1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * kaslr.c 4 * 5 * This contains the routines needed to generate a reasonable level of 6 * entropy to choose a randomized kernel base address offset in support 7 * of Kernel Address Space Layout Randomization (KASLR). Additionally 8 * handles walking the physical memory maps (and tracking memory regions 9 * to avoid) in order to select a physical memory location that can 10 * contain the entire properly aligned running kernel image. 11 * 12 */ 13 14 /* 15 * isspace() in linux/ctype.h is expected by next_args() to filter 16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h, 17 * since isdigit() is implemented in both of them. Hence disable it 18 * here. 19 */ 20 #define BOOT_CTYPE_H 21 22 #include "misc.h" 23 #include "error.h" 24 #include "../string.h" 25 #include "efi.h" 26 27 #include <generated/compile.h> 28 #include <generated/utsversion.h> 29 #include <generated/utsrelease.h> 30 31 #define _SETUP 32 #include <asm/setup.h> /* For COMMAND_LINE_SIZE */ 33 #undef _SETUP 34 35 extern unsigned long get_cmd_line_ptr(void); 36 37 /* Simplified build-specific string for starting entropy. */ 38 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" 39 LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; 40 41 static unsigned long rotate_xor(unsigned long hash, const void *area, 42 size_t size) 43 { 44 size_t i; 45 unsigned long *ptr = (unsigned long *)area; 46 47 for (i = 0; i < size / sizeof(hash); i++) { 48 /* Rotate by odd number of bits and XOR. */ 49 hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); 50 hash ^= ptr[i]; 51 } 52 53 return hash; 54 } 55 56 /* Attempt to create a simple but unpredictable starting entropy. */ 57 static unsigned long get_boot_seed(void) 58 { 59 unsigned long hash = 0; 60 61 hash = rotate_xor(hash, build_str, sizeof(build_str)); 62 hash = rotate_xor(hash, boot_params_ptr, sizeof(*boot_params_ptr)); 63 64 return hash; 65 } 66 67 #define KASLR_COMPRESSED_BOOT 68 #include "../../lib/kaslr.c" 69 70 71 /* Only supporting at most 4 unusable memmap regions with kaslr */ 72 #define MAX_MEMMAP_REGIONS 4 73 74 static bool memmap_too_large; 75 76 77 /* 78 * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit. 79 * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options. 80 */ 81 static u64 mem_limit; 82 83 /* Number of immovable memory regions */ 84 static int num_immovable_mem; 85 86 enum mem_avoid_index { 87 MEM_AVOID_ZO_RANGE = 0, 88 MEM_AVOID_INITRD, 89 MEM_AVOID_CMDLINE, 90 MEM_AVOID_BOOTPARAMS, 91 MEM_AVOID_MEMMAP_BEGIN, 92 MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1, 93 MEM_AVOID_MAX, 94 }; 95 96 static struct mem_vector mem_avoid[MEM_AVOID_MAX]; 97 98 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) 99 { 100 /* Item one is entirely before item two. */ 101 if (one->start + one->size <= two->start) 102 return false; 103 /* Item one is entirely after item two. */ 104 if (one->start >= two->start + two->size) 105 return false; 106 return true; 107 } 108 109 char *skip_spaces(const char *str) 110 { 111 while (isspace(*str)) 112 ++str; 113 return (char *)str; 114 } 115 #include "../../../../lib/ctype.c" 116 #include "../../../../lib/cmdline.c" 117 118 static int 119 parse_memmap(char *p, u64 *start, u64 *size) 120 { 121 char *oldp; 122 123 if (!p) 124 return -EINVAL; 125 126 /* We don't care about this option here */ 127 if (!strncmp(p, "exactmap", 8)) 128 return -EINVAL; 129 130 oldp = p; 131 *size = memparse(p, &p); 132 if (p == oldp) 133 return -EINVAL; 134 135 switch (*p) { 136 case '#': 137 case '$': 138 case '!': 139 *start = memparse(p + 1, &p); 140 return 0; 141 case '@': 142 /* 143 * memmap=nn@ss specifies usable region, should 144 * be skipped 145 */ 146 *size = 0; 147 fallthrough; 148 default: 149 /* 150 * If w/o offset, only size specified, memmap=nn[KMG] has the 151 * same behaviour as mem=nn[KMG]. It limits the max address 152 * system can use. Region above the limit should be avoided. 