xref: /linux/arch/x86/boot/compressed/kaslr.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * kaslr.c
4  *
5  * This contains the routines needed to generate a reasonable level of
6  * entropy to choose a randomized kernel base address offset in support
7  * of Kernel Address Space Layout Randomization (KASLR). Additionally
8  * handles walking the physical memory maps (and tracking memory regions
9  * to avoid) in order to select a physical memory location that can
10  * contain the entire properly aligned running kernel image.
11  *
12  */
13 
14 /*
15  * isspace() in linux/ctype.h is expected by next_args() to filter
16  * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
17  * since isdigit() is implemented in both of them. Hence disable it
18  * here.
19  */
20 #define BOOT_CTYPE_H
21 
22 #include "misc.h"
23 #include "error.h"
24 #include "../string.h"
25 #include "efi.h"
26 
27 #include <generated/compile.h>
28 #include <generated/utsversion.h>
29 #include <generated/utsrelease.h>
30 
31 #define _SETUP
32 #include <asm/setup.h>	/* For COMMAND_LINE_SIZE */
33 #undef _SETUP
34 
35 extern unsigned long get_cmd_line_ptr(void);
36 
37 /* Simplified build-specific string for starting entropy. */
38 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
39 		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
40 
41 static unsigned long rotate_xor(unsigned long hash, const void *area,
42 				size_t size)
43 {
44 	size_t i;
45 	unsigned long *ptr = (unsigned long *)area;
46 
47 	for (i = 0; i < size / sizeof(hash); i++) {
48 		/* Rotate by odd number of bits and XOR. */
49 		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
50 		hash ^= ptr[i];
51 	}
52 
53 	return hash;
54 }
55 
56 /* Attempt to create a simple but unpredictable starting entropy. */
57 static unsigned long get_boot_seed(void)
58 {
59 	unsigned long hash = 0;
60 
61 	hash = rotate_xor(hash, build_str, sizeof(build_str));
62 	hash = rotate_xor(hash, boot_params_ptr, sizeof(*boot_params_ptr));
63 
64 	return hash;
65 }
66 
67 #define KASLR_COMPRESSED_BOOT
68 #include "../../lib/kaslr.c"
69 
70 
71 /* Only supporting at most 4 unusable memmap regions with kaslr */
72 #define MAX_MEMMAP_REGIONS	4
73 
74 static bool memmap_too_large;
75 
76 
77 /*
78  * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
79  * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
80  */
81 static u64 mem_limit;
82 
83 /* Number of immovable memory regions */
84 static int num_immovable_mem;
85 
86 enum mem_avoid_index {
87 	MEM_AVOID_ZO_RANGE = 0,
88 	MEM_AVOID_INITRD,
89 	MEM_AVOID_CMDLINE,
90 	MEM_AVOID_BOOTPARAMS,
91 	MEM_AVOID_MEMMAP_BEGIN,
92 	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
93 	MEM_AVOID_MAX,
94 };
95 
96 static struct mem_vector mem_avoid[MEM_AVOID_MAX];
97 
98 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
99 {
100 	/* Item one is entirely before item two. */
101 	if (one->start + one->size <= two->start)
102 		return false;
103 	/* Item one is entirely after item two. */
104 	if (one->start >= two->start + two->size)
105 		return false;
106 	return true;
107 }
108 
109 char *skip_spaces(const char *str)
110 {
111 	while (isspace(*str))
112 		++str;
113 	return (char *)str;
114 }
115 #include "../../../../lib/ctype.c"
116 #include "../../../../lib/cmdline.c"
117 
118 static int
119 parse_memmap(char *p, u64 *start, u64 *size)
120 {
121 	char *oldp;
122 
123 	if (!p)
124 		return -EINVAL;
125 
126 	/* We don't care about this option here */
127 	if (!strncmp(p, "exactmap", 8))
128 		return -EINVAL;
129 
130 	oldp = p;
131 	*size = memparse(p, &p);
132 	if (p == oldp)
133 		return -EINVAL;
134 
135 	switch (*p) {
136 	case '#':
137 	case '$':
138 	case '!':
139 		*start = memparse(p + 1, &p);
140 		return 0;
141 	case '@':
142 		/*
143 		 * memmap=nn@ss specifies usable region, should
144 		 * be skipped
145 		 */
146 		*size = 0;
147 		fallthrough;
148 	default:
149 		/*
150 		 * If w/o offset, only size specified, memmap=nn[KMG] has the
151 		 * same behaviour as mem=nn[KMG]. It limits the max address
152 		 * system can use. Region above the limit should be avoided.
