1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * AMD Encrypted Register State Support 4 * 5 * Author: Joerg Roedel <jroedel@suse.de> 6 * 7 * This file is not compiled stand-alone. It contains code shared 8 * between the pre-decompression boot code and the running Linux kernel 9 * and is included directly into both code-bases. 10 */ 11 12 #include <asm/setup_data.h> 13 14 #ifndef __BOOT_COMPRESSED 15 #define has_cpuflag(f) boot_cpu_has(f) 16 #else 17 #undef WARN 18 #define WARN(condition, format...) (!!(condition)) 19 #endif 20 21 /* Copy of the SNP firmware's CPUID page. */ 22 static struct snp_cpuid_table cpuid_table_copy __ro_after_init; 23 24 /* 25 * These will be initialized based on CPUID table so that non-present 26 * all-zero leaves (for sparse tables) can be differentiated from 27 * invalid/out-of-range leaves. This is needed since all-zero leaves 28 * still need to be post-processed. 29 */ 30 static u32 cpuid_std_range_max __ro_after_init; 31 static u32 cpuid_hyp_range_max __ro_after_init; 32 static u32 cpuid_ext_range_max __ro_after_init; 33 34 bool sev_snp_needs_sfw; 35 36 void __noreturn 37 sev_es_terminate(unsigned int set, unsigned int reason) 38 { 39 u64 val = GHCB_MSR_TERM_REQ; 40 41 /* Tell the hypervisor what went wrong. */ 42 val |= GHCB_SEV_TERM_REASON(set, reason); 43 44 /* Request Guest Termination from Hypervisor */ 45 sev_es_wr_ghcb_msr(val); 46 VMGEXIT(); 47 48 while (true) 49 asm volatile("hlt\n" : : : "memory"); 50 } 51 52 /* 53 * The hypervisor features are available from GHCB version 2 onward. 54 */ 55 u64 __init get_hv_features(void) 56 { 57 u64 val; 58 59 if (ghcb_version < 2) 60 return 0; 61 62 sev_es_wr_ghcb_msr(GHCB_MSR_HV_FT_REQ); 63 VMGEXIT(); 64 65 val = sev_es_rd_ghcb_msr(); 66 if (GHCB_RESP_CODE(val) != GHCB_MSR_HV_FT_RESP) 67 return 0; 68 69 return GHCB_MSR_HV_FT_RESP_VAL(val); 70 } 71 72 int svsm_process_result_codes(struct svsm_call *call) 73 { 74 switch (call->rax_out) { 75 case SVSM_SUCCESS: 76 return 0; 77 case SVSM_ERR_INCOMPLETE: 78 case SVSM_ERR_BUSY: 79 return -EAGAIN; 80 default: 81 return -EINVAL; 82 } 83 } 84 85 /* 86 * Issue a VMGEXIT to call the SVSM: 87 * - Load the SVSM register state (RAX, RCX, RDX, R8 and R9) 88 * - Set the CA call pending field to 1 89 * - Issue VMGEXIT 90 * - Save the SVSM return register state (RAX, RCX, RDX, R8 and R9) 91 * - Perform atomic exchange of the CA call pending field 92 * 93 * - See the "Secure VM Service Module for SEV-SNP Guests" specification for 94 * details on the calling convention. 95 * - The calling convention loosely follows the Microsoft X64 calling 96 * convention by putting arguments in RCX, RDX, R8 and R9. 97 * - RAX specifies the SVSM protocol/callid as input and the return code 98 * as output. 99 */ 100 void svsm_issue_call(struct svsm_call *call, u8 *pending) 101 { 102 register unsigned long rax asm("rax") = call->rax; 103 register unsigned long rcx asm("rcx") = call->rcx; 104 register unsigned long rdx asm("rdx") = call->rdx; 105 register unsigned long r8 asm("r8") = call->r8; 106 register unsigned long r9 asm("r9") = call->r9; 107 108 call->caa->call_pending = 1; 109 110 asm volatile("rep; vmmcall\n\t" 111 : "+r" (rax), "+r" (rcx), "+r" (rdx), "+r" (r8), "+r" (r9) 112 : : "memory"); 113 114 *pending = xchg(&call->caa->call_pending, *pending); 115 116 call->rax_out = rax; 117 call->rcx_out = rcx; 118 call->rdx_out = rdx; 119 call->r8_out = r8; 120 call->r9_out = r9; 121 } 122 123 int svsm_perform_msr_protocol(struct svsm_call *call) 124 { 125 u8 pending = 0; 126 u64 val, resp; 127 128 /* 129 * When using the MSR protocol, be sure to save and restore 130 * the current MSR value. 