xref: /linux/arch/x86/coco/sev/core.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/efi.h>
23 #include <linux/platform_device.h>
24 #include <linux/io.h>
25 #include <linux/psp-sev.h>
26 #include <linux/dmi.h>
27 #include <uapi/linux/sev-guest.h>
28 
29 #include <asm/init.h>
30 #include <asm/cpu_entry_area.h>
31 #include <asm/stacktrace.h>
32 #include <asm/sev.h>
33 #include <asm/insn-eval.h>
34 #include <asm/fpu/xcr.h>
35 #include <asm/processor.h>
36 #include <asm/realmode.h>
37 #include <asm/setup.h>
38 #include <asm/traps.h>
39 #include <asm/svm.h>
40 #include <asm/smp.h>
41 #include <asm/cpu.h>
42 #include <asm/apic.h>
43 #include <asm/cpuid.h>
44 #include <asm/cmdline.h>
45 
46 #define DR7_RESET_VALUE        0x400
47 
48 /* AP INIT values as documented in the APM2  section "Processor Initialization State" */
49 #define AP_INIT_CS_LIMIT		0xffff
50 #define AP_INIT_DS_LIMIT		0xffff
51 #define AP_INIT_LDTR_LIMIT		0xffff
52 #define AP_INIT_GDTR_LIMIT		0xffff
53 #define AP_INIT_IDTR_LIMIT		0xffff
54 #define AP_INIT_TR_LIMIT		0xffff
55 #define AP_INIT_RFLAGS_DEFAULT		0x2
56 #define AP_INIT_DR6_DEFAULT		0xffff0ff0
57 #define AP_INIT_GPAT_DEFAULT		0x0007040600070406ULL
58 #define AP_INIT_XCR0_DEFAULT		0x1
59 #define AP_INIT_X87_FTW_DEFAULT		0x5555
60 #define AP_INIT_X87_FCW_DEFAULT		0x0040
61 #define AP_INIT_CR0_DEFAULT		0x60000010
62 #define AP_INIT_MXCSR_DEFAULT		0x1f80
63 
64 static const char * const sev_status_feat_names[] = {
65 	[MSR_AMD64_SEV_ENABLED_BIT]		= "SEV",
66 	[MSR_AMD64_SEV_ES_ENABLED_BIT]		= "SEV-ES",
67 	[MSR_AMD64_SEV_SNP_ENABLED_BIT]		= "SEV-SNP",
68 	[MSR_AMD64_SNP_VTOM_BIT]		= "vTom",
69 	[MSR_AMD64_SNP_REFLECT_VC_BIT]		= "ReflectVC",
70 	[MSR_AMD64_SNP_RESTRICTED_INJ_BIT]	= "RI",
71 	[MSR_AMD64_SNP_ALT_INJ_BIT]		= "AI",
72 	[MSR_AMD64_SNP_DEBUG_SWAP_BIT]		= "DebugSwap",
73 	[MSR_AMD64_SNP_PREVENT_HOST_IBS_BIT]	= "NoHostIBS",
74 	[MSR_AMD64_SNP_BTB_ISOLATION_BIT]	= "BTBIsol",
75 	[MSR_AMD64_SNP_VMPL_SSS_BIT]		= "VmplSSS",
76 	[MSR_AMD64_SNP_SECURE_TSC_BIT]		= "SecureTSC",
77 	[MSR_AMD64_SNP_VMGEXIT_PARAM_BIT]	= "VMGExitParam",
78 	[MSR_AMD64_SNP_IBS_VIRT_BIT]		= "IBSVirt",
79 	[MSR_AMD64_SNP_VMSA_REG_PROT_BIT]	= "VMSARegProt",
80 	[MSR_AMD64_SNP_SMT_PROT_BIT]		= "SMTProt",
81 };
82 
83 /* For early boot hypervisor communication in SEV-ES enabled guests */
84 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
85 
86 /*
87  * Needs to be in the .data section because we need it NULL before bss is
88  * cleared
89  */
90 static struct ghcb *boot_ghcb __section(".data");
91 
92 /* Bitmap of SEV features supported by the hypervisor */
93 static u64 sev_hv_features __ro_after_init;
94 
95 /* Secrets page physical address from the CC blob */
96 static u64 secrets_pa __ro_after_init;
97 
98 /* #VC handler runtime per-CPU data */
99 struct sev_es_runtime_data {
100 	struct ghcb ghcb_page;
101 
102 	/*
103 	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
104 	 * It is needed when an NMI happens while the #VC handler uses the real
105 	 * GHCB, and the NMI handler itself is causing another #VC exception. In
106 	 * that case the GHCB content of the first handler needs to be backed up
107 	 * and restored.
108 	 */
109 	struct ghcb backup_ghcb;
110 
111 	/*
112 	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
113 	 * There is no need for it to be atomic, because nothing is written to
114 	 * the GHCB between the read and the write of ghcb_active. So it is safe
115 	 * to use it when a nested #VC exception happens before the write.
116 	 *
117 	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
118 	 * happens while the first #VC handler uses the GHCB. When the NMI code
119 	 * raises a second #VC handler it might overwrite the contents of the
120 	 * GHCB written by the first handler. To avoid this the content of the
121 	 * GHCB is saved and restored when the GHCB is detected to be in use
122 	 * already.
123 	 */
124 	bool ghcb_active;
125 	bool backup_ghcb_active;
126 
127 	/*
128 	 * Cached DR7 value - write it on DR7 writes and return it on reads.
129 	 * That value will never make it to the real hardware DR7 as debugging
130 	 * is currently unsupported in SEV-ES guests.
131 	 */
132 	unsigned long dr7;
133 };
134 
135 struct ghcb_state {
136 	struct ghcb *ghcb;
137 };
138 
139 /* For early boot SVSM communication */
140 static struct svsm_ca boot_svsm_ca_page __aligned(PAGE_SIZE);
141 
142 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
143 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
144 static DEFINE_PER_CPU(struct svsm_ca *, svsm_caa);
145 static DEFINE_PER_CPU(u64, svsm_caa_pa);
146 
147 static __always_inline bool on_vc_stack(struct pt_regs *regs)
148 {
149 	unsigned long sp = regs->sp;
150 
151 	/* User-mode RSP is not trusted */
152 	if (user_mode(regs))
153 		return false;
154 
155 	/* SYSCALL gap still has user-mode RSP */
156 	if (ip_within_syscall_gap(regs))
157 		return false;
158 
159 	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
160 }
161 
162 /*
163  * This function handles the case when an NMI is raised in the #VC
164  * exception handler entry code, before the #VC handler has switched off
165  * its IST stack. In this case, the IST entry for #VC must be adjusted,
166  * so that any nested #VC exception will not overwrite the stack
167  * contents of the interrupted #VC handler.
168  *
169  * The IST entry is adjusted unconditionally so that it can be also be
170  * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
171  * nested sev_es_ist_exit() call may adjust back the IST entry too
172  * early.
173  *
174  * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
175  * on the NMI IST stack, as they are only called from NMI handling code
176  * right now.
177  */
178 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
179 {
180 	unsigned long old_ist, new_ist;
181 
182 	/* Read old IST entry */
183 	new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
184 
185 	/*
186 	 * If NMI happened while on the #VC IST stack, set the new IST
187 	 * value below regs->sp, so that the interrupted stack frame is
188 	 * not overwritten by subsequent #VC exceptions.
189 	 */
190 	if (on_vc_stack(regs))
191 		new_ist = regs->sp;
192 
193 	/*
194 	 * Reserve additional 8 bytes and store old IST value so this
195 	 * adjustment can be unrolled in __sev_es_ist_exit().
196 	 */
197 	new_ist -= sizeof(old_ist);
198 	*(unsigned long *)new_ist = old_ist;
199 
200 	/* Set new IST entry */
201 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
202 }
203 
204 void noinstr __sev_es_ist_exit(void)
205 {
206 	unsigned long ist;
207 
208 	/* Read IST entry */
209 	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
210 
211 	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
212 		return;
213 
214 	/* Read back old IST entry and write it to the TSS */
215 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
216 }
217 
218 /*
219  * Nothing shall interrupt this code path while holding the per-CPU
220  * GHCB. The backup GHCB is only for NMIs interrupting this path.
221  *
222  * Callers must disable local interrupts around it.
223  */
224 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
225 {
226 	struct sev_es_runtime_data *data;
227 	struct ghcb *ghcb;
228 
229 	WARN_ON(!irqs_disabled());
230 
231 	data = this_cpu_read(runtime_data);
232 	ghcb = &data->ghcb_page;
233 
234 	if (unlikely(data->ghcb_active)) {
235 		/* GHCB is already in use - save its contents */
236 
237 		if (unlikely(data->backup_ghcb_active)) {
238 			/*
239 			 * Backup-GHCB is also already in use. There is no way
240 			 * to continue here so just kill the machine. To make
241 			 * panic() work, mark GHCBs inactive so that messages
242 			 * can be printed out.
243 			 */
244 			data->ghcb_active        = false;
245 			data->backup_ghcb_active = false;
246 
247 			instrumentation_begin();
248 			panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
249 			instrumentation_end();
250 		}
251 
252 		/* Mark backup_ghcb active before writing to it */
253 		data->backup_ghcb_active = true;
254 
255 		state->ghcb = &data->backup_ghcb;
256 
257 		/* Backup GHCB content */
258 		*state->ghcb = *ghcb;
259 	} else {
260 		state->ghcb = NULL;
261 		data->ghcb_active = true;
262 	}
263 
264 	return ghcb;
265 }
266 
267 static inline u64 sev_es_rd_ghcb_msr(void)
268 {
269 	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
270 }
271 
272 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
273 {
274 	u32 low, high;
275 
276 	low  = (u32)(val);
277 	high = (u32)(val >> 32);
278 
279 	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
280 }
281 
282 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
283 				unsigned char *buffer)
284 {
285 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
286 }
287 
288 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
289 {
290 	char buffer[MAX_INSN_SIZE];
291 	int insn_bytes;
292 
293 	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
294 	if (insn_bytes == 0) {
295 		/* Nothing could be copied */
296 		ctxt->fi.vector     = X86_TRAP_PF;
297 		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
298 		ctxt->fi.cr2        = ctxt->regs->ip;
299 		return ES_EXCEPTION;
300 	} else if (insn_bytes == -EINVAL) {
301 		/* Effective RIP could not be calculated */
302 		ctxt->fi.vector     = X86_TRAP_GP;
303 		ctxt->fi.error_code = 0;
304 		ctxt->fi.cr2        = 0;
305 		return ES_EXCEPTION;
306 	}
307 
308 	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
309 		return ES_DECODE_FAILED;
310 
311 	if (ctxt->insn.immediate.got)
312 		return ES_OK;
313 	else
314 		return ES_DECODE_FAILED;
315 }
316 
317 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
318 {
319 	char buffer[MAX_INSN_SIZE];
320 	int res, ret;
321 
322 	res = vc_fetch_insn_kernel(ctxt, buffer);
323 	if (res) {
324 		ctxt->fi.vector     = X86_TRAP_PF;
325 		ctxt->fi.error_code = X86_PF_INSTR;
326 		ctxt->fi.cr2        = ctxt->regs->ip;
327 		return ES_EXCEPTION;
328 	}
329 
330 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
331 	if (ret < 0)
332 		return ES_DECODE_FAILED;
333 	else
334 		return ES_OK;
335 }
336 
337 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
338 {
339 	if (user_mode(ctxt->regs))
340 		return __vc_decode_user_insn(ctxt);
341 	else
342 		return __vc_decode_kern_insn(ctxt);
343 }
344 
345 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
346 				   char *dst, char *buf, size_t size)
347 {
348 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
349 
350 	/*
351 	 * This function uses __put_user() independent of whether kernel or user
352 	 * memory is accessed. This works fine because __put_user() does no
353 	 * sanity checks of the pointer being accessed. All that it does is
354 	 * to report when the access failed.