153 		 */
154 		*start = 0;
155 		return 0;
156 	}
157 
158 	return -EINVAL;
159 }
160 
161 static void mem_avoid_memmap(char *str)
162 {
163 	static int i;
164 
165 	if (i >= MAX_MEMMAP_REGIONS)
166 		return;
167 
168 	while (str && (i < MAX_MEMMAP_REGIONS)) {
169 		int rc;
170 		u64 start, size;
171 		char *k = strchr(str, ',');
172 
173 		if (k)
174 			*k++ = 0;
175 
176 		rc = parse_memmap(str, &start, &size);
177 		if (rc < 0)
178 			break;
179 		str = k;
180 
181 		if (start == 0) {
182 			/* Store the specified memory limit if size > 0 */
183 			if (size > 0 && size < mem_limit)
184 				mem_limit = size;
185 
186 			continue;
187 		}
188 
189 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
190 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
191 		i++;
192 	}
193 
194 	/* More than 4 memmaps, fail kaslr */
195 	if ((i >= MAX_MEMMAP_REGIONS) && str)
196 		memmap_too_large = true;
197 }
198 
199 /* Store the number of 1GB huge pages which users specified: */
200 static unsigned long max_gb_huge_pages;
201 
202 static void parse_gb_huge_pages(char *param, char *val)
203 {
204 	static bool gbpage_sz;
205 	char *p;
206 
207 	if (!strcmp(param, "hugepagesz")) {
208 		p = val;
209 		if (memparse(p, &p) != PUD_SIZE) {
210 			gbpage_sz = false;
211 			return;
212 		}
213 
214 		if (gbpage_sz)
215 			warn("Repeatedly set hugeTLB page size of 1G!\n");
216 		gbpage_sz = true;
217 		return;
218 	}
219 
220 	if (!strcmp(param, "hugepages") && gbpage_sz) {
221 		p = val;
222 		max_gb_huge_pages = simple_strtoull(p, &p, 0);
223 		return;
224 	}
225 }
226 
227 static void handle_mem_options(void)
228 {
229 	char *args = (char *)get_cmd_line_ptr();
230 	size_t len;
231 	char *tmp_cmdline;
232 	char *param, *val;
233 	u64 mem_size;
234 
235 	if (!args)
236 		return;
237 
238 	len = strnlen(args, COMMAND_LINE_SIZE-1);
239 	tmp_cmdline = malloc(len + 1);
240 	if (!tmp_cmdline)
241 		error("Failed to allocate space for tmp_cmdline");
242 
243 	memcpy(tmp_cmdline, args, len);
244 	tmp_cmdline[len] = 0;
245 	args = tmp_cmdline;
246 
247 	/* Chew leading spaces */
248 	args = skip_spaces(args);
249 
250 	while (*args) {
251 		args = next_arg(args, &param, &val);
252 		/* Stop at -- */
253 		if (!val && strcmp(param, "--") == 0)
254 			break;
255 
256 		if (!strcmp(param, "memmap")) {
257 			mem_avoid_memmap(val);
258 		} else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
259 			parse_gb_huge_pages(param, val);
260 		} else if (!strcmp(param, "mem")) {
261 			char *p = val;
262 
263 			if (!strcmp(p, "nopentium"))
264 				continue;
265 			mem_size = memparse(p, &p);
266 			if (mem_size == 0)
267 				break;
268 
269 			if (mem_size < mem_limit)
270 				mem_limit = mem_size;
271 		}
272 	}
273 
274 	free(tmp_cmdline);
275 	return;
276 }
277 
278 /*
279  * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
280  * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
281  *
282  * The mem_avoid array is used to store the ranges that need to be avoided
283  * when KASLR searches for an appropriate random address. We must avoid any
284  * regions that are unsafe to overlap with during decompression, and other
285  * things like the initrd, cmdline and boot_params. This comment seeks to
286  * explain mem_avoid as clearly as possible since incorrect mem_avoid
287  * memory ranges lead to really hard to debug boot failures.