153 */ 154 *start = 0; 155 return 0; 156 } 157 158 return -EINVAL; 159 } 160 161 static void mem_avoid_memmap(char *str) 162 { 163 static int i; 164 165 if (i >= MAX_MEMMAP_REGIONS) 166 return; 167 168 while (str && (i < MAX_MEMMAP_REGIONS)) { 169 int rc; 170 u64 start, size; 171 char *k = strchr(str, ','); 172 173 if (k) 174 *k++ = 0; 175 176 rc = parse_memmap(str, &start, &size); 177 if (rc < 0) 178 break; 179 str = k; 180 181 if (start == 0) { 182 /* Store the specified memory limit if size > 0 */ 183 if (size > 0 && size < mem_limit) 184 mem_limit = size; 185 186 continue; 187 } 188 189 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start; 190 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size; 191 i++; 192 } 193 194 /* More than 4 memmaps, fail kaslr */ 195 if ((i >= MAX_MEMMAP_REGIONS) && str) 196 memmap_too_large = true; 197 } 198 199 /* Store the number of 1GB huge pages which users specified: */ 200 static unsigned long max_gb_huge_pages; 201 202 static void parse_gb_huge_pages(char *param, char *val) 203 { 204 static bool gbpage_sz; 205 char *p; 206 207 if (!strcmp(param, "hugepagesz")) { 208 p = val; 209 if (memparse(p, &p) != PUD_SIZE) { 210 gbpage_sz = false; 211 return; 212 } 213 214 if (gbpage_sz) 215 warn("Repeatedly set hugeTLB page size of 1G!\n"); 216 gbpage_sz = true; 217 return; 218 } 219 220 if (!strcmp(param, "hugepages") && gbpage_sz) { 221 p = val; 222 max_gb_huge_pages = simple_strtoull(p, &p, 0); 223 return; 224 } 225 } 226 227 static void handle_mem_options(void) 228 { 229 char *args = (char *)get_cmd_line_ptr(); 230 size_t len; 231 char *tmp_cmdline; 232 char *param, *val; 233 u64 mem_size; 234 235 if (!args) 236 return; 237 238 len = strnlen(args, COMMAND_LINE_SIZE-1); 239 tmp_cmdline = malloc(len + 1); 240 if (!tmp_cmdline) 241 error("Failed to allocate space for tmp_cmdline"); 242 243 memcpy(tmp_cmdline, args, len); 244 tmp_cmdline[len] = 0; 245 args = tmp_cmdline; 246 247 /* Chew leading spaces */ 248 args = skip_spaces(args); 249 250 while (*args) { 251 args = next_arg(args, ¶m, &val); 252 /* Stop at -- */ 253 if (!val && strcmp(param, "--") == 0) 254 break; 255 256 if (!strcmp(param, "memmap")) { 257 mem_avoid_memmap(val); 258 } else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) { 259 parse_gb_huge_pages(param, val); 260 } else if (!strcmp(param, "mem")) { 261 char *p = val; 262 263 if (!strcmp(p, "nopentium")) 264 continue; 265 mem_size = memparse(p, &p); 266 if (mem_size == 0) 267 break; 268 269 if (mem_size < mem_limit) 270 mem_limit = mem_size; 271 } 272 } 273 274 free(tmp_cmdline); 275 return; 276 } 277 278 /* 279 * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM) 280 * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit. 281 * 282 * The mem_avoid array is used to store the ranges that need to be avoided 283 * when KASLR searches for an appropriate random address. We must avoid any 284 * regions that are unsafe to overlap with during decompression, and other 285 * things like the initrd, cmdline and boot_params. This comment seeks to 286 * explain mem_avoid as clearly as possible since incorrect mem_avoid 287 * memory ranges lead to really hard to debug boot failures. 288 * 289 * The initrd, cmdline, and boot_params are trivial to identify for 290 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and 291 * MEM_AVOID_BOOTPARAMS respectively below. 292 * 293 * What is not obvious how to avoid is the range of memory that is used 294 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover 295 * the compressed kernel (ZO) and its run space, which is used to extract 296 * the uncompressed kernel (VO) and relocs. 297 * 298 * ZO's full run size sits against the end of the decompression buffer, so 299 * we can calculate where text, data, bss, etc of ZO are positioned more 300 * easily. 301 * 302 * For additional background, the decompression calculations can be found 303 * in header.S, and the memory diagram is based on the one found in misc.c. 304 * 305 * The following conditions are already enforced by the image layouts and 306 * associated code: 307 * - input + input_size >= output + output_size 308 * - kernel_total_size <= init_size 309 * - kernel_total_size <= output_size (see Note below) 310 * - output + init_size >= output + output_size 311 * 312 * (Note that kernel_total_size and output_size have no fundamental 313 * relationship, but output_size is passed to choose_random_location 314 * as a maximum of the two. The diagram is showing a case where 315 * kernel_total_size is larger than output_size, but this case is 316 * handled by bumping output_size.) 317 * 318 * The above conditions can be illustrated by a diagram: 319 * 320 * 0 output input input+input_size output+init_size 321 * | | | | | 322 * | | | | | 323 * |-----|--------|--------|--------------|-----------|--|-------------| 324 * | | | 325 * | | | 326 * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size 327 * 328 * [output, output+init_size) is the entire memory range used for 329 * extracting the compressed image. 