355 	 *
356 	 * Also, this function runs in atomic context, so __put_user() is not
357 	 * allowed to sleep. The page-fault handler detects that it is running
358 	 * in atomic context and will not try to take mmap_sem and handle the
359 	 * fault, so additional pagefault_enable()/disable() calls are not
360 	 * needed.
361 	 *
362 	 * The access can't be done via copy_to_user() here because
363 	 * vc_write_mem() must not use string instructions to access unsafe
364 	 * memory. The reason is that MOVS is emulated by the #VC handler by
365 	 * splitting the move up into a read and a write and taking a nested #VC
366 	 * exception on whatever of them is the MMIO access. Using string
367 	 * instructions here would cause infinite nesting.
368 	 */
369 	switch (size) {
370 	case 1: {
371 		u8 d1;
372 		u8 __user *target = (u8 __user *)dst;
373 
374 		memcpy(&d1, buf, 1);
375 		if (__put_user(d1, target))
376 			goto fault;
377 		break;
378 	}
379 	case 2: {
380 		u16 d2;
381 		u16 __user *target = (u16 __user *)dst;
382 
383 		memcpy(&d2, buf, 2);
384 		if (__put_user(d2, target))
385 			goto fault;
386 		break;
387 	}
388 	case 4: {
389 		u32 d4;
390 		u32 __user *target = (u32 __user *)dst;
391 
392 		memcpy(&d4, buf, 4);
393 		if (__put_user(d4, target))
394 			goto fault;
395 		break;
396 	}
397 	case 8: {
398 		u64 d8;
399 		u64 __user *target = (u64 __user *)dst;
400 
401 		memcpy(&d8, buf, 8);
402 		if (__put_user(d8, target))
403 			goto fault;
404 		break;
405 	}
406 	default:
407 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
408 		return ES_UNSUPPORTED;
409 	}
410 
411 	return ES_OK;
412 
413 fault:
414 	if (user_mode(ctxt->regs))
415 		error_code |= X86_PF_USER;
416 
417 	ctxt->fi.vector = X86_TRAP_PF;
418 	ctxt->fi.error_code = error_code;
419 	ctxt->fi.cr2 = (unsigned long)dst;
420 
421 	return ES_EXCEPTION;
422 }
423 
424 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
425 				  char *src, char *buf, size_t size)
426 {
427 	unsigned long error_code = X86_PF_PROT;
428 
429 	/*
430 	 * This function uses __get_user() independent of whether kernel or user
431 	 * memory is accessed. This works fine because __get_user() does no
432 	 * sanity checks of the pointer being accessed. All that it does is
433 	 * to report when the access failed.
434 	 *
435 	 * Also, this function runs in atomic context, so __get_user() is not
436 	 * allowed to sleep. The page-fault handler detects that it is running
437 	 * in atomic context and will not try to take mmap_sem and handle the
438 	 * fault, so additional pagefault_enable()/disable() calls are not
439 	 * needed.
440 	 *
441 	 * The access can't be done via copy_from_user() here because
442 	 * vc_read_mem() must not use string instructions to access unsafe
443 	 * memory. The reason is that MOVS is emulated by the #VC handler by
444 	 * splitting the move up into a read and a write and taking a nested #VC
445 	 * exception on whatever of them is the MMIO access. Using string
446 	 * instructions here would cause infinite nesting.
447 	 */
448 	switch (size) {
449 	case 1: {
450 		u8 d1;
451 		u8 __user *s = (u8 __user *)src;
452 
453 		if (__get_user(d1, s))
454 			goto fault;
455 		memcpy(buf, &d1, 1);
456 		break;
457 	}
458 	case 2: {
459 		u16 d2;
460 		u16 __user *s = (u16 __user *)src;
461 
462 		if (__get_user(d2, s))
463 			goto fault;
464 		memcpy(buf, &d2, 2);
465 		break;
466 	}
467 	case 4: {
468 		u32 d4;
469 		u32 __user *s = (u32 __user *)src;
470 
471 		if (__get_user(d4, s))
472 			goto fault;
473 		memcpy(buf, &d4, 4);
474 		break;
475 	}
476 	case 8: {
477 		u64 d8;
478 		u64 __user *s = (u64 __user *)src;
479 		if (__get_user(d8, s))
480 			goto fault;
481 		memcpy(buf, &d8, 8);
482 		break;
483 	}
484 	default:
485 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
486 		return ES_UNSUPPORTED;
487 	}
488 
489 	return ES_OK;
490 
491 fault:
492 	if (user_mode(ctxt->regs))
493 		error_code |= X86_PF_USER;
494 
495 	ctxt->fi.vector = X86_TRAP_PF;
496 	ctxt->fi.error_code = error_code;
497 	ctxt->fi.cr2 = (unsigned long)src;
498 
499 	return ES_EXCEPTION;
500 }
501 
502 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
503 					   unsigned long vaddr, phys_addr_t *paddr)
504 {
505 	unsigned long va = (unsigned long)vaddr;
506 	unsigned int level;
507 	phys_addr_t pa;
508 	pgd_t *pgd;
509 	pte_t *pte;
510 
511 	pgd = __va(read_cr3_pa());
512 	pgd = &pgd[pgd_index(va)];
513 	pte = lookup_address_in_pgd(pgd, va, &level);
514 	if (!pte) {
515 		ctxt->fi.vector     = X86_TRAP_PF;
516 		ctxt->fi.cr2        = vaddr;
517 		ctxt->fi.error_code = 0;
518 
519 		if (user_mode(ctxt->regs))
520 			ctxt->fi.error_code |= X86_PF_USER;
521 
522 		return ES_EXCEPTION;
523 	}
524 
525 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
526 		/* Emulated MMIO to/from encrypted memory not supported */
527 		return ES_UNSUPPORTED;
528 
529 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
530 	pa |= va & ~page_level_mask(level);
531 
532 	*paddr = pa;
533 
534 	return ES_OK;
535 }
536 
537 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
538 {
539 	BUG_ON(size > 4);
540 
541 	if (user_mode(ctxt->regs)) {
542 		struct thread_struct *t = &current->thread;
543 		struct io_bitmap *iobm = t->io_bitmap;
544 		size_t idx;
545 
546 		if (!iobm)
547 			goto fault;
548 
549 		for (idx = port; idx < port + size; ++idx) {
550 			if (test_bit(idx, iobm->bitmap))
551 				goto fault;
552 		}
553 	}
554 
555 	return ES_OK;
556 
557 fault:
558 	ctxt->fi.vector = X86_TRAP_GP;
559 	ctxt->fi.error_code = 0;
560 
561 	return ES_EXCEPTION;
562 }
563 
564 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
565 {
566 	long error_code = ctxt->fi.error_code;
567 	int trapnr = ctxt->fi.vector;
568 
569 	ctxt->regs->orig_ax = ctxt->fi.error_code;
570 
571 	switch (trapnr) {
572 	case X86_TRAP_GP:
573 		exc_general_protection(ctxt->regs, error_code);
574 		break;
575 	case X86_TRAP_UD:
576 		exc_invalid_op(ctxt->regs);
577 		break;
578 	case X86_TRAP_PF:
579 		write_cr2(ctxt->fi.cr2);
580 		exc_page_fault(ctxt->regs, error_code);
581 		break;
582 	case X86_TRAP_AC:
583 		exc_alignment_check(ctxt->regs, error_code);
584 		break;
585 	default:
586 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
587 		BUG();
588 	}
589 }
590 
591 /* Include code shared with pre-decompression boot stage */
592 #include "shared.c"
593 
594 static inline struct svsm_ca *svsm_get_caa(void)
595 {
596 	/*
597 	 * Use rIP-relative references when called early in the boot. If
598 	 * ->use_cas is set, then it is late in the boot and no need
599 	 * to worry about rIP-relative references.
600 	 */
601 	if (RIP_REL_REF(sev_cfg).use_cas)
602 		return this_cpu_read(svsm_caa);
603 	else
604 		return RIP_REL_REF(boot_svsm_caa);
605 }
606 
607 static u64 svsm_get_caa_pa(void)
608 {
609 	/*
610 	 * Use rIP-relative references when called early in the boot. If
611 	 * ->use_cas is set, then it is late in the boot and no need
612 	 * to worry about rIP-relative references.
613 	 */
614 	if (RIP_REL_REF(sev_cfg).use_cas)
615 		return this_cpu_read(svsm_caa_pa);
616 	else
617 		return RIP_REL_REF(boot_svsm_caa_pa);
618 }
619 
620 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
621 {
622 	struct sev_es_runtime_data *data;
623 	struct ghcb *ghcb;
624 
625 	WARN_ON(!irqs_disabled());
626 
627 	data = this_cpu_read(runtime_data);
628 	ghcb = &data->ghcb_page;
629 
630 	if (state->ghcb) {
631 		/* Restore GHCB from Backup */
632 		*ghcb = *state->ghcb;
633 		data->backup_ghcb_active = false;
634 		state->ghcb = NULL;
635 	} else {
636 		/*
637 		 * Invalidate the GHCB so a VMGEXIT instruction issued
638 		 * from userspace won't appear to be valid.
639 		 */
640 		vc_ghcb_invalidate(ghcb);
641 		data->ghcb_active = false;
642 	}
643 }
644 
645 static int svsm_perform_call_protocol(struct svsm_call *call)
646 {
647 	struct ghcb_state state;
648 	unsigned long flags;
649 	struct ghcb *ghcb;
650 	int ret;
651 
652 	/*
653 	 * This can be called very early in the boot, use native functions in
654 	 * order to avoid paravirt issues.
655 	 */
656 	flags = native_local_irq_save();
657 
658 	/*
659 	 * Use rip-relative references when called early in the boot. If
660 	 * ghcbs_initialized is set, then it is late in the boot and no need
661 	 * to worry about rip-relative references in called functions.