288  *
289  * The initrd, cmdline, and boot_params are trivial to identify for
290  * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
291  * MEM_AVOID_BOOTPARAMS respectively below.
292  *
293  * What is not obvious how to avoid is the range of memory that is used
294  * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
295  * the compressed kernel (ZO) and its run space, which is used to extract
296  * the uncompressed kernel (VO) and relocs.
297  *
298  * ZO's full run size sits against the end of the decompression buffer, so
299  * we can calculate where text, data, bss, etc of ZO are positioned more
300  * easily.
301  *
302  * For additional background, the decompression calculations can be found
303  * in header.S, and the memory diagram is based on the one found in misc.c.
304  *
305  * The following conditions are already enforced by the image layouts and
306  * associated code:
307  *  - input + input_size >= output + output_size
308  *  - kernel_total_size <= init_size
309  *  - kernel_total_size <= output_size (see Note below)
310  *  - output + init_size >= output + output_size
311  *
312  * (Note that kernel_total_size and output_size have no fundamental
313  * relationship, but output_size is passed to choose_random_location
314  * as a maximum of the two. The diagram is showing a case where
315  * kernel_total_size is larger than output_size, but this case is
316  * handled by bumping output_size.)
317  *
318  * The above conditions can be illustrated by a diagram:
319  *
320  * 0   output            input            input+input_size    output+init_size
321  * |     |                 |                             |             |
322  * |     |                 |                             |             |
323  * |-----|--------|--------|--------------|-----------|--|-------------|
324  *                |                       |           |
325  *                |                       |           |
326  * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
327  *
328  * [output, output+init_size) is the entire memory range used for
329  * extracting the compressed image.
330  *
331  * [output, output+kernel_total_size) is the range needed for the
332  * uncompressed kernel (VO) and its run size (bss, brk, etc).
333  *
334  * [output, output+output_size) is VO plus relocs (i.e. the entire
335  * uncompressed payload contained by ZO). This is the area of the buffer
336  * written to during decompression.
337  *
338  * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
339  * range of the copied ZO and decompression code. (i.e. the range
340  * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
341  *
342  * [input, input+input_size) is the original copied compressed image (ZO)
343  * (i.e. it does not include its run size). This range must be avoided
344  * because it contains the data used for decompression.
345  *
346  * [input+input_size, output+init_size) is [_text, _end) for ZO. This
347  * range includes ZO's heap and stack, and must be avoided since it
348  * performs the decompression.
349  *
350  * Since the above two ranges need to be avoided and they are adjacent,
351  * they can be merged, resulting in: [input, output+init_size) which
352  * becomes the MEM_AVOID_ZO_RANGE below.
353  */
354 static void mem_avoid_init(unsigned long input, unsigned long input_size,
355 			   unsigned long output)
356 {
357 	unsigned long init_size = boot_params_ptr->hdr.init_size;
358 	u64 initrd_start, initrd_size;
359 	unsigned long cmd_line, cmd_line_size;
360 
361 	/*
362 	 * Avoid the region that is unsafe to overlap during
363 	 * decompression.