131 */ 132 val = sev_es_rd_ghcb_msr(); 133 134 sev_es_wr_ghcb_msr(GHCB_MSR_VMPL_REQ_LEVEL(0)); 135 136 svsm_issue_call(call, &pending); 137 138 resp = sev_es_rd_ghcb_msr(); 139 140 sev_es_wr_ghcb_msr(val); 141 142 if (pending) 143 return -EINVAL; 144 145 if (GHCB_RESP_CODE(resp) != GHCB_MSR_VMPL_RESP) 146 return -EINVAL; 147 148 if (GHCB_MSR_VMPL_RESP_VAL(resp)) 149 return -EINVAL; 150 151 return svsm_process_result_codes(call); 152 } 153 154 static int __sev_cpuid_hv(u32 fn, int reg_idx, u32 *reg) 155 { 156 u64 val; 157 158 sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, reg_idx)); 159 VMGEXIT(); 160 val = sev_es_rd_ghcb_msr(); 161 if (GHCB_RESP_CODE(val) != GHCB_MSR_CPUID_RESP) 162 return -EIO; 163 164 *reg = (val >> 32); 165 166 return 0; 167 } 168 169 static int __sev_cpuid_hv_msr(struct cpuid_leaf *leaf) 170 { 171 int ret; 172 173 /* 174 * MSR protocol does not support fetching non-zero subfunctions, but is 175 * sufficient to handle current early-boot cases. Should that change, 176 * make sure to report an error rather than ignoring the index and 177 * grabbing random values. If this issue arises in the future, handling 178 * can be added here to use GHCB-page protocol for cases that occur late 179 * enough in boot that GHCB page is available. 180 */ 181 if (cpuid_function_is_indexed(leaf->fn) && leaf->subfn) 182 return -EINVAL; 183 184 ret = __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EAX, &leaf->eax); 185 ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EBX, &leaf->ebx); 186 ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_ECX, &leaf->ecx); 187 ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EDX, &leaf->edx); 188 189 return ret; 190 } 191 192 193 194 /* 195 * This may be called early while still running on the initial identity 196 * mapping. Use RIP-relative addressing to obtain the correct address 197 * while running with the initial identity mapping as well as the 198 * switch-over to kernel virtual addresses later. 199 */ 200 const struct snp_cpuid_table *snp_cpuid_get_table(void) 201 { 202 return rip_rel_ptr(&cpuid_table_copy); 203 } 204 205 /* 206 * The SNP Firmware ABI, Revision 0.9, Section 7.1, details the use of 207 * XCR0_IN and XSS_IN to encode multiple versions of 0xD subfunctions 0 208 * and 1 based on the corresponding features enabled by a particular 209 * combination of XCR0 and XSS registers so that a guest can look up the 210 * version corresponding to the features currently enabled in its XCR0/XSS 211 * registers. The only values that differ between these versions/table 212 * entries is the enabled XSAVE area size advertised via EBX. 213 * 214 * While hypervisors may choose to make use of this support, it is more 215 * robust/secure for a guest to simply find the entry corresponding to the 216 * base/legacy XSAVE area size (XCR0=1 or XCR0=3), and then calculate the 217 * XSAVE area size using subfunctions 2 through 64, as documented in APM 218 * Volume 3, Rev 3.31, Appendix E.3.8, which is what is done here. 219 * 220 * Since base/legacy XSAVE area size is documented as 0x240, use that value 221 * directly rather than relying on the base size in the CPUID table. 