662 	 */
663 	if (RIP_REL_REF(sev_cfg).ghcbs_initialized)
664 		ghcb = __sev_get_ghcb(&state);
665 	else if (RIP_REL_REF(boot_ghcb))
666 		ghcb = RIP_REL_REF(boot_ghcb);
667 	else
668 		ghcb = NULL;
669 
670 	do {
671 		ret = ghcb ? svsm_perform_ghcb_protocol(ghcb, call)
672 			   : svsm_perform_msr_protocol(call);
673 	} while (ret == -EAGAIN);
674 
675 	if (RIP_REL_REF(sev_cfg).ghcbs_initialized)
676 		__sev_put_ghcb(&state);
677 
678 	native_local_irq_restore(flags);
679 
680 	return ret;
681 }
682 
683 void noinstr __sev_es_nmi_complete(void)
684 {
685 	struct ghcb_state state;
686 	struct ghcb *ghcb;
687 
688 	ghcb = __sev_get_ghcb(&state);
689 
690 	vc_ghcb_invalidate(ghcb);
691 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
692 	ghcb_set_sw_exit_info_1(ghcb, 0);
693 	ghcb_set_sw_exit_info_2(ghcb, 0);
694 
695 	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
696 	VMGEXIT();
697 
698 	__sev_put_ghcb(&state);
699 }
700 
701 static u64 __init get_snp_jump_table_addr(void)
702 {
703 	struct snp_secrets_page *secrets;
704 	void __iomem *mem;
705 	u64 addr;
706 
707 	mem = ioremap_encrypted(secrets_pa, PAGE_SIZE);
708 	if (!mem) {
709 		pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
710 		return 0;
711 	}
712 
713 	secrets = (__force struct snp_secrets_page *)mem;
714 
715 	addr = secrets->os_area.ap_jump_table_pa;
716 	iounmap(mem);
717 
718 	return addr;
719 }
720 
721 static u64 __init get_jump_table_addr(void)
722 {
723 	struct ghcb_state state;
724 	unsigned long flags;
725 	struct ghcb *ghcb;
726 	u64 ret = 0;
727 
728 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
729 		return get_snp_jump_table_addr();
730 
731 	local_irq_save(flags);
732 
733 	ghcb = __sev_get_ghcb(&state);
734 
735 	vc_ghcb_invalidate(ghcb);
736 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
737 	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
738 	ghcb_set_sw_exit_info_2(ghcb, 0);
739 
740 	sev_es_wr_ghcb_msr(__pa(ghcb));
741 	VMGEXIT();
742 
743 	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
744 	    ghcb_sw_exit_info_2_is_valid(ghcb))
745 		ret = ghcb->save.sw_exit_info_2;
746 
747 	__sev_put_ghcb(&state);
748 
749 	local_irq_restore(flags);
750 
751 	return ret;
752 }
753 
754 static void __head
755 early_set_pages_state(unsigned long vaddr, unsigned long paddr,
756 		      unsigned long npages, enum psc_op op)
757 {
758 	unsigned long paddr_end;
759 	u64 val;
760 
761 	vaddr = vaddr & PAGE_MASK;
762 
763 	paddr = paddr & PAGE_MASK;
764 	paddr_end = paddr + (npages << PAGE_SHIFT);
765 
766 	while (paddr < paddr_end) {
767 		/* Page validation must be rescinded before changing to shared */
768 		if (op == SNP_PAGE_STATE_SHARED)
769 			pvalidate_4k_page(vaddr, paddr, false);
770 
771 		/*
772 		 * Use the MSR protocol because this function can be called before
773 		 * the GHCB is established.
774 		 */
775 		sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
776 		VMGEXIT();
777 
778 		val = sev_es_rd_ghcb_msr();
779 
780 		if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
781 			 "Wrong PSC response code: 0x%x\n",
782 			 (unsigned int)GHCB_RESP_CODE(val)))
783 			goto e_term;
784 
785 		if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
786 			 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
787 			 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
788 			 paddr, GHCB_MSR_PSC_RESP_VAL(val)))
789 			goto e_term;
790 
791 		/* Page validation must be performed after changing to private */
792 		if (op == SNP_PAGE_STATE_PRIVATE)
793 			pvalidate_4k_page(vaddr, paddr, true);
794 
795 		vaddr += PAGE_SIZE;
796 		paddr += PAGE_SIZE;
797 	}
798 
799 	return;
800 
801 e_term:
802 	sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
803 }
804 
805 void __head early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
806 					 unsigned long npages)
807 {
808 	/*
809 	 * This can be invoked in early boot while running identity mapped, so
810 	 * use an open coded check for SNP instead of using cc_platform_has().
811 	 * This eliminates worries about jump tables or checking boot_cpu_data
812 	 * in the cc_platform_has() function.
813 	 */
814 	if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
815 		return;
816 
817 	 /*
818 	  * Ask the hypervisor to mark the memory pages as private in the RMP
819 	  * table.
820 	  */
821 	early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_PRIVATE);
822 }
823 
824 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
825 					unsigned long npages)
826 {
827 	/*
828 	 * This can be invoked in early boot while running identity mapped, so
829 	 * use an open coded check for SNP instead of using cc_platform_has().
830 	 * This eliminates worries about jump tables or checking boot_cpu_data
831 	 * in the cc_platform_has() function.
832 	 */
833 	if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
834 		return;
835 
836 	 /* Ask hypervisor to mark the memory pages shared in the RMP table. */
837 	early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_SHARED);
838 }
839 
840 static unsigned long __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
841 				       unsigned long vaddr_end, int op)
842 {
843 	struct ghcb_state state;
844 	bool use_large_entry;
845 	struct psc_hdr *hdr;
846 	struct psc_entry *e;
847 	unsigned long flags;
848 	unsigned long pfn;
849 	struct ghcb *ghcb;
850 	int i;
851 
852 	hdr = &data->hdr;
853 	e = data->entries;
854 
855 	memset(data, 0, sizeof(*data));
856 	i = 0;
857 
858 	while (vaddr < vaddr_end && i < ARRAY_SIZE(data->entries)) {
859 		hdr->end_entry = i;
860 
861 		if (is_vmalloc_addr((void *)vaddr)) {
862 			pfn = vmalloc_to_pfn((void *)vaddr);
863 			use_large_entry = false;
864 		} else {
865 			pfn = __pa(vaddr) >> PAGE_SHIFT;
866 			use_large_entry = true;
867 		}
868 
869 		e->gfn = pfn;
870 		e->operation = op;
871 
872 		if (use_large_entry && IS_ALIGNED(vaddr, PMD_SIZE) &&
873 		    (vaddr_end - vaddr) >= PMD_SIZE) {
874 			e->pagesize = RMP_PG_SIZE_2M;
875 			vaddr += PMD_SIZE;
876 		} else {
877 			e->pagesize = RMP_PG_SIZE_4K;
878 			vaddr += PAGE_SIZE;
879 		}
880 
881 		e++;
882 		i++;
883 	}
884 
885 	/* Page validation must be rescinded before changing to shared */
886 	if (op == SNP_PAGE_STATE_SHARED)
887 		pvalidate_pages(data);
888 
889 	local_irq_save(flags);
890 
891 	if (sev_cfg.ghcbs_initialized)
892 		ghcb = __sev_get_ghcb(&state);
893 	else
894 		ghcb = boot_ghcb;
895 
896 	/* Invoke the hypervisor to perform the page state changes */
897 	if (!ghcb || vmgexit_psc(ghcb, data))
898 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
899 
900 	if (sev_cfg.ghcbs_initialized)
901 		__sev_put_ghcb(&state);
902 
903 	local_irq_restore(flags);
904 
905 	/* Page validation must be performed after changing to private */
906 	if (op == SNP_PAGE_STATE_PRIVATE)
907 		pvalidate_pages(data);
908 
909 	return vaddr;
910 }
911 
912 static void set_pages_state(unsigned long vaddr, unsigned long npages, int op)
913 {
914 	struct snp_psc_desc desc;
915 	unsigned long vaddr_end;
916 
917 	/* Use the MSR protocol when a GHCB is not available. */
918 	if (!boot_ghcb)
919 		return early_set_pages_state(vaddr, __pa(vaddr), npages, op);
920 
921 	vaddr = vaddr & PAGE_MASK;
922 	vaddr_end = vaddr + (npages << PAGE_SHIFT);
923 
924 	while (vaddr < vaddr_end)
925 		vaddr = __set_pages_state(&desc, vaddr, vaddr_end, op);
926 }
927 
928 void snp_set_memory_shared(unsigned long vaddr, unsigned long npages)
929 {
930 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
931 		return;
932 
933 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
934 }
935 
936 void snp_set_memory_private(unsigned long vaddr, unsigned long npages)
937 {
938 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
939 		return;
940 
941 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
942 }
943 
944 void snp_accept_memory(phys_addr_t start, phys_addr_t end)
945 {
946 	unsigned long vaddr, npages;
947 
948 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
949 		return;
950 
951 	vaddr = (unsigned long)__va(start);
952 	npages = (end - start) >> PAGE_SHIFT;
953 
954 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
955 }
956 
957 static void set_pte_enc(pte_t *kpte, int level, void *va)
958 {
959 	struct pte_enc_desc d = {
960 		.kpte	   = kpte,
961 		.pte_level = level,
962 		.va	   = va,
963 		.encrypt   = true
964 	};
965 
966 	prepare_pte_enc(&d);
967 	set_pte_enc_mask(kpte, d.pfn, d.new_pgprot);
968 }
969 
970 static void unshare_all_memory(void)
971 {
972 	unsigned long addr, end, size, ghcb;
973 	struct sev_es_runtime_data *data;
974 	unsigned int npages, level;
975 	bool skipped_addr;
976 	pte_t *pte;
977 	int cpu;
978 
979 	/* Unshare the direct mapping. */
980 	addr = PAGE_OFFSET;
981 	end  = PAGE_OFFSET + get_max_mapped();
982 
983 	while (addr < end) {
984 		pte = lookup_address(addr, &level);
985 		size = page_level_size(level);
986 		npages = size / PAGE_SIZE;
987 		skipped_addr = false;
988 
989 		if (!pte || !pte_decrypted(*pte) || pte_none(*pte)) {
990 			addr += size;
991 			continue;
992 		}
993 
994 		/*
995 		 * Ensure that all the per-CPU GHCBs are made private at the
996 		 * end of the unsharing loop so that the switch to the slower
997 		 * MSR protocol happens last.