364 	 */
365 	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
366 	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
367 
368 	/* Avoid initrd. */
369 	initrd_start  = (u64)boot_params_ptr->ext_ramdisk_image << 32;
370 	initrd_start |= boot_params_ptr->hdr.ramdisk_image;
371 	initrd_size  = (u64)boot_params_ptr->ext_ramdisk_size << 32;
372 	initrd_size |= boot_params_ptr->hdr.ramdisk_size;
373 	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
374 	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
375 	/* No need to set mapping for initrd, it will be handled in VO. */
376 
377 	/* Avoid kernel command line. */
378 	cmd_line = get_cmd_line_ptr();
379 	/* Calculate size of cmd_line. */
380 	if (cmd_line) {
381 		cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
382 		mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
383 		mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
384 	}
385 
386 	/* Avoid boot parameters. */
387 	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params_ptr;
388 	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params_ptr);
389 
390 	/* We don't need to set a mapping for setup_data. */
391 
392 	/* Mark the memmap regions we need to avoid */
393 	handle_mem_options();
394 
395 	/* Enumerate the immovable memory regions */
396 	num_immovable_mem = count_immovable_mem_regions();
397 }
398 
399 /*
400  * Does this memory vector overlap a known avoided area? If so, record the
401  * overlap region with the lowest address.
402  */
403 static bool mem_avoid_overlap(struct mem_vector *img,
404 			      struct mem_vector *overlap)
405 {
406 	int i;
407 	struct setup_data *ptr;
408 	u64 earliest = img->start + img->size;
409 	bool is_overlapping = false;
410 
411 	for (i = 0; i < MEM_AVOID_MAX; i++) {
412 		if (mem_overlaps(img, &mem_avoid[i]) &&
413 		    mem_avoid[i].start < earliest) {
414 			*overlap = mem_avoid[i];
415 			earliest = overlap->start;
416 			is_overlapping = true;
417 		}
418 	}
419 
420 	/* Avoid all entries in the setup_data linked list. */
421 	ptr = (struct setup_data *)(unsigned long)boot_params_ptr->hdr.setup_data;
422 	while (ptr) {
423 		struct mem_vector avoid;
424 
425 		avoid.start = (unsigned long)ptr;
426 		avoid.size = sizeof(*ptr) + ptr->len;
427 
428 		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
429 			*overlap = avoid;
430 			earliest = overlap->start;
431 			is_overlapping = true;
432 		}
433 
434 		if (ptr->type == SETUP_INDIRECT &&
435 		    ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
436 			avoid.start = ((struct setup_indirect *)ptr->data)->addr;
437 			avoid.size = ((struct setup_indirect *)ptr->data)->len;
438 
439 			if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
440 				*overlap = avoid;
441 				earliest = overlap->start;
442 				is_overlapping = true;
443 			}
444 		}
445 
446 		ptr = (struct setup_data *)(unsigned long)ptr->next;
447 	}
448 
449 	return is_overlapping;
450 }
451 
452 struct slot_area {
453 	u64 addr;
454 	unsigned long num;
455 };
456 
457 #define MAX_SLOT_AREA 100
458 
459 static struct slot_area slot_areas[MAX_SLOT_AREA];
460 static unsigned int slot_area_index;
461 static unsigned long slot_max;
462 
463 static void store_slot_info(struct mem_vector *region, unsigned long image_size)
464 {
465 	struct slot_area slot_area;
466 
467 	if (slot_area_index == MAX_SLOT_AREA)
468 		return;
469 
470 	slot_area.addr = region->start;
471 	slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
472 
473 	slot_areas[slot_area_index++] = slot_area;
474 	slot_max += slot_area.num;
475 }
476 
477 /*
478  * Skip as many 1GB huge pages as possible in the passed region
479  * according to the number which users specified:
480  */
481 static void