222 * 223 * Return: XSAVE area size on success, 0 otherwise. 224 */ 225 static u32 snp_cpuid_calc_xsave_size(u64 xfeatures_en, bool compacted) 226 { 227 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); 228 u64 xfeatures_found = 0; 229 u32 xsave_size = 0x240; 230 int i; 231 232 for (i = 0; i < cpuid_table->count; i++) { 233 const struct snp_cpuid_fn *e = &cpuid_table->fn[i]; 234 235 if (!(e->eax_in == 0xD && e->ecx_in > 1 && e->ecx_in < 64)) 236 continue; 237 if (!(xfeatures_en & (BIT_ULL(e->ecx_in)))) 238 continue; 239 if (xfeatures_found & (BIT_ULL(e->ecx_in))) 240 continue; 241 242 xfeatures_found |= (BIT_ULL(e->ecx_in)); 243 244 if (compacted) 245 xsave_size += e->eax; 246 else 247 xsave_size = max(xsave_size, e->eax + e->ebx); 248 } 249 250 /* 251 * Either the guest set unsupported XCR0/XSS bits, or the corresponding 252 * entries in the CPUID table were not present. This is not a valid 253 * state to be in. 254 */ 255 if (xfeatures_found != (xfeatures_en & GENMASK_ULL(63, 2))) 256 return 0; 257 258 return xsave_size; 259 } 260 261 static bool 262 snp_cpuid_get_validated_func(struct cpuid_leaf *leaf) 263 { 264 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); 265 int i; 266 267 for (i = 0; i < cpuid_table->count; i++) { 268 const struct snp_cpuid_fn *e = &cpuid_table->fn[i]; 269 270 if (e->eax_in != leaf->fn) 271 continue; 272 273 if (cpuid_function_is_indexed(leaf->fn) && e->ecx_in != leaf->subfn) 274 continue; 275 276 /* 277 * For 0xD subfunctions 0 and 1, only use the entry corresponding 278 * to the base/legacy XSAVE area size (XCR0=1 or XCR0=3, XSS=0). 279 * See the comments above snp_cpuid_calc_xsave_size() for more 280 * details. 281 */ 282 if (e->eax_in == 0xD && (e->ecx_in == 0 || e->ecx_in == 1)) 283 if (!(e->xcr0_in == 1 || e->xcr0_in == 3) || e->xss_in) 284 continue; 285 286 leaf->eax = e->eax; 287 leaf->ebx = e->ebx; 288 leaf->ecx = e->ecx; 289 leaf->edx = e->edx; 290 291 return true; 292 } 293 294 return false; 295 } 296 297 static void snp_cpuid_hv_msr(void *ctx, struct cpuid_leaf *leaf) 298 { 299 if (__sev_cpuid_hv_msr(leaf)) 300 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID_HV); 301 } 302 303 static int 304 snp_cpuid_postprocess(void (*cpuid_fn)(void *ctx, struct cpuid_leaf *leaf), 305 void *ctx, struct cpuid_leaf *leaf) 306 { 307 struct cpuid_leaf leaf_hv = *leaf; 308 309 switch (leaf->fn) { 310 case 0x1: 311 cpuid_fn(ctx, &leaf_hv); 312 313 /* initial APIC ID */ 314 leaf->ebx = (leaf_hv.ebx & GENMASK(31, 24)) | (leaf->ebx & GENMASK(23, 0)); 315 /* APIC enabled bit */ 316 leaf->edx = (leaf_hv.edx & BIT(9)) | (leaf->edx & ~BIT(9)); 317 318 /* OSXSAVE enabled bit */ 319 if (native_read_cr4() & X86_CR4_OSXSAVE) 320 leaf->ecx |= BIT(27); 321 break; 322 case 0x7: 323 /* OSPKE enabled bit */ 324 leaf->ecx &= ~BIT(4); 325 if (native_read_cr4() & X86_CR4_PKE) 326 leaf->ecx |= BIT(4); 327 break; 328 case 0xB: 329 leaf_hv.subfn = 0; 330 cpuid_fn(ctx, &leaf_hv); 331 332 /* extended APIC ID */ 333 leaf->edx = leaf_hv.edx; 334 break; 335 case 0xD: { 336 bool compacted = false; 337 u64 xcr0 = 1, xss = 0; 338 u32 xsave_size; 339 340 if (leaf->subfn != 0 && leaf->subfn != 1) 341 return 0; 342 343 if (native_read_cr4() & X86_CR4_OSXSAVE) 344 xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 345 if (leaf->subfn == 1) { 346 /* Get XSS value if XSAVES is enabled. */ 347 if (leaf->eax & BIT(3)) { 348 unsigned long lo, hi; 349 350 asm volatile("rdmsr" : "=a" (lo), "=d" (hi) 351 : "c" (MSR_IA32_XSS)); 352 xss = (hi << 32) | lo; 353 } 354 355 /* 356 * The PPR and APM aren't clear on what size should be 357 * encoded in 0xD:0x1:EBX when compaction is not enabled 358 * by either XSAVEC (feature bit 1) or XSAVES (feature 359 * bit 3) since SNP-capable hardware has these feature 360 * bits fixed as 1. KVM sets it to 0 in this case, but 361 * to avoid this becoming an issue it's safer to simply 362 * treat this as unsupported for SNP guests. 363 */ 364 if (!(leaf->eax & (BIT(1) | BIT(3)))) 365 return -EINVAL; 366 367 compacted = true; 368 } 369 370 xsave_size = snp_cpuid_calc_xsave_size(xcr0 | xss, compacted); 371 if (!xsave_size) 372 return -EINVAL; 373 374 leaf->ebx = xsave_size; 375 } 376 break; 377 case 0x8000001E: 378 cpuid_fn(ctx, &leaf_hv); 379 380 /* extended APIC ID */ 381 leaf->eax = leaf_hv.eax; 382 /* compute ID */ 383 leaf->ebx = (leaf->ebx & GENMASK(31, 8)) | (leaf_hv.ebx & GENMASK(7, 0)); 384 /* node ID */ 385 leaf->ecx = (leaf->ecx & GENMASK(31, 8)) | (leaf_hv.ecx & GENMASK(7, 0)); 386 break; 387 default: 388 /* No fix-ups needed, use values as-is. */ 389 break; 390 } 391 392 return 0; 393 } 394 395 /* 396 * Returns -EOPNOTSUPP if feature not enabled. Any other non-zero return value 397 * should be treated as fatal by caller. 398 */ 399 int snp_cpuid(void (*cpuid_fn)(void *ctx, struct cpuid_leaf *leaf), 400 void *ctx, struct cpuid_leaf *leaf) 401 { 402 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); 403 404 if (!cpuid_table->count) 405 return -EOPNOTSUPP; 406 407 if (!snp_cpuid_get_validated_func(leaf)) { 408 /* 409 * Some hypervisors will avoid keeping track of CPUID entries 410 * where all values are zero, since they can be handled the 411 * same as out-of-range values (all-zero). This is useful here 412 * as well as it allows virtually all guest configurations to 413 * work using a single SNP CPUID table. 414 * 415 * To allow for this, there is a need to distinguish between 416 * out-of-range entries and in-range zero entries, since the 417 * CPUID table entries are only a template that may need to be 418 * augmented with additional values for things like 419 * CPU-specific information during post-processing. So if it's 420 * not in the table, set the values to zero. Then, if they are 421 * within a valid CPUID range, proceed with post-processing 422 * using zeros as the initial values. Otherwise, skip 423 * post-processing and just return zeros immediately. 424 */ 425 leaf->eax = leaf->ebx = leaf->ecx = leaf->edx = 0; 426 427 /* Skip post-processing for out-of-range zero leafs. */ 428 if (!