998 		 */
999 		for_each_possible_cpu(cpu) {
1000 			data = per_cpu(runtime_data, cpu);
1001 			ghcb = (unsigned long)&data->ghcb_page;
1002 
1003 			if (addr <= ghcb && ghcb <= addr + size) {
1004 				skipped_addr = true;
1005 				break;
1006 			}
1007 		}
1008 
1009 		if (!skipped_addr) {
1010 			set_pte_enc(pte, level, (void *)addr);
1011 			snp_set_memory_private(addr, npages);
1012 		}
1013 		addr += size;
1014 	}
1015 
1016 	/* Unshare all bss decrypted memory. */
1017 	addr = (unsigned long)__start_bss_decrypted;
1018 	end  = (unsigned long)__start_bss_decrypted_unused;
1019 	npages = (end - addr) >> PAGE_SHIFT;
1020 
1021 	for (; addr < end; addr += PAGE_SIZE) {
1022 		pte = lookup_address(addr, &level);
1023 		if (!pte || !pte_decrypted(*pte) || pte_none(*pte))
1024 			continue;
1025 
1026 		set_pte_enc(pte, level, (void *)addr);
1027 	}
1028 	addr = (unsigned long)__start_bss_decrypted;
1029 	snp_set_memory_private(addr, npages);
1030 
1031 	__flush_tlb_all();
1032 }
1033 
1034 /* Stop new private<->shared conversions */
1035 void snp_kexec_begin(void)
1036 {
1037 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1038 		return;
1039 
1040 	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
1041 		return;
1042 
1043 	/*
1044 	 * Crash kernel ends up here with interrupts disabled: can't wait for
1045 	 * conversions to finish.
1046 	 *
1047 	 * If race happened, just report and proceed.
1048 	 */
1049 	if (!set_memory_enc_stop_conversion())
1050 		pr_warn("Failed to stop shared<->private conversions\n");
1051 }
1052 
1053 void snp_kexec_finish(void)
1054 {
1055 	struct sev_es_runtime_data *data;
1056 	unsigned int level, cpu;
1057 	unsigned long size;
1058 	struct ghcb *ghcb;
1059 	pte_t *pte;
1060 
1061 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1062 		return;
1063 
1064 	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
1065 		return;
1066 
1067 	unshare_all_memory();
1068 
1069 	/*
1070 	 * Switch to using the MSR protocol to change per-CPU GHCBs to
1071 	 * private. All the per-CPU GHCBs have been switched back to private,
1072 	 * so can't do any more GHCB calls to the hypervisor beyond this point
1073 	 * until the kexec'ed kernel starts running.
1074 	 */
1075 	boot_ghcb = NULL;
1076 	sev_cfg.ghcbs_initialized = false;
1077 
1078 	for_each_possible_cpu(cpu) {
1079 		data = per_cpu(runtime_data, cpu);
1080 		ghcb = &data->ghcb_page;
1081 		pte = lookup_address((unsigned long)ghcb, &level);
1082 		size = page_level_size(level);
1083 		set_pte_enc(pte, level, (void *)ghcb);
1084 		snp_set_memory_private((unsigned long)ghcb, (size / PAGE_SIZE));
1085 	}
1086 }
1087 
1088 static int snp_set_vmsa(void *va, void *caa, int apic_id, bool make_vmsa)
1089 {
1090 	int ret;
1091 
1092 	if (snp_vmpl) {
1093 		struct svsm_call call = {};
1094 		unsigned long flags;
1095 
1096 		local_irq_save(flags);
1097 
1098 		call.caa = this_cpu_read(svsm_caa);
1099 		call.rcx = __pa(va);
1100 
1101 		if (make_vmsa) {
1102 			/* Protocol 0, Call ID 2 */
1103 			call.rax = SVSM_CORE_CALL(SVSM_CORE_CREATE_VCPU);
1104 			call.rdx = __pa(caa);
1105 			call.r8  = apic_id;
1106 		} else {
1107 			/* Protocol 0, Call ID 3 */
1108 			call.rax = SVSM_CORE_CALL(SVSM_CORE_DELETE_VCPU);
1109 		}
1110 
1111 		ret = svsm_perform_call_protocol(&call);
1112 
1113 		local_irq_restore(flags);
1114 	} else {
1115 		/*
1116 		 * If the kernel runs at VMPL0, it can change the VMSA
1117 		 * bit for a page using the RMPADJUST instruction.
1118 		 * However, for the instruction to succeed it must
1119 		 * target the permissions of a lesser privileged (higher
1120 		 * numbered) VMPL level, so use VMPL1.
1121 		 */
1122 		u64 attrs = 1;
1123 
1124 		if (make_vmsa)
1125 			attrs |= RMPADJUST_VMSA_PAGE_BIT;
1126 
1127 		ret = rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
1128 	}
1129 
1130 	return ret;
1131 }
1132 
1133 #define __ATTR_BASE		(SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
1134 #define INIT_CS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
1135 #define INIT_DS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
1136 
1137 #define INIT_LDTR_ATTRIBS	(SVM_SELECTOR_P_MASK | 2)
1138 #define INIT_TR_ATTRIBS		(SVM_SELECTOR_P_MASK | 3)
1139 
1140 static void *snp_alloc_vmsa_page(int cpu)
1141 {
1142 	struct page *p;
1143 
1144 	/*
1145 	 * Allocate VMSA page to work around the SNP erratum where the CPU will
1146 	 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
1147 	 * collides with the RMP entry of VMSA page. The recommended workaround
1148 	 * is to not use a large page.
1149 	 *
1150 	 * Allocate an 8k page which is also 8k-aligned.
1151 	 */
1152 	p = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
1153 	if (!p)
1154 		return NULL;
1155 
1156 	split_page(p, 1);
1157 
1158 	/* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
1159 	__free_page(p);
1160 
1161 	return page_address(p + 1);
1162 }
1163 
1164 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa, int apic_id)
1165 {
1166 	int err;
1167 
1168 	err = snp_set_vmsa(vmsa, NULL, apic_id, false);
1169 	if (err)
1170 		pr_err("clear VMSA page failed (%u), leaking page\n", err);
1171 	else
1172 		free_page((unsigned long)vmsa);
1173 }
1174 
1175 static int wakeup_cpu_via_vmgexit(u32 apic_id, unsigned long start_ip)
1176 {
1177 	struct sev_es_save_area *cur_vmsa, *vmsa;
1178 	struct ghcb_state state;
1179 	struct svsm_ca *caa;
1180 	unsigned long flags;
1181 	struct ghcb *ghcb;
1182 	u8 sipi_vector;
1183 	int cpu, ret;
1184 	u64 cr4;
1185 
1186 	/*
1187 	 * The hypervisor SNP feature support check has happened earlier, just check
1188 	 * the AP_CREATION one here.
1189 	 */
1190 	if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
1191 		return -EOPNOTSUPP;
1192 
1193 	/*
1194 	 * Verify the desired start IP against the known trampoline start IP
1195 	 * to catch any future new trampolines that may be introduced that
1196 	 * would require a new protected guest entry point.
1197 	 */
1198 	if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
1199 		      "Unsupported SNP start_ip: %lx\n", start_ip))
1200 		return -EINVAL;
1201 
1202 	/* Override start_ip with known protected guest start IP */
1203 	start_ip = real_mode_header->sev_es_trampoline_start;
1204 
1205 	/* Find the logical CPU for the APIC ID */
1206 	for_each_present_cpu(cpu) {
1207 		if (arch_match_cpu_phys_id(cpu, apic_id))
1208 			break;
1209 	}
1210 	if (cpu >= nr_cpu_ids)
1211 		return -EINVAL;
1212 
1213 	cur_vmsa = per_cpu(sev_vmsa, cpu);
1214 
1215 	/*
1216 	 * A new VMSA is created each time because there is no guarantee that
1217 	 * the current VMSA is the kernels or that the vCPU is not running. If
1218 	 * an attempt was done to use the current VMSA with a running vCPU, a
1219 	 * #VMEXIT of that vCPU would wipe out all of the settings being done
1220 	 * here.
1221 	 */
1222 	vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page(cpu);
1223 	if (!vmsa)
1224 		return -ENOMEM;
1225 
1226 	/* If an SVSM is present, the SVSM per-CPU CAA will be !NULL */
1227 	caa = per_cpu(svsm_caa, cpu);
1228 
1229 	/* CR4 should maintain the MCE value */
1230 	cr4 = native_read_cr4() & X86_CR4_MCE;
1231 
1232 	/* Set the CS value based on the start_ip converted to a SIPI vector */
1233 	sipi_vector		= (start_ip >> 12);
1234 	vmsa->cs.base		= sipi_vector << 12;
1235 	vmsa->cs.limit		= AP_INIT_CS_LIMIT;
1236 	vmsa->cs.attrib		= INIT_CS_ATTRIBS;
1237 	vmsa->cs.selector	= sipi_vector << 8;
1238 
1239 	/* Set the RIP value based on start_ip */
1240 	vmsa->rip		= start_ip & 0xfff;
1241 
1242 	/* Set AP INIT defaults as documented in the APM */
1243 	vmsa->ds.limit		= AP_INIT_DS_LIMIT;
1244 	vmsa->ds.attrib		= INIT_DS_ATTRIBS;
1245 	vmsa->es		= vmsa->ds;
1246 	vmsa->fs		= vmsa->ds;
1247 	vmsa->gs		= vmsa->ds;
1248 	vmsa->ss		= vmsa->ds;
1249 
1250 	vmsa->gdtr.limit	= AP_INIT_GDTR_LIMIT;
1251 	vmsa->ldtr.limit	= AP_INIT_LDTR_LIMIT;
1252 	vmsa->ldtr.attrib	= INIT_LDTR_ATTRIBS;
1253 	vmsa->idtr.limit	= AP_INIT_IDTR_LIMIT;
1254 	vmsa->tr.limit		= AP_INIT_TR_LIMIT;
1255 	vmsa->tr.attrib		= INIT_TR_ATTRIBS;
1256 
1257 	vmsa->cr4		= cr4;
1258 	vmsa->cr0		= AP_INIT_CR0_DEFAULT;
1259 	vmsa->dr7		= DR7_RESET_VALUE;
1260 	vmsa->dr6		= AP_INIT_DR6_DEFAULT;
1261 	vmsa->rflags		= AP_INIT_RFLAGS_DEFAULT;
1262 	vmsa->g_pat		= AP_INIT_GPAT_DEFAULT;
1263 	vmsa->xcr0		= AP_INIT_XCR0_DEFAULT;
1264 	vmsa->mxcsr		= AP_INIT_MXCSR_DEFAULT;
1265 	vmsa->x87_ftw		= AP_INIT_X87_FTW_DEFAULT;
1266 	vmsa->x87_fcw		= AP_INIT_X87_FCW_DEFAULT;
1267 
1268 	/* SVME must be set. */
1269 	vmsa->efer		= EFER_SVME;
1270 
1271 	/*
1272 	 * Set the SNP-specific fields for this VMSA:
1273 	 *   VMPL level
1274 	 *   SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
1275 	 */
1276 	vmsa->vmpl		= snp_vmpl;
1277 	vmsa->sev_features	= sev_status >> 2;
1278 
1279 	/* Switch the page over to a VMSA page now that it is initialized */
1280 	ret = snp_set_vmsa(vmsa, caa, apic_id, true);
1281 	if (ret) {
1282 		pr_err("set VMSA page failed (%u)\n", ret);
1283 		free_page((unsigned long)vmsa);
1284 
1285 		return -EINVAL;
1286 	}
1287 
1288 	/* Issue VMGEXIT AP Creation NAE event */
1289 	local_irq_save(flags);
1290 
1291 	ghcb = __sev_get_ghcb(&state);
1292 
1293 	vc_ghcb_invalidate(ghcb);
1294 	ghcb_set_rax(ghcb, vmsa->sev_features);
1295 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
1296 	ghcb_set_sw_exit_info_1(ghcb,
1297 				((u64)apic_id << 32)	|
1298 				((u64)snp_vmpl << 16)	|
1299 				SVM_VMGEXIT_AP_CREATE);
1300 	ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
1301 
1302 	sev_es_wr_ghcb_msr(__pa(ghcb));
1303 	VMGEXIT();
1304 
1305 	if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
1306 	    lower_32_bits(ghcb->save.sw_exit_info_1)) {
1307 		pr_err("SNP AP Creation error\n");
1308 		ret = -EINVAL;
1309 	}
1310 
1311 	__sev_put_ghcb(&state);
1312 
1313 	local_irq_restore(flags);
1314 
1315 	/* Perform cleanup if there was an error */
1316 	if (ret) {
1317 		snp_cleanup_vmsa(vmsa, apic_id);
1318 		vmsa = NULL;
1319 	}
1320 
1321 	/* Free up any previous VMSA page */
1322 	if (cur_vmsa)
1323 		snp_cleanup_vmsa(cur_vmsa, apic_id);
1324 
1325 	/* Record the current VMSA page */
1326 	per_cpu(sev_vmsa, cpu) = vmsa;
1327 
1328 	return ret;
1329 }
1330 
1331 void __init snp_set_wakeup_secondary_cpu(void)
1332 {
1333 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1334 		return;
1335 
1336 	/*
1337 	 * Always set this override if SNP is enabled. This makes it the
1338 	 * required method to start APs under SNP. If the hypervisor does
1339 	 * not support AP creation, then no APs will be started.