482 process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
483 {
484 	u64 pud_start, pud_end;
485 	unsigned long gb_huge_pages;
486 	struct mem_vector tmp;
487 
488 	if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
489 		store_slot_info(region, image_size);
490 		return;
491 	}
492 
493 	/* Are there any 1GB pages in the region? */
494 	pud_start = ALIGN(region->start, PUD_SIZE);
495 	pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
496 
497 	/* No good 1GB huge pages found: */
498 	if (pud_start >= pud_end) {
499 		store_slot_info(region, image_size);
500 		return;
501 	}
502 
503 	/* Check if the head part of the region is usable. */
504 	if (pud_start >= region->start + image_size) {
505 		tmp.start = region->start;
506 		tmp.size = pud_start - region->start;
507 		store_slot_info(&tmp, image_size);
508 	}
509 
510 	/* Skip the good 1GB pages. */
511 	gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
512 	if (gb_huge_pages > max_gb_huge_pages) {
513 		pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
514 		max_gb_huge_pages = 0;
515 	} else {
516 		max_gb_huge_pages -= gb_huge_pages;
517 	}
518 
519 	/* Check if the tail part of the region is usable. */
520 	if (region->start + region->size >= pud_end + image_size) {
521 		tmp.start = pud_end;
522 		tmp.size = region->start + region->size - pud_end;
523 		store_slot_info(&tmp, image_size);
524 	}
525 }
526 
527 static u64 slots_fetch_random(void)
528 {
529 	unsigned long slot;
530 	unsigned int i;
531 
532 	/* Handle case of no slots stored. */
533 	if (slot_max == 0)
534 		return 0;
535 
536 	slot = kaslr_get_random_long("Physical") % slot_max;
537 
538 	for (i = 0; i < slot_area_index; i++) {
539 		if (slot >= slot_areas[i].num) {
540 			slot -= slot_areas[i].num;
541 			continue;
542 		}
543 		return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
544 	}
545 
546 	if (i == slot_area_index)
547 		debug_putstr("slots_fetch_random() failed!?\n");
548 	return 0;
549 }
550 
551 static void __process_mem_region(struct mem_vector *entry,
552 				 unsigned long minimum,
553 				 unsigned long image_size)
554 {
555 	struct mem_vector region, overlap;
556 	u64 region_end;
557 
558 	/* Enforce minimum and memory limit. */
559 	region.start = max_t(u64, entry->start, minimum);
560 	region_end = min(entry->start + entry->size, mem_limit);
561 
562 	/* Give up if slot area array is full. */
563 	while (slot_area_index < MAX_SLOT_AREA) {
564 		/* Potentially raise address to meet alignment needs. */
565 		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
566 
567 		/* Did we raise the address above the passed in memory entry? */
568 		if (region.start > region_end)
569 			return;
570 
571 		/* Reduce size by any delta from the original address. */
572 		region.size = region_end - region.start;
573 
574 		/* Return if region can't contain decompressed kernel */
575 		if (region.size < image_size)
576 			return;
577 
578 		/* If nothing overlaps, store the region and return. */
579 		if (!mem_avoid_overlap(&region, &overlap)) {
580 			process_gb_huge_pages(&region, image_size);
581 			return;
582 		}
583 
584 		/* Store beginning of region if holds at least image_size. */
585 		if (overlap.start >= region.start + image_size) {
586 			region.size = overlap.start - region.start;
587 			process_gb_huge_pages(&region, image_size);
588 		}
589 
590 		/* Clip off the overlapping region and start over. */
591 		region.start = overlap.start + overlap.size;
592 	}
593 }
594 
595 static bool process_mem_region(struct mem_vector *region,
596 			       unsigned long minimum,
597 			       unsigned long image_size)
598 {
599 	int i;
600 	/*
601 	 * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
602 	 * use @region directly.