330 * 331 * [output, output+kernel_total_size) is the range needed for the 332 * uncompressed kernel (VO) and its run size (bss, brk, etc). 333 * 334 * [output, output+output_size) is VO plus relocs (i.e. the entire 335 * uncompressed payload contained by ZO). This is the area of the buffer 336 * written to during decompression. 337 * 338 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case 339 * range of the copied ZO and decompression code. (i.e. the range 340 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.) 341 * 342 * [input, input+input_size) is the original copied compressed image (ZO) 343 * (i.e. it does not include its run size). This range must be avoided 344 * because it contains the data used for decompression. 345 * 346 * [input+input_size, output+init_size) is [_text, _end) for ZO. This 347 * range includes ZO's heap and stack, and must be avoided since it 348 * performs the decompression. 349 * 350 * Since the above two ranges need to be avoided and they are adjacent, 351 * they can be merged, resulting in: [input, output+init_size) which 352 * becomes the MEM_AVOID_ZO_RANGE below. 353 */ 354 static void mem_avoid_init(unsigned long input, unsigned long input_size, 355 unsigned long output) 356 { 357 unsigned long init_size = boot_params_ptr->hdr.init_size; 358 u64 initrd_start, initrd_size; 359 unsigned long cmd_line, cmd_line_size; 360 361 /* 362 * Avoid the region that is unsafe to overlap during 363 * decompression. 364 */ 365 mem_avoid[MEM_AVOID_ZO_RANGE].start = input; 366 mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input; 367 368 /* Avoid initrd. */ 369 initrd_start = (u64)boot_params_ptr->ext_ramdisk_image << 32; 370 initrd_start |= boot_params_ptr->hdr.ramdisk_image; 371 initrd_size = (u64)boot_params_ptr->ext_ramdisk_size << 32; 372 initrd_size |= boot_params_ptr->hdr.ramdisk_size; 373 mem_avoid[MEM_AVOID_INITRD].start = initrd_start; 374 mem_avoid[MEM_AVOID_INITRD].size = initrd_size; 375 /* No need to set mapping for initrd, it will be handled in VO. */ 376 377 /* Avoid kernel command line. */ 378 cmd_line = get_cmd_line_ptr(); 379 /* Calculate size of cmd_line. */ 380 if (cmd_line) { 381 cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1; 382 mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line; 383 mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size; 384 } 385 386 /* Avoid boot parameters. */ 387 mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params_ptr; 388 mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params_ptr); 389 390 /* We don't need to set a mapping for setup_data. */ 391 392 /* Mark the memmap regions we need to avoid */ 393 handle_mem_options(); 394 395 /* Enumerate the immovable memory regions */ 396 num_immovable_mem = count_immovable_mem_regions(); 397 } 398 399 /* 400 * Does this memory vector overlap a known avoided area? If so, record the 401 * overlap region with the lowest address. 402 */ 403 static bool mem_avoid_overlap(struct mem_vector *img, 404 struct mem_vector *overlap) 405 { 406 int i; 407 struct setup_data *ptr; 408 u64 earliest = img->start + img->size; 409 bool is_overlapping = false; 410 411 for (i = 0; i < MEM_AVOID_MAX; i++) { 412 if (mem_overlaps(img, &mem_avoid[i]) && 413 mem_avoid[i].start < earliest) { 414 *overlap = mem_avoid[i]; 415 earliest = overlap->start; 416 is_overlapping = true; 417 } 418 } 419 420 /* Avoid all entries in the setup_data linked list. */ 421 ptr = (struct setup_data *)(unsigned long)boot_params_ptr->hdr.setup_data; 422 while (ptr) { 423 struct mem_vector avoid; 424 425 avoid.start = (unsigned