1340 	 */
1341 	apic_update_callback(wakeup_secondary_cpu, wakeup_cpu_via_vmgexit);
1342 }
1343 
1344 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
1345 {
1346 	u16 startup_cs, startup_ip;
1347 	phys_addr_t jump_table_pa;
1348 	u64 jump_table_addr;
1349 	u16 __iomem *jump_table;
1350 
1351 	jump_table_addr = get_jump_table_addr();
1352 
1353 	/* On UP guests there is no jump table so this is not a failure */
1354 	if (!jump_table_addr)
1355 		return 0;
1356 
1357 	/* Check if AP Jump Table is page-aligned */
1358 	if (jump_table_addr & ~PAGE_MASK)
1359 		return -EINVAL;
1360 
1361 	jump_table_pa = jump_table_addr & PAGE_MASK;
1362 
1363 	startup_cs = (u16)(rmh->trampoline_start >> 4);
1364 	startup_ip = (u16)(rmh->sev_es_trampoline_start -
1365 			   rmh->trampoline_start);
1366 
1367 	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
1368 	if (!jump_table)
1369 		return -EIO;
1370 
1371 	writew(startup_ip, &jump_table[0]);
1372 	writew(startup_cs, &jump_table[1]);
1373 
1374 	iounmap(jump_table);
1375 
1376 	return 0;
1377 }
1378 
1379 /*
1380  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
1381  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
1382  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
1383  */
1384 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
1385 {
1386 	struct sev_es_runtime_data *data;
1387 	unsigned long address, pflags;
1388 	int cpu;
1389 	u64 pfn;
1390 
1391 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1392 		return 0;
1393 
1394 	pflags = _PAGE_NX | _PAGE_RW;
1395 
1396 	for_each_possible_cpu(cpu) {
1397 		data = per_cpu(runtime_data, cpu);
1398 
1399 		address = __pa(&data->ghcb_page);
1400 		pfn = address >> PAGE_SHIFT;
1401 
1402 		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
1403 			return 1;
1404 	}
1405 
1406 	return 0;
1407 }
1408 
1409 /* Writes to the SVSM CAA MSR are ignored */
1410 static enum es_result __vc_handle_msr_caa(struct pt_regs *regs, bool write)
1411 {
1412 	if (write)
1413 		return ES_OK;
1414 
1415 	regs->ax = lower_32_bits(this_cpu_read(svsm_caa_pa));
1416 	regs->dx = upper_32_bits(this_cpu_read(svsm_caa_pa));
1417 
1418 	return ES_OK;
1419 }
1420 
1421 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1422 {
1423 	struct pt_regs *regs = ctxt->regs;
1424 	enum es_result ret;
1425 	bool write;
1426 
1427 	/* Is it a WRMSR? */
1428 	write = ctxt->insn.opcode.bytes[1] == 0x30;
1429 
1430 	if (regs->cx == MSR_SVSM_CAA)
1431 		return __vc_handle_msr_caa(regs, write);
1432 
1433 	ghcb_set_rcx(ghcb, regs->cx);
1434 	if (write) {
1435 		ghcb_set_rax(ghcb, regs->ax);
1436 		ghcb_set_rdx(ghcb, regs->dx);
1437 	}
1438 
1439 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, write, 0);
1440 
1441 	if ((ret == ES_OK) && !write) {
1442 		regs->ax = ghcb->save.rax;
1443 		regs->dx = ghcb->save.rdx;
1444 	}
1445 
1446 	return ret;
1447 }
1448 
1449 static void snp_register_per_cpu_ghcb(void)
1450 {
1451 	struct sev_es_runtime_data *data;
1452 	struct ghcb *ghcb;
1453 
1454 	data = this_cpu_read(runtime_data);
1455 	ghcb = &data->ghcb_page;
1456 
1457 	snp_register_ghcb_early(__pa(ghcb));
1458 }
1459 
1460 void setup_ghcb(void)
1461 {
1462 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1463 		return;
1464 
1465 	/*
1466 	 * Check whether the runtime #VC exception handler is active. It uses
1467 	 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
1468 	 *
1469 	 * If SNP is active, register the per-CPU GHCB page so that the runtime
1470 	 * exception handler can use it.
1471 	 */
1472 	if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
1473 		if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1474 			snp_register_per_cpu_ghcb();
1475 
1476 		sev_cfg.ghcbs_initialized = true;
1477 
1478 		return;
1479 	}
1480 
1481 	/*
1482 	 * Make sure the hypervisor talks a supported protocol.
1483 	 * This gets called only in the BSP boot phase.
1484 	 */
1485 	if (!sev_es_negotiate_protocol())
1486 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1487 
1488 	/*
1489 	 * Clear the boot_ghcb. The first exception comes in before the bss
1490 	 * section is cleared.
1491 	 */
1492 	memset(&boot_ghcb_page, 0, PAGE_SIZE);
1493 
1494 	/* Alright - Make the boot-ghcb public */
1495 	boot_ghcb = &boot_ghcb_page;
1496 
1497 	/* SNP guest requires that GHCB GPA must be registered. */
1498 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1499 		snp_register_ghcb_early(__pa(&boot_ghcb_page));
1500 }
1501 
1502 #ifdef CONFIG_HOTPLUG_CPU
1503 static void sev_es_ap_hlt_loop(void)
1504 {
1505 	struct ghcb_state state;
1506 	struct ghcb *ghcb;
1507 
1508 	ghcb = __sev_get_ghcb(&state);
1509 
1510 	while (true) {
1511 		vc_ghcb_invalidate(ghcb);
1512 		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
1513 		ghcb_set_sw_exit_info_1(ghcb, 0);
1514 		ghcb_set_sw_exit_info_2(ghcb, 0);
1515 
1516 		sev_es_wr_ghcb_msr(__pa(ghcb));
1517 		VMGEXIT();
1518 
1519 		/* Wakeup signal? */
1520 		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
1521 		    ghcb->save.sw_exit_info_2)
1522 			break;
1523 	}
1524 
1525 	__sev_put_ghcb(&state);
1526 }
1527 
1528 /*
1529  * Play_dead handler when running under SEV-ES. This is needed because
1530  * the hypervisor can't deliver an SIPI request to restart the AP.
1531  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
1532  * hypervisor wakes it up again.
1533  */
1534 static void sev_es_play_dead(void)
1535 {
1536 	play_dead_common();
1537 
1538 	/* IRQs now disabled */
1539 
1540 	sev_es_ap_hlt_loop();
1541 
1542 	/*
1543 	 * If we get here, the VCPU was woken up again. Jump to CPU
1544 	 * startup code to get it back online.
1545 	 */
1546 	soft_restart_cpu();
1547 }
1548 #else  /* CONFIG_HOTPLUG_CPU */
1549 #define sev_es_play_dead	native_play_dead
1550 #endif /* CONFIG_HOTPLUG_CPU */
1551 
1552 #ifdef CONFIG_SMP
1553 static void __init sev_es_setup_play_dead(void)
1554 {
1555 	smp_ops.play_dead = sev_es_play_dead;
1556 }
1557 #else
1558 static inline void sev_es_setup_play_dead(void) { }
1559 #endif
1560 
1561 static void __init alloc_runtime_data(int cpu)
1562 {
1563 	struct sev_es_runtime_data *data;
1564 
1565 	data = memblock_alloc_node(sizeof(*data), PAGE_SIZE, cpu_to_node(cpu));
1566 	if (!data)
1567 		panic("Can't allocate SEV-ES runtime data");
1568 
1569 	per_cpu(runtime_data, cpu) = data;
1570 
1571 	if (snp_vmpl) {
1572 		struct svsm_ca *caa;
1573 
1574 		/* Allocate the SVSM CA page if an SVSM is present */
1575 		caa = memblock_alloc(sizeof(*caa), PAGE_SIZE);
1576 		if (!caa)
1577 			panic("Can't allocate SVSM CA page\n");
1578 
1579 		per_cpu(svsm_caa, cpu) = caa;
1580 		per_cpu(svsm_caa_pa, cpu) = __pa(caa);
1581 	}
1582 }
1583 
1584 static void __init init_ghcb(int cpu)
1585 {
1586 	struct sev_es_runtime_data *data;
1587 	int err;
1588 
1589 	data = per_cpu(runtime_data, cpu);
1590 
1591 	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
1592 					 sizeof(data->ghcb_page));
1593 	if (err)
1594 		panic("Can't map GHCBs unencrypted");
1595 
1596 	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
1597 
1598 	data->ghcb_active = false;
1599 	data->backup_ghcb_active = false;
1600 }
1601 
1602 void __init sev_es_init_vc_handling(void)
1603 {
1604 	int cpu;
1605 
1606 	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
1607 
1608 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1609 		return;
1610 
1611 	if (!sev_es_check_cpu_features())
1612 		panic("SEV-ES CPU Features missing");
1613 
1614 	/*
1615 	 * SNP is supported in v2 of the GHCB spec which mandates support for HV
1616 	 * features.