603 	 */
604 	if (!num_immovable_mem) {
605 		__process_mem_region(region, minimum, image_size);
606 
607 		if (slot_area_index == MAX_SLOT_AREA) {
608 			debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
609 			return true;
610 		}
611 		return false;
612 	}
613 
614 #if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
615 	/*
616 	 * If immovable memory found, filter the intersection between
617 	 * immovable memory and @region.
618 	 */
619 	for (i = 0; i < num_immovable_mem; i++) {
620 		u64 start, end, entry_end, region_end;
621 		struct mem_vector entry;
622 
623 		if (!mem_overlaps(region, &immovable_mem[i]))
624 			continue;
625 
626 		start = immovable_mem[i].start;
627 		end = start + immovable_mem[i].size;
628 		region_end = region->start + region->size;
629 
630 		entry.start = clamp(region->start, start, end);
631 		entry_end = clamp(region_end, start, end);
632 		entry.size = entry_end - entry.start;
633 
634 		__process_mem_region(&entry, minimum, image_size);
635 
636 		if (slot_area_index == MAX_SLOT_AREA) {
637 			debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
638 			return true;
639 		}
640 	}
641 #endif
642 	return false;
643 }
644 
645 #ifdef CONFIG_EFI
646 
647 /*
648  * Only EFI_CONVENTIONAL_MEMORY and EFI_UNACCEPTED_MEMORY (if supported) are
649  * guaranteed to be free.
650  *
651  * Pick free memory more conservatively than the EFI spec allows: according to
652  * the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also free memory and thus
653  * available to place the kernel image into, but in practice there's firmware
654  * where using that memory leads to crashes. Buggy vendor EFI code registers
655  * for an event that triggers on SetVirtualAddressMap(). The handler assumes
656  * that EFI_BOOT_SERVICES_DATA memory has not been touched by loader yet, which
657  * is probably true for Windows.
658  *
659  * Preserve EFI_BOOT_SERVICES_* regions until after SetVirtualAddressMap().
660  */
661 static inline bool memory_type_is_free(efi_memory_desc_t *md)
662 {
663 	if (md->type == EFI_CONVENTIONAL_MEMORY)
664 		return true;
665 
666 	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
667 	    md->type == EFI_UNACCEPTED_MEMORY)
668 		    return true;
669 
670 	return false;
671 }
672 
673 /*
674  * Returns true if we processed the EFI memmap, which we prefer over the E820
675  * table if it is available.
676  */
677 static bool
678 process_efi_entries(unsigned long minimum, unsigned long image_size)
679 {
680 	struct efi_info *e = &boot_params_ptr->efi_info;
681 	bool efi_mirror_found = false;
682 	struct mem_vector region;
683 	efi_memory_desc_t *md;
684 	unsigned long pmap;
685 	char *signature;
686 	u32 nr_desc;
687 	int i;
688 
689 	signature = (char *)&e->efi_loader_signature;
690 	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
691 	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
692 		return false;
693 
694 #ifdef CONFIG_X86_32
695 	/* Can't handle data above 4GB at this time */
696 	if (e->efi_memmap_hi) {
697 		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
698 		return false;
699 	}
700 	pmap =  e->efi_memmap;
701 #else
702 	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
703 #endif
704 
705 	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
706 	for (i = 0; i < nr_desc; i++) {
707 		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
708 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
709 			efi_mirror_found = true;
710 			break;
711 		}
712 	}
713 
714 	for (i = 0; i < nr_desc; i++) {
715 		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
716 
717 		if (!memory_type_is_free(md))
718 			continue;
719 
720 		if (efi_soft_reserve_enabled() &&
721 		    (md->attribute & EFI_MEMORY_SP))
722 			continue;
723 
724 		if (efi_mirror_found &&
725 		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
726 			continue;
727 
728 		region.start = md->phys_addr;
