform_data data;
2516 	u64 gpa;
2517 
2518 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2519 		return -ENODEV;
2520 
2521 	gpa = get_secrets_page();
2522 	if (!gpa)
2523 		return -ENODEV;
2524 
2525 	data.secrets_gpa = gpa;
2526 	if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
2527 		return -ENODEV;
2528 
2529 	if (platform_device_register(&sev_guest_device))
2530 		return -ENODEV;
2531 
2532 	pr_info("SNP guest platform device initialized.\n");
2533 	return 0;
2534 }
2535 device_initcall(snp_init_platform_device);
2536 
2537 void sev_show_status(void)
2538 {
2539 	int i;
2540 
2541 	pr_info("Status: ");
2542 	for (i = 0; i < MSR_AMD64_SNP_RESV_BIT; i++) {
2543 		if (sev_status & BIT_ULL(i)) {
2544 			if (!sev_status_feat_names[i])
2545 				continue;
2546 
2547 			pr_cont("%s ", sev_status_feat_names[i]);
2548 		}
2549 	}
2550 	pr_cont("\n");
2551 }
2552 
2553 void __init snp_update_svsm_ca(void)
2554 {
2555 	if (!snp_vmpl)
2556 		return;
2557 
2558 	/* Update the CAA to a proper kernel address */
2559 	boot_svsm_caa = &boot_svsm_ca_page;
2560 }
2561 
2562 #ifdef CONFIG_SYSFS
2563 static ssize_t vmpl_show(struct kobject *kobj,
2564 			 struct kobj_attribute *attr, char *buf)
2565 {
2566 	return sysfs_emit(buf, "%d\n", snp_vmpl);
2567 }
2568 
2569 static struct kobj_attribute vmpl_attr = __ATTR_RO(vmpl);
2570 
2571 static struct attribute *vmpl_attrs[] = {
2572 	&vmpl_attr.attr,
2573 	NULL
2574 };
2575 
2576 static struct attribute_group sev_attr_group = {
2577 	.attrs = vmpl_attrs,
2578 };
2579 
2580 static int __init sev_sysfs_init(void)
2581 {
2582 	struct kobject *sev_kobj;
2583 	struct device *dev_root;
2584 	int ret;
2585 
2586 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2587 		return -ENODEV;
2588 
2589 	dev_root = bus_get_dev_root(&cpu_subsys);
2590 	if (!dev_root)
2591 		return -ENODEV;
2592 
2593 	sev_kobj = kobject_create_and_add("sev", &dev_root->kobj);
2594 	put_device(dev_root);
2595 
2596 	if (!sev_kobj)
2597 		return -ENOMEM;
2598 
2599 	ret = sysfs_create_group(sev_kobj, &sev_attr_group);
2600 	if (ret)
2601 		kobject_put(sev_kobj);
2602 
2603 	return ret;
2604 }
2605 arch_initcall(sev_sysfs_init);
2606 #endif // CONFIG_SYSFS
2607