1617 	 */
1618 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
1619 		sev_hv_features = get_hv_features();
1620 
1621 		if (!(sev_hv_features & GHCB_HV_FT_SNP))
1622 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
1623 	}
1624 
1625 	/* Initialize per-cpu GHCB pages */
1626 	for_each_possible_cpu(cpu) {
1627 		alloc_runtime_data(cpu);
1628 		init_ghcb(cpu);
1629 	}
1630 
1631 	/* If running under an SVSM, switch to the per-cpu CA */
1632 	if (snp_vmpl) {
1633 		struct svsm_call call = {};
1634 		unsigned long flags;
1635 		int ret;
1636 
1637 		local_irq_save(flags);
1638 
1639 		/*
1640 		 * SVSM_CORE_REMAP_CA call:
1641 		 *   RAX = 0 (Protocol=0, CallID=0)
1642 		 *   RCX = New CA GPA
1643 		 */
1644 		call.caa = svsm_get_caa();
1645 		call.rax = SVSM_CORE_CALL(SVSM_CORE_REMAP_CA);
1646 		call.rcx = this_cpu_read(svsm_caa_pa);
1647 		ret = svsm_perform_call_protocol(&call);
1648 		if (ret)
1649 			panic("Can't remap the SVSM CA, ret=%d, rax_out=0x%llx\n",
1650 			      ret, call.rax_out);
1651 
1652 		sev_cfg.use_cas = true;
1653 
1654 		local_irq_restore(flags);
1655 	}
1656 
1657 	sev_es_setup_play_dead();
1658 
1659 	/* Secondary CPUs use the runtime #VC handler */
1660 	initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
1661 }
1662 
1663 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
1664 {
1665 	int trapnr = ctxt->fi.vector;
1666 
1667 	if (trapnr == X86_TRAP_PF)
1668 		native_write_cr2(ctxt->fi.cr2);
1669 
1670 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1671 	do_early_exception(ctxt->regs, trapnr);
1672 }
1673 
1674 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
1675 {
1676 	long *reg_array;
1677 	int offset;
1678 
1679 	reg_array = (long *)ctxt->regs;
1680 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
1681 
1682 	if (offset < 0)
1683 		return NULL;
1684 
1685 	offset /= sizeof(long);
1686 
1687 	return reg_array + offset;
1688 }
1689 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
1690 				 unsigned int bytes, bool read)
1691 {
1692 	u64 exit_code, exit_info_1, exit_info_2;
1693 	unsigned long ghcb_pa = __pa(ghcb);
1694 	enum es_result res;
1695 	phys_addr_t paddr;
1696 	void __user *ref;
1697 
1698 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
1699 	if (ref == (void __user *)-1L)
1700 		return ES_UNSUPPORTED;
1701 
1702 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
1703 
1704 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
1705 	if (res != ES_OK) {
1706 		if (res == ES_EXCEPTION && !read)
1707 			ctxt->fi.error_code |= X86_PF_WRITE;
1708 
1709 		return res;
1710 	}
1711 
1712 	exit_info_1 = paddr;
1713 	/* Can never be greater than 8 */
1714 	exit_info_2 = bytes;
1715 
1716 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
1717 
1718 	return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
1719 }
1720 
1721 /*
1722  * The MOVS instruction has two memory operands, which raises the
1723  * problem that it is not known whether the access to the source or the
1724  * destination caused the #VC exception (and hence whether an MMIO read
1725  * or write operation needs to be emulated).
1726  *
1727  * Instead of playing games with walking page-tables and trying to guess
1728  * whether the source or destination is an MMIO range, split the move
1729  * into two operations, a read and a write with only one memory operand.
1730  * This will cause a nested #VC exception on the MMIO address which can
1731  * then be handled.
1732  *
1733  * This implementation has the benefit that it also supports MOVS where
1734  * source _and_ destination are MMIO regions.
1735  *
1736  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
1737  * rare operation. If it turns out to be a performance problem the split
1738  * operations can be moved to memcpy_fromio() and memcpy_toio().
1739  */
1740 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
1741 					  unsigned int bytes)
1742 {
1743 	unsigned long ds_base, es_base;
1744 	unsigned char *src, *dst;
1745 	unsigned char buffer[8];
1746 	enum es_result ret;
1747 	bool rep;
1748 	int off;
1749 
1750 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
1751 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
1752 
1753 	if (ds_base == -1L || es_base == -1L) {
1754 		ctxt->fi.vector = X86_TRAP_GP;
1755 		ctxt->fi.error_code = 0;
1756 		return ES_EXCEPTION;
1757 	}
1758 
1759 	src = ds_base + (unsigned char *)ctxt->regs->si;
1760 	dst = es_base + (unsigned char *)ctxt->regs->di;
1761 
1762 	ret = vc_read_mem(ctxt, src, buffer, bytes);
1763 	if (ret != ES_OK)
1764 		return ret;
1765 
1766 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
1767 	if (ret != ES_OK)
1768 		return ret;
1769 
1770 	if (ctxt->regs->flags & X86_EFLAGS_DF)
1771 		off = -bytes;
1772 	else
1773 		off =  bytes;
1774 
1775 	ctxt->regs->si += off;
1776 	ctxt->regs->di += off;
1777 
1778 	rep = insn_has_rep_prefix(&ctxt->insn);
1779 	if (rep)
1780 		ctxt->regs->cx -= 1;
1781 
1782 	if (!rep || ctxt->regs->cx == 0)
1783 		return ES_OK;
1784 	else
1785 		return ES_RETRY;
1786 }
1787 
1788 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1789 {
1790 	struct insn *insn = &ctxt->insn;
1791 	enum insn_mmio_type mmio;
1792 	unsigned int bytes = 0;
1793 	enum es_result ret;
1794 	u8 sign_byte;
1795 	long *reg_data;
1796 
1797 	mmio = insn_decode_mmio(insn, &bytes);
1798 	if (mmio == INSN_MMIO_DECODE_FAILED)
1799 		return ES_DECODE_FAILED;
1800 
1801 	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
1802 		reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
1803 		if (!reg_data)
1804 			return ES_DECODE_FAILED;
1805 	}
1806 
1807 	if (user_mode(ctxt->regs))
1808 		return ES_UNSUPPORTED;
1809 
1810 	switch (mmio) {
1811 	case INSN_MMIO_WRITE:
1812 		memcpy(ghcb->shared_buffer, reg_data, bytes);
1813 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1814 		break;
1815 	case INSN_MMIO_WRITE_IMM:
1816 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1817 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1818 		break;
1819 	case INSN_MMIO_READ:
1820 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1821 		if (ret)
1822 			break;
1823 
1824 		/* Zero-extend for 32-bit operation */
1825 		if (bytes == 4)
1826 			*reg_data = 0;
1827 
1828 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1829 		break;
1830 	case INSN_MMIO_READ_ZERO_EXTEND:
1831 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1832 		if (ret)
1833 			break;
1834 
1835 		/* Zero extend based on operand size */
1836 		memset(reg_data, 0, insn->opnd_bytes);
1837 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1838 		break;
1839 	case INSN_MMIO_READ_SIGN_EXTEND:
1840 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1841 		if (ret)
1842 			break;
1843 
1844 		if (bytes == 1) {
1845 			u8 *val = (u8 *)ghcb->shared_buffer;
1846 
1847 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
1848 		} else {
1849 			u16 *val = (u16 *)ghcb->shared_buffer;
1850 
1851 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
1852 		}
1853 
1854 		/* Sign extend based on operand size */
1855 		memset(reg_data, sign_byte, insn->opnd_bytes);
1856 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1857 		break;
1858 	case INSN_MMIO_MOVS:
1859 		ret = vc_handle_mmio_movs(ctxt, bytes);
1860 		break;
1861 	default:
1862 		ret = ES_UNSUPPORTED;
1863 		break;
1864 	}
1865 
1866 	return ret;
1867 }
1868 
1869 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1870 					  struct es_em_ctxt *ctxt)
1871 {
1872 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1873 	long val, *reg = vc_insn_get_rm(ctxt);
1874 	enum es_result ret;
1875 
1876 	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1877 		return ES_VMM_ERROR;
1878 
1879 	if (!reg)
1880 		return ES_DECODE_FAILED;
1881 
1882 	val = *reg;
1883 
1884 	/* Upper 32 bits must be written as zeroes */
1885 	if (val >> 32) {
1886 		ctxt->fi.vector = X86_TRAP_GP;
1887 		ctxt->fi.error_code = 0;
1888 		return ES_EXCEPTION;
1889 	}
1890 
1891 	/* Clear out other reserved bits and set bit 10 */
1892 	val = (val & 0xffff23ffL) | BIT(10);
1893 
1894 	/* Early non-zero writes to DR7 are not supported */
1895 	if (!data && (val & ~DR7_RESET_VALUE))
1896 		return ES_UNSUPPORTED;
1897 
1898 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
1899 	ghcb_set_rax(ghcb, val);
1900 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1901 	if (ret != ES_OK)
1902 		return ret;
1903 
1904 	if (data)
1905 		data->dr7 = val;
1906 
1907 	return ES_OK;
1908 }
1909 
1910 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1911 					 struct es_em_ctxt *ctxt)
1912 {
1913 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1914 	long *reg = vc_insn_get_rm(ctxt);
1915 
1916 	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1917 		return ES_VMM_ERROR;
1918 
1919 	if (!reg)
1920 		return ES_DECODE_FAILED;
1921 
1922 	if (data)
1923 		*reg = data->dr7;
1924 	else
1925 		*reg = DR7_RESET_VALUE;
1926 
1927 	return ES_OK;
1928 }
1929 
1930 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1931 				       struct es_em_ctxt *ctxt)
1932 {
1933 	return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1934 }
1935 
1936 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1937 {
1938 	enum es_result ret;
1939 
1940 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
1941 
1942 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1943 	if (ret != ES_OK)
1944 		return ret;
1945 
1946 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1947 		return ES_VMM_ERROR;
1948 
1949 	ctxt->regs->ax = ghcb->save.rax;
1950 	ctxt->regs->dx = ghcb->save.rdx;
1951 
1952 	return ES_OK;
1953 }
1954 
1955 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1956 					struct es_em_ctxt *ctxt)
1957 {
1958 	/*
1959 	 * Treat it as a NOP and do not leak a physical address to the
1960 	 * hypervisor.
1961 	 */
1962 	return ES_OK;
1963 }
1964 
1965 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1966 				      struct es_em_ctxt *ctxt)
1967 {
1968 	/* Treat the same as MONITOR/MONITORX */
1969 	return ES_OK;
1970 }
1971 
1972 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1973 					struct es_em_ctxt *ctxt)
1974 {
1975 	enum es_result ret;
1976 
1977 	ghcb_set_rax(ghcb, ctxt->regs->ax);
1978 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1979 
1980 	if (x86_platform.hyper.sev_es_hcall_prepare)
1981 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1982 
1983 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1984 	if (ret != ES_OK)
1985 		return ret;
1986 
1987 	if (!ghcb_rax_is_valid(ghcb))
1988 		return ES_VMM_ERROR;
1989 
1990 	ctxt->regs->ax = ghcb->save.rax;
1991 
1992 	/*
1993 	 * Call sev_es_hcall_finish() after regs->ax is already set.