long)ptr; 426 avoid.size = sizeof(*ptr) + ptr->len; 427 428 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { 429 *overlap = avoid; 430 earliest = overlap->start; 431 is_overlapping = true; 432 } 433 434 if (ptr->type == SETUP_INDIRECT && 435 ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) { 436 avoid.start = ((struct setup_indirect *)ptr->data)->addr; 437 avoid.size = ((struct setup_indirect *)ptr->data)->len; 438 439 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { 440 *overlap = avoid; 441 earliest = overlap->start; 442 is_overlapping = true; 443 } 444 } 445 446 ptr = (struct setup_data *)(unsigned long)ptr->next; 447 } 448 449 return is_overlapping; 450 } 451 452 struct slot_area { 453 u64 addr; 454 unsigned long num; 455 }; 456 457 #define MAX_SLOT_AREA 100 458 459 static struct slot_area slot_areas[MAX_SLOT_AREA]; 460 static unsigned int slot_area_index; 461 static unsigned long slot_max; 462 463 static void store_slot_info(struct mem_vector *region, unsigned long image_size) 464 { 465 struct slot_area slot_area; 466 467 if (slot_area_index == MAX_SLOT_AREA) 468 return; 469 470 slot_area.addr = region->start; 471 slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN; 472 473 slot_areas[slot_area_index++] = slot_area; 474 slot_max += slot_area.num; 475 } 476 477 /* 478 * Skip as many 1GB huge pages as possible in the passed region 479 * according to the number which users specified: 480 */ 481 static void 482 process_gb_huge_pages(struct mem_vector *region, unsigned long image_size) 483 { 484 u64 pud_start, pud_end; 485 unsigned long gb_huge_pages; 486 struct mem_vector tmp; 487 488 if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) { 489 store_slot_info(region, image_size); 490 return; 491 } 492 493 /* Are there any 1GB pages in the region? */ 494 pud_start = ALIGN(region->start, PUD_SIZE); 495 pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE); 496 497 /* No good 1GB huge pages found: */ 498 if (pud_start >= pud_end) { 499 store_slot_info(region, image_size); 500 return; 501 } 502 503 /* Check if the head part of the region is usable. */ 504 if (pud_start >= region->start + image_size) { 505 tmp.start = region->start; 506 tmp.size = pud_start - region->start; 507 store_slot_info(&tmp, image_size); 508 } 509 510 /* Skip the good 1GB pages. */ 511 gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT; 512 if (gb_huge_pages > max_gb_huge_pages) { 513 pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT); 514 max_gb_huge_pages = 0; 515 } else { 516 max_gb_huge_pages -= gb_huge_pages; 517 } 518 519 /* Check if the tail part of the region is usable. */ 520 if (region->start + region->size >= pud_end + image_size) { 521 tmp.start = pud_end; 522 tmp.size = region->start + region->size - pud_end; 523 store_slot_info(&tmp, image_size); 524 } 525 } 526 527 static u64 slots_fetch_random(void) 528 { 529 unsigned long slot; 530 unsigned int i; 531 532 /* Handle case of no slots stored. */ 533 if (slot_max == 0) 534 return 0; 535 536 slot = kaslr_get_random_long("Physical") % slot_max; 537 538 for (i = 0; i < slot_area_index; i++) { 539 if (slot >= slot_areas[i].num) { 540 slot -= slot_areas[i].num; 541 continue; 542 } 543 return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN); 544 } 545 546 if (i == slot_area_index) 547 debug_putstr("slots_fetch_random() failed!?\n"); 548 return 0; 549 } 550 551 static void __process_mem_region(struct mem_vector *entry, 552 unsigned long minimum, 553 unsigned long image_size) 554 { 555 struct mem_vector region, overlap; 556 u64 region_end; 557 558 /* Enforce minimum and memory limit. */ 559 region.start = max_t(u64, entry->start, minimum); 560 region_end = min(entry->start + entry->size, mem_limit); 561 562 /* Give up if slot area array is full. */ 563 while (slot_area_index < MAX_SLOT_AREA) { 564 /* Potentially raise address to meet alignment needs. */ 565 region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); 566 567 /* Did we raise the address above the passed in memory entry? */ 568 if (region.start > region_end) 569 return; 570 571 /* Reduce size by any delta from the original address. */ 572 region.size = region_end - region.start; 573 574 /* Return