(leaf->fn <= cpuid_std_range_max || 429 (leaf->fn >= 0x40000000 && leaf->fn <= cpuid_hyp_range_max) || 430 (leaf->fn >= 0x80000000 && leaf->fn <= cpuid_ext_range_max))) 431 return 0; 432 } 433 434 return snp_cpuid_postprocess(cpuid_fn, ctx, leaf); 435 } 436 437 /* 438 * Boot VC Handler - This is the first VC handler during boot, there is no GHCB 439 * page yet, so it only supports the MSR based communication with the 440 * hypervisor and only the CPUID exit-code. 441 */ 442 void do_vc_no_ghcb(struct pt_regs *regs, unsigned long exit_code) 443 { 444 unsigned int subfn = lower_bits(regs->cx, 32); 445 unsigned int fn = lower_bits(regs->ax, 32); 446 u16 opcode = *(unsigned short *)regs->ip; 447 struct cpuid_leaf leaf; 448 int ret; 449 450 /* Only CPUID is supported via MSR protocol */ 451 if (exit_code != SVM_EXIT_CPUID) 452 goto fail; 453 454 /* Is it really a CPUID insn? */ 455 if (opcode != 0xa20f) 456 goto fail; 457 458 leaf.fn = fn; 459 leaf.subfn = subfn; 460 461 /* 462 * If SNP is active, then snp_cpuid() uses the CPUID table to obtain the 463 * CPUID values (with possible HV interaction during post-processing of 464 * the values). But if SNP is not active (no CPUID table present), then 465 * snp_cpuid() returns -EOPNOTSUPP so that an SEV-ES guest can call the 466 * HV to obtain the CPUID information. 467 */ 468 ret = snp_cpuid(snp_cpuid_hv_msr, NULL, &leaf); 469 if (!ret) 470 goto cpuid_done; 471 472 if (ret != -EOPNOTSUPP) 473 goto fail; 474 475 /* 476 * This is reached by a SEV-ES guest and needs to invoke the HV for 477 * the CPUID data. 478 */ 479 if (__sev_cpuid_hv_msr(&leaf)) 480 goto fail; 481 482 cpuid_done: 483 regs->ax = leaf.eax; 484 regs->bx = leaf.ebx; 485 regs->cx = leaf.ecx; 486 regs->dx = leaf.edx; 487 488 /* 489 * This is a VC handler and the #VC is only raised when SEV-ES is 490 * active, which means SEV must be active too. Do sanity checks on the 491 * CPUID results to make sure the hypervisor does not trick the kernel 492 * into the no-sev path. This could map sensitive data unencrypted and 493 * make it accessible to the hypervisor. 494 * 495 * In particular, check for: 496 * - Availability of CPUID leaf 0x8000001f 497 * - SEV CPUID bit. 498 * 499 * The hypervisor might still report the wrong C-bit position, but this 500 * can't be checked here. 501 */ 502 503 if (fn == 0x80000000 && (regs->ax < 0x8000001f)) 504 /* SEV leaf check */ 505 goto fail; 506 else if ((fn == 0x8000001f && !(regs->ax & BIT(1)))) 507 /* SEV bit */ 508 goto fail; 509 510 /* Skip over the CPUID two-byte opcode */ 511 regs->ip += 2; 512 513 return; 514 515 fail: 516 /* Terminate the guest */ 517 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); 518 } 519 520 struct cc_setup_data { 521 struct setup_data header; 522 u32 cc_blob_address; 523 }; 524 525 /* 526 * Search for a Confidential Computing blob passed in as a setup_data entry 527 * via the Linux Boot Protocol. 528 */ 529 static __init 530 struct cc_blob_sev_info *find_cc_blob_setup_data(struct boot_params *bp) 531 { 532 struct cc_setup_data *sd = NULL; 533 struct setup_data *hdr; 534 535 hdr = (struct setup_data *)bp->hdr.setup_data; 536 537 while (hdr) { 538 if (hdr->type == SETUP_CC_BLOB) { 539 sd = (struct cc_setup_data *)hdr; 540 return (struct cc_blob_sev_info *)(unsigned long)sd->cc_blob_address; 541 } 542 hdr = (struct setup_data *)hdr->next; 543 } 544 545 return NULL; 546 } 547 548 /* 549 * Initialize the kernel's copy of the SNP CPUID table, and set up the 550 * pointer that will be used to access it. 551 * 552 * Maintaining a direct mapping of the SNP CPUID table used by firmware would 553 * be possible as an alternative, but the approach is brittle since the 554 * mapping needs to be updated in sync with all the changes to virtual memory 555 * layout and related mapping facilities throughout the boot process. 