1994 	 * This allows the hypervisor handler to overwrite it again if
1995 	 * necessary.
1996 	 */
1997 	if (x86_platform.hyper.sev_es_hcall_finish &&
1998 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1999 		return ES_VMM_ERROR;
2000 
2001 	return ES_OK;
2002 }
2003 
2004 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
2005 					struct es_em_ctxt *ctxt)
2006 {
2007 	/*
2008 	 * Calling ecx_alignment_check() directly does not work, because it
2009 	 * enables IRQs and the GHCB is active. Forward the exception and call
2010 	 * it later from vc_forward_exception().
2011 	 */
2012 	ctxt->fi.vector = X86_TRAP_AC;
2013 	ctxt->fi.error_code = 0;
2014 	return ES_EXCEPTION;
2015 }
2016 
2017 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
2018 					 struct ghcb *ghcb,
2019 					 unsigned long exit_code)
2020 {
2021 	enum es_result result = vc_check_opcode_bytes(ctxt, exit_code);
2022 
2023 	if (result != ES_OK)
2024 		return result;
2025 
2026 	switch (exit_code) {
2027 	case SVM_EXIT_READ_DR7:
2028 		result = vc_handle_dr7_read(ghcb, ctxt);
2029 		break;
2030 	case SVM_EXIT_WRITE_DR7:
2031 		result = vc_handle_dr7_write(ghcb, ctxt);
2032 		break;
2033 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
2034 		result = vc_handle_trap_ac(ghcb, ctxt);
2035 		break;
2036 	case SVM_EXIT_RDTSC:
2037 	case SVM_EXIT_RDTSCP:
2038 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
2039 		break;
2040 	case SVM_EXIT_RDPMC:
2041 		result = vc_handle_rdpmc(ghcb, ctxt);
2042 		break;
2043 	case SVM_EXIT_INVD:
2044 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
2045 		result = ES_UNSUPPORTED;
2046 		break;
2047 	case SVM_EXIT_CPUID:
2048 		result = vc_handle_cpuid(ghcb, ctxt);
2049 		break;
2050 	case SVM_EXIT_IOIO:
2051 		result = vc_handle_ioio(ghcb, ctxt);
2052 		break;
2053 	case SVM_EXIT_MSR:
2054 		result = vc_handle_msr(ghcb, ctxt);
2055 		break;
2056 	case SVM_EXIT_VMMCALL:
2057 		result = vc_handle_vmmcall(ghcb, ctxt);
2058 		break;
2059 	case SVM_EXIT_WBINVD:
2060 		result = vc_handle_wbinvd(ghcb, ctxt);
2061 		break;
2062 	case SVM_EXIT_MONITOR:
2063 		result = vc_handle_monitor(ghcb, ctxt);
2064 		break;
2065 	case SVM_EXIT_MWAIT:
2066 		result = vc_handle_mwait(ghcb, ctxt);
2067 		break;
2068 	case SVM_EXIT_NPF:
2069 		result = vc_handle_mmio(ghcb, ctxt);
2070 		break;
2071 	default:
2072 		/*
2073 		 * Unexpected #VC exception
2074 		 */
2075 		result = ES_UNSUPPORTED;
2076 	}
2077 
2078 	return result;
2079 }
2080 
2081 static __always_inline bool is_vc2_stack(unsigned long sp)
2082 {
2083 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
2084 }
2085 
2086 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
2087 {
2088 	unsigned long sp, prev_sp;
2089 
2090 	sp      = (unsigned long)regs;
2091 	prev_sp = regs->sp;
2092 
2093 	/*
2094 	 * If the code was already executing on the VC2 stack when the #VC
2095 	 * happened, let it proceed to the normal handling routine. This way the
2096 	 * code executing on the VC2 stack can cause #VC exceptions to get handled.
2097 	 */
2098 	return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
2099 }
2100 
2101 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
2102 {
2103 	struct ghcb_state state;
2104 	struct es_em_ctxt ctxt;
2105 	enum es_result result;
2106 	struct ghcb *ghcb;
2107 	bool ret = true;
2108 
2109 	ghcb = __sev_get_ghcb(&state);
2110 
2111 	vc_ghcb_invalidate(ghcb);
2112 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
2113 
2114 	if (result == ES_OK)
2115 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
2116 
2117 	__sev_put_ghcb(&state);
2118 
2119 	/* Done - now check the result */
2120 	switch (result) {
2121 	case ES_OK:
2122 		vc_finish_insn(&ctxt);
2123 		break;
2124 	case ES_UNSUPPORTED:
2125 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
2126 				   error_code, regs->ip);
2127 		ret = false;
2128 		break;
2129 	case ES_VMM_ERROR:
2130 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2131 				   error_code, regs->ip);
2132 		ret = false;
2133 		break;
2134 	case ES_DECODE_FAILED:
2135 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2136 				   error_code, regs->ip);
2137 		ret = false;
2138 		break;
2139 	case ES_EXCEPTION:
2140 		vc_forward_exception(&ctxt);
2141 		break;
2142 	case ES_RETRY:
2143 		/* Nothing to do */
2144 		break;
2145 	default:
2146 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
2147 		/*
2148 		 * Emulating the instruction which caused the #VC exception
2149 		 * failed - can't continue so print debug information
2150 		 */
2151 		BUG();
2152 	}
2153 
2154 	return ret;
2155 }
2156 
2157 static __always_inline bool vc_is_db(unsigned long error_code)
2158 {
2159 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
2160 }
2161 
2162 /*
2163  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
2164  * and will panic when an error happens.
2165  */
2166 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
2167 {
2168 	irqentry_state_t irq_state;
2169 
2170 	/*
2171 	 * With the current implementation it is always possible to switch to a
2172 	 * safe stack because #VC exceptions only happen at known places, like
2173 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
2174 	 * also happen with code instrumentation when the hypervisor intercepts
2175 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
2176 	 * exceptions currently also only happen in safe places.
2177 	 *
2178 	 * But keep this here in case the noinstr annotations are violated due
2179 	 * to bug elsewhere.
2180 	 */
2181 	if (unlikely(vc_from_invalid_context(regs))) {
2182 		instrumentation_begin();
2183 		panic("Can't handle #VC exception from unsupported context\n");
2184 		instrumentation_end();
2185 	}
2186 
2187 	/*
2188 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
2189 	 */
2190 	if (vc_is_db(error_code)) {
2191 		exc_debug(regs);
2192 		return;
2193 	}
2194 
2195 	irq_state = irqentry_nmi_enter(regs);
2196 
2197 	instrumentation_begin();
2198 
2199 	if (!vc_raw_handle_exception(regs, error_code)) {
2200 		/* Show some debug info */
2201 		show_regs(regs);
2202 
2203 		/* Ask hypervisor to sev_es_terminate */
2204 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2205 
2206 		/* If that fails and we get here - just panic */
2207 		panic("Returned from Terminate-Request to Hypervisor\n");
2208 	}
2209 
2210 	instrumentation_end();
2211 	irqentry_nmi_exit(regs, irq_state);
2212 }
2213 
2214 /*
2215  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
2216  * and will kill the current task with SIGBUS when an error happens.
2217  */
2218 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
2219 {
2220 	/*
2221 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
2222 	 */
2223 	if (vc_is_db(error_code)) {
2224 		noist_exc_debug(regs);
2225 		return;
2226 	}
2227 
2228 	irqentry_enter_from_user_mode(regs);
2229 	instrumentation_begin();
2230 
2231 	if (!vc_raw_handle_exception(regs, error_code)) {
2232 		/*
2233 		 * Do not kill the machine if user-space triggered the
2234 		 * exception. Send SIGBUS instead and let user-space deal with
2235 		 * it.
2236 		 */
2237 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
2238 	}
2239 
2240 	instrumentation_end();
2241 	irqentry_exit_to_user_mode(regs);
2242 }
2243 
2244 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
2245 {
2246 	unsigned long exit_code = regs->orig_ax;
2247 	struct es_em_ctxt ctxt;
2248 	enum es_result result;
2249 
2250 	vc_ghcb_invalidate(boot_ghcb);
2251 
2252 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
2253 	if (result == ES_OK)
2254 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
2255 
2256 	/* Done - now check the result */
2257 	switch (result) {
2258 	case ES_OK:
2259 		vc_finish_insn(&ctxt);
2260 		break;
2261 	case ES_UNSUPPORTED:
2262 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
2263 				exit_code, regs->ip);
2264 		goto fail;
2265 	case ES_VMM_ERROR:
2266 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2267 				exit_code, regs->ip);
2268 		goto fail;
2269 	case ES_DECODE_FAILED:
2270 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2271 				exit_code, regs->ip);
2272 		goto fail;
2273 	case ES_EXCEPTION:
2274 		vc_early_forward_exception(&ctxt);
2275 		break;
2276 	case ES_RETRY:
2277 		/* Nothing to do */
2278 		break;
2279 	default:
2280 		BUG();
2281 	}
2282 
2283 	return true;
2284 
2285 fail:
2286 	show_regs(regs);
2287 
2288 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2289 }
2290 
2291 /*
2292  * Initial set up of SNP relies on information provided by the
2293  * Confidential Computing blob, which can be passed to the kernel
2294  * in the following ways, depending on how it is booted:
2295  *
2296  * - when booted via the boot/decompress kernel:
2297  *   - via boot_params
2298  *
2299  * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
2300  *   - via a setup_data entry, as defined by the Linux Boot Protocol
2301  *
2302  * Scan for the blob in that order.
2303  */
2304 static __head struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
2305 {
2306 	struct cc_blob_sev_info *cc_info;
2307 
2308 	/* Boot kernel would have passed the CC blob via boot_params. */
2309 	if (bp->cc_blob_address) {
2310 		cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
2311 		goto found_cc_info;
2312 	}
2313 
2314 	/*
2315 	 * If kernel was booted directly, without the use of the
2316 	 * boot/decompression kernel, the CC blob may have been passed via
2317 	 * setup_data instead.
2318 	 */
2319 	cc_info = find_cc_blob_setup_data(bp);
2320 	if (!cc_info)
2321 		return NULL;
2322 
2323 found_cc_info:
2324 	if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
2325 		snp_abort();
2326 
2327 	return cc_info;
2328 }
2329 
2330 static __head void svsm_setup(struct cc_blob_sev_info *cc_info)
2331 {
2332 	struct svsm_call call = {};
2333 	int ret;
2334 	u64 pa;
2335 
2336 	/*
2337 	 * Record the SVSM Calling Area address (CAA) if the guest is not
2338 	 * running at VMPL0. The CA will be used to communicate with the
2339 	 * SVSM to perform the SVSM services.