if region can't contain decompressed kernel */ 575 if (region.size < image_size) 576 return; 577 578 /* If nothing overlaps, store the region and return. */ 579 if (!mem_avoid_overlap(®ion, &overlap)) { 580 process_gb_huge_pages(®ion, image_size); 581 return; 582 } 583 584 /* Store beginning of region if holds at least image_size. */ 585 if (overlap.start >= region.start + image_size) { 586 region.size = overlap.start - region.start; 587 process_gb_huge_pages(®ion, image_size); 588 } 589 590 /* Clip off the overlapping region and start over. */ 591 region.start = overlap.start + overlap.size; 592 } 593 } 594 595 static bool process_mem_region(struct mem_vector *region, 596 unsigned long minimum, 597 unsigned long image_size) 598 { 599 int i; 600 /* 601 * If no immovable memory found, or MEMORY_HOTREMOVE disabled, 602 * use @region directly. 603 */ 604 if (!num_immovable_mem) { 605 __process_mem_region(region, minimum, image_size); 606 607 if (slot_area_index == MAX_SLOT_AREA) { 608 debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n"); 609 return true; 610 } 611 return false; 612 } 613 614 #if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI) 615 /* 616 * If immovable memory found, filter the intersection between 617 * immovable memory and @region. 618 */ 619 for (i = 0; i < num_immovable_mem; i++) { 620 u64 start, end, entry_end, region_end; 621 struct mem_vector entry; 622 623 if (!mem_overlaps(region, &immovable_mem[i])) 624 continue; 625 626 start = immovable_mem[i].start; 627 end = start + immovable_mem[i].size; 628 region_end = region->start + region->size; 629 630 entry.start = clamp(region->start, start, end); 631 entry_end = clamp(region_end, start, end); 632 entry.size = entry_end - entry.start; 633 634 __process_mem_region(&entry, minimum, image_size); 635 636 if (slot_area_index == MAX_SLOT_AREA) { 637 debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n"); 638 return true; 639 } 640 } 641 #endif 642 return false; 643 } 644 645 #ifdef CONFIG_EFI 646 647 /* 648 * Only EFI_CONVENTIONAL_MEMORY and EFI_UNACCEPTED_MEMORY (if supported) are 649 * guaranteed to be free. 650 * 651 * Pick free memory more conservatively than the EFI spec allows: according to 652 * the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also free memory and thus 653 * available to place the kernel image into, but in practice there's firmware 654 * where using that memory leads to crashes. Buggy vendor EFI code registers 655 * for an event that triggers on SetVirtualAddressMap(). The handler assumes 656 * that EFI_BOOT_SERVICES_DATA memory has not been touched by loader yet, which 657 * is probably true for Windows. 658 * 659 * Preserve EFI_BOOT_SERVICES_* regions until after SetVirtualAddressMap(). 660 */ 661 static inline bool memory_type_is_free(efi_memory_desc_t *md) 662 { 663 if (md->type == EFI_CONVENTIONAL_MEMORY) 664 return true; 665 666 if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) && 667 md->type == EFI_UNACCEPTED_MEMORY) 668 return true; 669 670 return false; 671 } 672 673 /* 674 * Returns true if we processed the EFI memmap, which we prefer over the E820 675 * table if it is available. 676 */ 677 static bool 678 process_efi_entries(unsigned long minimum, unsigned long image_size) 679 { 680 struct efi_info *e = &boot_params_ptr->efi_info; 681 bool efi_mirror_found = false; 682 struct mem_vector region; 683 efi_memory_desc_t *md; 684 unsigned long pmap; 685 char *signature; 686 u32 nr_desc; 687 int i; 688 689 signature = (char *)&e->efi_loader_signature; 690 if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) && 691 strncmp(signature, EFI64_LOADER_SIGNATURE, 4)) 692 return false; 693 694 #ifdef CONFIG_X86_32 695 /* Can't handle data above 4GB at this time */ 696 if (e->efi_memmap_hi) { 697 warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n"); 698 return false; 699 } 700 pmap = e->efi_memmap; 701 #else 702 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); 703 #endif 704 705 nr_desc = e->efi_memmap_size / e->efi_memdesc_size; 706 for (i = 0; i < nr_desc; i++) { 707 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); 708 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { 709 efi_mirror_found = true; 710 break; 711 } 712 } 713 714 for (i = 0; i < nr_desc; i++) { 715 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); 716 717 if (!memory_type_is_free(md)) 718 continue; 719 720 if (efi_soft_reserve_enabled() && 721 (md->attribute & EFI_MEMORY_SP)) 722 continue; 723 724 if (efi_mirror_found && 725 !