556 */ 557 static void __init setup_cpuid_table(const struct cc_blob_sev_info *cc_info) 558 { 559 const struct snp_cpuid_table *cpuid_table_fw, *cpuid_table; 560 int i; 561 562 if (!cc_info || !cc_info->cpuid_phys || cc_info->cpuid_len < PAGE_SIZE) 563 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID); 564 565 cpuid_table_fw = (const struct snp_cpuid_table *)cc_info->cpuid_phys; 566 if (!cpuid_table_fw->count || cpuid_table_fw->count > SNP_CPUID_COUNT_MAX) 567 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID); 568 569 cpuid_table = snp_cpuid_get_table(); 570 memcpy((void *)cpuid_table, cpuid_table_fw, sizeof(*cpuid_table)); 571 572 /* Initialize CPUID ranges for range-checking. */ 573 for (i = 0; i < cpuid_table->count; i++) { 574 const struct snp_cpuid_fn *fn = &cpuid_table->fn[i]; 575 576 if (fn->eax_in == 0x0) 577 cpuid_std_range_max = fn->eax; 578 else if (fn->eax_in == 0x40000000) 579 cpuid_hyp_range_max = fn->eax; 580 else if (fn->eax_in == 0x80000000) 581 cpuid_ext_range_max = fn->eax; 582 } 583 } 584 585 static int svsm_call_msr_protocol(struct svsm_call *call) 586 { 587 int ret; 588 589 do { 590 ret = svsm_perform_msr_protocol(call); 591 } while (ret == -EAGAIN); 592 593 return ret; 594 } 595 596 static void svsm_pval_4k_page(unsigned long paddr, bool validate, 597 struct svsm_ca *caa, u64 caa_pa) 598 { 599 struct svsm_pvalidate_call *pc; 600 struct svsm_call call = {}; 601 unsigned long flags; 602 u64 pc_pa; 603 604 /* 605 * This can be called very early in the boot, use native functions in 606 * order to avoid paravirt issues. 607 */ 608 flags = native_local_irq_save(); 609 610 call.caa = caa; 611 612 pc = (struct svsm_pvalidate_call *)call.caa->svsm_buffer; 613 pc_pa = caa_pa + offsetof(struct svsm_ca, svsm_buffer); 614 615 pc->num_entries = 1; 616 pc->cur_index = 0; 617 pc->entry[0].page_size = RMP_PG_SIZE_4K; 618 pc->entry[0].action = validate; 619 pc->entry[0].ignore_cf = 0; 620 pc->entry[0].rsvd = 0; 621 pc->entry[0].pfn = paddr >> PAGE_SHIFT; 622 623 /* Protocol 0, Call ID 1 */ 624 call.rax = SVSM_CORE_CALL(SVSM_CORE_PVALIDATE); 625 call.rcx = pc_pa; 626 627 /* 628 * Use the MSR protocol exclusively, so that this code is usable in 629 * startup code where VA/PA translations of the GHCB page's address may 630 * be problematic. 631 */ 632 if (svsm_call_msr_protocol(&call)) 633 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE); 634 635 native_local_irq_restore(flags); 636 } 637 638 static void pvalidate_4k_page(unsigned long vaddr, unsigned long paddr, 639 bool validate, struct svsm_ca *caa, u64 caa_pa) 640 { 641 int ret; 642 643 if (snp_vmpl) { 644 svsm_pval_4k_page(paddr, validate, caa, caa_pa); 645 } else { 646 ret = pvalidate(vaddr, RMP_PG_SIZE_4K, validate); 647 if (ret) 648 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE); 649 } 650 651 /* 652 * If validating memory (making it private) and affected by the 653 * cache-coherency vulnerability, perform the cache eviction mitigation. 654 */ 655 if (validate && sev_snp_needs_sfw) 656 sev_evict_cache((void *)vaddr, 1); 657 } 658 659 static void __page_state_change(unsigned long vaddr, unsigned long paddr, 660 const struct psc_desc *desc) 661 { 662 u64 val, msr; 663 664 /* 665 * If private -> shared then invalidate the page before requesting the 666 * state change in the RMP table. 