729 		region.size = md->num_pages << EFI_PAGE_SHIFT;
730 		if (process_mem_region(&region, minimum, image_size))
731 			break;
732 	}
733 	return true;
734 }
735 #else
736 static inline bool
737 process_efi_entries(unsigned long minimum, unsigned long image_size)
738 {
739 	return false;
740 }
741 #endif
742 
743 static void process_e820_entries(unsigned long minimum,
744 				 unsigned long image_size)
745 {
746 	int i;
747 	struct mem_vector region;
748 	struct boot_e820_entry *entry;
749 
750 	/* Verify potential e820 positions, appending to slots list. */
751 	for (i = 0; i < boot_params_ptr->e820_entries; i++) {
752 		entry = &boot_params_ptr->e820_table[i];
753 		/* Skip non-RAM entries. */
754 		if (entry->type != E820_TYPE_RAM)
755 			continue;
756 		region.start = entry->addr;
757 		region.size = entry->size;
758 		if (process_mem_region(&region, minimum, image_size))
759 			break;
760 	}
761 }
762 
763 static unsigned long find_random_phys_addr(unsigned long minimum,
764 					   unsigned long image_size)
765 {
766 	u64 phys_addr;
767 
768 	/* Bail out early if it's impossible to succeed. */
769 	if (minimum + image_size > mem_limit)
770 		return 0;
771 
772 	/* Check if we had too many memmaps. */
773 	if (memmap_too_large) {
774 		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
775 		return 0;
776 	}
777 
778 	if (!process_efi_entries(minimum, image_size))
779 		process_e820_entries(minimum, image_size);
780 
781 	phys_addr = slots_fetch_random();
782 
783 	/* Perform a final check to make sure the address is in range. */
784 	if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
785 		warn("Invalid physical address chosen!\n");
786 		return 0;
787 	}
788 
789 	return (unsigned long)phys_addr;
790 }
791 
792 static unsigned long find_random_virt_addr(unsigned long minimum,
793 					   unsigned long image_size)
794 {
795 	unsigned long slots, random_addr;
796 
797 	/*
798 	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
799 	 * that can hold image_size within the range of minimum to
800 	 * KERNEL_IMAGE_SIZE?
801 	 */
802 	slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
803 
804 	random_addr = kaslr_get_random_long("Virtual") % slots;
805 
806 	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
807 }
808 
809 /*
810  * Since this function examines addresses much more numerically,
811  * it takes the input and output pointers as 'unsigned long'.
812  */
813 void choose_random_location(unsigned long input,
814 			    unsigned long input_size,
815 			    unsigned long *output,
816 			    unsigned long output_size,
817 			    unsigned long *virt_addr)
818 {
819 	unsigned long random_addr, min_addr;
820 
821 	if (cmdline_find_option_bool("nokaslr")) {
822 		warn("KASLR disabled: 'nokaslr' on cmdline.");
823 		return;
824 	}
825 
826 	boot_params_ptr->hdr.loadflags |= KASLR_FLAG;
827 
828 	if (IS_ENABLED(CONFIG_X86_32))
829 		mem_limit = KERNEL_IMAGE_SIZE;
830 	else
831 		mem_limit = MAXMEM;
832 
833 	/* Record the various known unsafe memory ranges. */
834 	mem_avoid_init(input, input_size, *output);
835 
836 	/*
837 	 * Low end of the randomization range should be the
838 	 * smaller of 512M or the initial kernel image
839 	 * location:
840 	 */
841 	min_addr = min(*output, 512UL << 20);
842 	/* Make sure minimum is aligned. */
843 	min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
844 
845 	/* Walk available memory entries to find a random address. */
846 	random_addr = find_random_phys_addr(min_addr, output_size);
847 	if (!random_addr) {
848 		warn("Physical KASLR disabled: no suitable memory region!");
849 	} else {
850 		/* Update the new physical address location. */
851 		if (*output != random_addr)
852 			*output = random_addr;
853 	}
854 
855 
856 	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
857 	if (IS_ENABLED(CONFIG_X86_64))
858 		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
859 	*virt_addr = random_addr;
860 }
861