(md->attribute & EFI_MEMORY_MORE_RELIABLE)) 726 continue; 727 728 region.start = md->phys_addr; 729 region.size = md->num_pages << EFI_PAGE_SHIFT; 730 if (process_mem_region(®ion, minimum, image_size)) 731 break; 732 } 733 return true; 734 } 735 #else 736 static inline bool 737 process_efi_entries(unsigned long minimum, unsigned long image_size) 738 { 739 return false; 740 } 741 #endif 742 743 static void process_e820_entries(unsigned long minimum, 744 unsigned long image_size) 745 { 746 int i; 747 struct mem_vector region; 748 struct boot_e820_entry *entry; 749 750 /* Verify potential e820 positions, appending to slots list. */ 751 for (i = 0; i < boot_params_ptr->e820_entries; i++) { 752 entry = &boot_params_ptr->e820_table[i]; 753 /* Skip non-RAM entries. */ 754 if (entry->type != E820_TYPE_RAM) 755 continue; 756 region.start = entry->addr; 757 region.size = entry->size; 758 if (process_mem_region(®ion, minimum, image_size)) 759 break; 760 } 761 } 762 763 static unsigned long find_random_phys_addr(unsigned long minimum, 764 unsigned long image_size) 765 { 766 u64 phys_addr; 767 768 /* Bail out early if it's impossible to succeed. */ 769 if (minimum + image_size > mem_limit) 770 return 0; 771 772 /* Check if we had too many memmaps. */ 773 if (memmap_too_large) { 774 debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n"); 775 return 0; 776 } 777 778 if (!process_efi_entries(minimum, image_size)) 779 process_e820_entries(minimum, image_size); 780 781 phys_addr = slots_fetch_random(); 782 783 /* Perform a final check to make sure the address is in range. */ 784 if (phys_addr < minimum || phys_addr + image_size > mem_limit) { 785 warn("Invalid physical address chosen!\n"); 786 return 0; 787 } 788 789 return (unsigned long)phys_addr; 790 } 791 792 static unsigned long find_random_virt_addr(unsigned long minimum, 793 unsigned long image_size) 794 { 795 unsigned long slots, random_addr; 796 797 /* 798 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots 799 * that can hold image_size within the range of minimum to 800 * KERNEL_IMAGE_SIZE? 801 */ 802 slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN; 803 804 random_addr = kaslr_get_random_long("Virtual") % slots; 805 806 return random_addr * CONFIG_PHYSICAL_ALIGN + minimum; 807 } 808 809 /* 810 * Since this function examines addresses much more numerically, 811 * it takes the input and output pointers as 'unsigned long'. 812 */ 813 void choose_random_location(unsigned long input, 814 unsigned long input_size, 815 unsigned long *output, 816 unsigned long output_size, 817 unsigned long *virt_addr) 818 { 819 unsigned long random_addr, min_addr; 820 821 if (cmdline_find_option_bool("nokaslr")) { 822 warn("KASLR disabled: 'nokaslr' on cmdline."); 823 return; 824 } 825 826 boot_params_ptr->hdr.loadflags |= KASLR_FLAG; 827 828 if (IS_ENABLED(CONFIG_X86_32)) 829 mem_limit = KERNEL_IMAGE_SIZE; 830 else 831 mem_limit = MAXMEM; 832 833 /* Record the various known unsafe memory ranges. */ 834 mem_avoid_init(input, input_size, *output); 835 836 /* 837 * Low end of the randomization range should be the 838 * smaller of 512M or the initial kernel image 839 * location: 840 */ 841 min_addr = min(*output, 512UL << 20); 842 /* Make sure minimum is aligned. */ 843 min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN); 844 845 /* Walk available memory entries to find a random address. */ 846 random_addr = find_random_phys_addr(min_addr, output_size); 847 if (!random_addr) { 848 warn("Physical KASLR disabled: no suitable memory region!"); 849 } else { 850 /* Update the new physical address location. */ 851 if (*output != random_addr) 852 *output = random_addr; 853 } 854 855 856 /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */ 857 if (IS_ENABLED(CONFIG_X86_64)) 858 random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size); 859 *virt_addr = random_addr; 860 } 861