667 */ 668 if (desc->op == SNP_PAGE_STATE_SHARED) 669 pvalidate_4k_page(vaddr, paddr, false, desc->ca, desc->caa_pa); 670 671 /* Save the current GHCB MSR value */ 672 msr = sev_es_rd_ghcb_msr(); 673 674 /* Issue VMGEXIT to change the page state in RMP table. */ 675 sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, desc->op)); 676 VMGEXIT(); 677 678 /* Read the response of the VMGEXIT. */ 679 val = sev_es_rd_ghcb_msr(); 680 if ((GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP) || GHCB_MSR_PSC_RESP_VAL(val)) 681 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC); 682 683 /* Restore the GHCB MSR value */ 684 sev_es_wr_ghcb_msr(msr); 685 686 /* 687 * Now that page state is changed in the RMP table, validate it so that it is 688 * consistent with the RMP entry. 689 */ 690 if (desc->op == SNP_PAGE_STATE_PRIVATE) 691 pvalidate_4k_page(vaddr, paddr, true, desc->ca, desc->caa_pa); 692 } 693 694 /* 695 * Maintain the GPA of the SVSM Calling Area (CA) in order to utilize the SVSM 696 * services needed when not running in VMPL0. 697 */ 698 static bool __init svsm_setup_ca(const struct cc_blob_sev_info *cc_info, 699 void *page) 700 { 701 struct snp_secrets_page *secrets_page; 702 struct snp_cpuid_table *cpuid_table; 703 unsigned int i; 704 u64 caa; 705 706 BUILD_BUG_ON(sizeof(*secrets_page) != PAGE_SIZE); 707 708 /* 709 * Check if running at VMPL0. 710 * 711 * Use RMPADJUST (see the rmpadjust() function for a description of what 712 * the instruction does) to update the VMPL1 permissions of a page. If 713 * the guest is running at VMPL0, this will succeed and implies there is 714 * no SVSM. If the guest is running at any other VMPL, this will fail. 715 * Linux SNP guests only ever run at a single VMPL level so permission mask 716 * changes of a lesser-privileged VMPL are a don't-care. 717 * 718 * Use a rip-relative reference to obtain the proper address, since this 719 * routine is running identity mapped when called, both by the decompressor 720 * code and the early kernel code. 721 */ 722 if (!rmpadjust((unsigned long)page, RMP_PG_SIZE_4K, 1)) 723 return false; 724 725 /* 726 * Not running at VMPL0, ensure everything has been properly supplied 727 * for running under an SVSM. 728 */ 729 if (!cc_info || !cc_info->secrets_phys || cc_info->secrets_len != PAGE_SIZE) 730 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SECRETS_PAGE); 731 732 secrets_page = (struct snp_secrets_page *)cc_info->secrets_phys; 733 if (!secrets_page->svsm_size) 734 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NO_SVSM); 735 736 if (!secrets_page->svsm_guest_vmpl) 737 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SVSM_VMPL0); 738 739 snp_vmpl = secrets_page->svsm_guest_vmpl; 740 741 caa = secrets_page->svsm_caa; 742 743 /* 744 * An open-coded PAGE_ALIGNED() in order to avoid including 745 * kernel-proper headers into the decompressor. 746 */ 747 if (caa & (PAGE_SIZE - 1)) 748 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SVSM_CAA); 749 750 boot_svsm_caa_pa = caa; 751 752 /* Advertise the SVSM presence via CPUID. */ 753 cpuid_table = (struct snp_cpuid_table *)snp_cpuid_get_table(); 754 for (i = 0; i < cpuid_table->count; i++) { 755 struct snp_cpuid_fn *fn = &cpuid_table->fn[i]; 756 757 if (fn->eax_in == 0x8000001f) 758 fn->eax |= BIT(28); 759 } 760 761 return true; 762 } 763