2340 	 */
2341 	if (!svsm_setup_ca(cc_info))
2342 		return;
2343 
2344 	/*
2345 	 * It is very early in the boot and the kernel is running identity
2346 	 * mapped but without having adjusted the pagetables to where the
2347 	 * kernel was loaded (physbase), so the get the CA address using
2348 	 * RIP-relative addressing.
2349 	 */
2350 	pa = (u64)&RIP_REL_REF(boot_svsm_ca_page);
2351 
2352 	/*
2353 	 * Switch over to the boot SVSM CA while the current CA is still
2354 	 * addressable. There is no GHCB at this point so use the MSR protocol.
2355 	 *
2356 	 * SVSM_CORE_REMAP_CA call:
2357 	 *   RAX = 0 (Protocol=0, CallID=0)
2358 	 *   RCX = New CA GPA
2359 	 */
2360 	call.caa = svsm_get_caa();
2361 	call.rax = SVSM_CORE_CALL(SVSM_CORE_REMAP_CA);
2362 	call.rcx = pa;
2363 	ret = svsm_perform_call_protocol(&call);
2364 	if (ret)
2365 		panic("Can't remap the SVSM CA, ret=%d, rax_out=0x%llx\n", ret, call.rax_out);
2366 
2367 	RIP_REL_REF(boot_svsm_caa) = (struct svsm_ca *)pa;
2368 	RIP_REL_REF(boot_svsm_caa_pa) = pa;
2369 }
2370 
2371 bool __head snp_init(struct boot_params *bp)
2372 {
2373 	struct cc_blob_sev_info *cc_info;
2374 
2375 	if (!bp)
2376 		return false;
2377 
2378 	cc_info = find_cc_blob(bp);
2379 	if (!cc_info)
2380 		return false;
2381 
2382 	if (cc_info->secrets_phys && cc_info->secrets_len == PAGE_SIZE)
2383 		secrets_pa = cc_info->secrets_phys;
2384 	else
2385 		return false;
2386 
2387 	setup_cpuid_table(cc_info);
2388 
2389 	svsm_setup(cc_info);
2390 
2391 	/*
2392 	 * The CC blob will be used later to access the secrets page. Cache
2393 	 * it here like the boot kernel does.
2394 	 */
2395 	bp->cc_blob_address = (u32)(unsigned long)cc_info;
2396 
2397 	return true;
2398 }
2399 
2400 void __head __noreturn snp_abort(void)
2401 {
2402 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
2403 }
2404 
2405 /*
2406  * SEV-SNP guests should only execute dmi_setup() if EFI_CONFIG_TABLES are
2407  * enabled, as the alternative (fallback) logic for DMI probing in the legacy
2408  * ROM region can cause a crash since this region is not pre-validated.
2409  */
2410 void __init snp_dmi_setup(void)
2411 {
2412 	if (efi_enabled(EFI_CONFIG_TABLES))
2413 		dmi_setup();
2414 }
2415 
2416 static void dump_cpuid_table(void)
2417 {
2418 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2419 	int i = 0;
2420 
2421 	pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
2422 		cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
2423 
2424 	for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
2425 		const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
2426 
2427 		pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
2428 			i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
2429 			fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
2430 	}
2431 }
2432 
2433 /*
2434  * It is useful from an auditing/testing perspective to provide an easy way
2435  * for the guest owner to know that the CPUID table has been initialized as
2436  * expected, but that initialization happens too early in boot to print any
2437  * sort of indicator, and there's not really any other good place to do it,
2438  * so do it here.
2439  *
2440  * If running as an SNP guest, report the current VM privilege level (VMPL).
2441  */
2442 static int __init report_snp_info(void)
2443 {
2444 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2445 
2446 	if (cpuid_table->count) {
2447 		pr_info("Using SNP CPUID table, %d entries present.\n",
2448 			cpuid_table->count);
2449 
2450 		if (sev_cfg.debug)
2451 			dump_cpuid_table();
2452 	}
2453 
2454 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2455 		pr_info("SNP running at VMPL%u.\n", snp_vmpl);
2456 
2457 	return 0;
2458 }
2459 arch_initcall(report_snp_info);
2460 
2461 static void update_attest_input(struct svsm_call *call, struct svsm_attest_call *input)
2462 {
2463 	/* If (new) lengths have been returned, propagate them up */
2464 	if (call->rcx_out != call->rcx)
2465 		input->manifest_buf.len = call->rcx_out;
2466 
2467 	if (call->rdx_out != call->rdx)
2468 		input->certificates_buf.len = call->rdx_out;
2469 
2470 	if (call->r8_out != call->r8)
2471 		input->report_buf.len = call->r8_out;
2472 }
2473 
2474 int snp_issue_svsm_attest_req(u64 call_id, struct svsm_call *call,
2475 			      struct svsm_attest_call *input)
2476 {
2477 	struct svsm_attest_call *ac;
2478 	unsigned long flags;
2479 	u64 attest_call_pa;
2480 	int ret;
2481 
2482 	if (!snp_vmpl)
2483 		return -EINVAL;
2484 
2485 	local_irq_save(flags);
2486 
2487 	call->caa = svsm_get_caa();
2488 
2489 	ac = (struct svsm_attest_call *)call->caa->svsm_buffer;
2490 	attest_call_pa = svsm_get_caa_pa() + offsetof(struct svsm_ca, svsm_buffer);
2491 
2492 	*ac = *input;
2493 
2494 	/*
2495 	 * Set input registers for the request and set RDX and R8 to known
2496 	 * values in order to detect length values being returned in them.
2497 	 */
2498 	call->rax = call_id;
2499 	call->rcx = attest_call_pa;
2500 	call->rdx = -1;
2501 	call->r8 = -1;
2502 	ret = svsm_perform_call_protocol(call);
2503 	update_attest_input(call, input);
2504 
2505 	local_irq_restore(flags);
2506 
2507 	return ret;
2508 }
2509 EXPORT_SYMBOL_GPL(snp_issue_svsm_attest_req);
2510 
2511 int snp_issue_guest_request(struct snp_guest_req *req, struct snp_req_data *input,
2512 			    struct snp_guest_request_ioctl *rio)
2513 {
2514 	struct ghcb_state state;
2515 	struct es_em_ctxt ctxt;
2516 	unsigned long flags;
2517 	struct ghcb *ghcb;
2518 	int ret;
2519 
2520 	rio->exitinfo2 = SEV_RET_NO_FW_CALL;
2521 
2522 	/*
2523 	 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
2524 	 * a per-CPU GHCB.
2525 	 */
2526 	local_irq_save(flags);
2527 
2528 	ghcb = __sev_get_ghcb(&state);
2529 	if (!ghcb) {
2530 		ret = -EIO;
2531 		goto e_restore_irq;
2532 	}
2533 
2534 	vc_ghcb_invalidate(ghcb);
2535 
2536 	if (req->exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2537 		ghcb_set_rax(ghcb, input->data_gpa);
2538 		ghcb_set_rbx(ghcb, input->data_npages);
2539 	}
2540 
2541 	ret = sev_es_ghcb_hv_call(ghcb, &ctxt, req->exit_code, input->req_gpa, input->resp_gpa);
2542 	if (ret)
2543 		goto e_put;
2544 
2545 	rio->exitinfo2 = ghcb->save.sw_exit_info_2;
2546 	switch (rio->exitinfo2) {
2547 	case 0:
2548 		break;
2549 
2550 	case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_BUSY):
2551 		ret = -EAGAIN;
2552 		break;
2553 
2554 	case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN):
2555 		/* Number of expected pages are returned in RBX */
2556 		if (req->exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2557 			input->data_npages = ghcb_get_rbx(ghcb);
2558 			ret = -ENOSPC;
2559 			break;
2560 		}
2561 		fallthrough;
2562 	default:
2563 		ret = -EIO;
2564 		break;
2565 	}
2566 
2567 e_put:
2568 	__sev_put_ghcb(&state);
2569 e_restore_irq:
2570 	local_irq_restore(flags);
2571 
2572 	return ret;
2573 }
2574 EXPORT_SYMBOL_GPL(snp_issue_guest_request);
2575 
2576 static struct platform_device sev_guest_device = {
2577 	.name		= "sev-guest",
2578 	.id		= -1,
2579 };
2580 
2581 static int __init snp_init_platform_device(void)
2582 {
2583 	struct sev_guest_platform_data data;
2584 
2585 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2586 		return -ENODEV;
2587 
2588 	data.secrets_gpa = secrets_pa;
2589 	if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
2590 		return -ENODEV;
2591 
2592 	if (platform_device_register(&sev_guest_device))
2593 		return -ENODEV;
2594 
2595 	pr_info("SNP guest platform device initialized.\n");
2596 	return 0;
2597 }
2598 device_initcall(snp_init_platform_device);
2599 
2600 void sev_show_status(void)
2601 {
2602 	int i;
2603 
2604 	pr_info("Status: ");
2605 	for (i = 0; i < MSR_AMD64_SNP_RESV_BIT; i++) {
2606 		if (sev_status & BIT_ULL(i)) {
2607 			if (!sev_status_feat_names[i])
2608 				continue;
2609 
2610 			pr_cont("%s ", sev_status_feat_names[i]);
2611 		}
2612 	}
2613 	pr_cont("\n");
2614 }
2615 
2616 void __init snp_update_svsm_ca(void)
2617 {
2618 	if (!snp_vmpl)
2619 		return;
2620 
2621 	/* Update the CAA to a proper kernel address */
2622 	boot_svsm_caa = &boot_svsm_ca_page;
2623 }
2624 
2625 #ifdef CONFIG_SYSFS
2626 static ssize_t vmpl_show(struct kobject *kobj,
2627 			 struct kobj_attribute *attr, char *buf)
2628 {
2629 	return sysfs_emit(buf, "%d\n", snp_vmpl);
2630 }
2631 
2632 static struct kobj_attribute vmpl_attr = __ATTR_RO(vmpl);
2633 
2634 static struct attribute *vmpl_attrs[] = {
2635 	&vmpl_attr.attr,
2636 	NULL
2637 };
2638 
2639 static struct attribute_group sev_attr_group = {
2640 	.attrs = vmpl_attrs,
2641 };
2642 
2643 static int __init sev_sysfs_init(void)
2644 {
2645 	struct kobject *sev_kobj;
2646 	struct device *dev_root;
2647 	int ret;
2648 
2649 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2650 		return -ENODEV;
2651 
2652 	dev_root = bus_get_dev_root(&cpu_subsys);
2653 	if (!dev_root)
2654 		return -ENODEV;
2655 
2656 	sev_kobj = kobject_create_and_add("sev", &dev_root->kobj);
2657 	put_device(dev_root);
2658 
2659 	if (!sev_kobj)
2660 		return -ENOMEM;
2661 
2662 	ret = sysfs_create_group(sev_kobj, &sev_attr_group);
2663 	if (ret)
2664 		kobject_put(sev_kobj);
2665 
2666 	return ret;
2667 }
2668 arch_initcall(sev_sysfs_init);
2669 #endif // CONFIG_SYSFS
2670