1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * kaslr.c 4 * 5 * This contains the routines needed to generate a reasonable level of 6 * entropy to choose a randomized kernel base address offset in support 7 * of Kernel Address Space Layout Randomization (KASLR). Additionally 8 * handles walking the physical memory maps (and tracking memory regions 9 * to avoid) in order to select a physical memory location that can 10 * contain the entire properly aligned running kernel image. 11 * 12 */ 13 14 /* 15 * isspace() in linux/ctype.h is expected by next_args() to filter 16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h, 17 * since isdigit() is implemented in both of them. Hence disable it 18 * here. 19 */ 20 #define BOOT_CTYPE_H 21 22 #include "misc.h" 23 #include "error.h" 24 #include "../string.h" 25 #include "efi.h" 26 27 #include <generated/compile.h> 28 #include <linux/module.h> 29 #include <linux/uts.h> 30 #include <linux/utsname.h> 31 #include <linux/ctype.h> 32 #include <generated/utsrelease.h> 33 34 #define _SETUP 35 #include <asm/setup.h> /* For COMMAND_LINE_SIZE */ 36 #undef _SETUP 37 38 extern unsigned long get_cmd_line_ptr(void); 39 40 /* Simplified build-specific string for starting entropy. */ 41 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" 42 LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; 43 44 static unsigned long rotate_xor(unsigned long hash, const void *area, 45 size_t size) 46 { 47 size_t i; 48 unsigned long *ptr = (unsigned long *)area; 49 50 for (i = 0; i < size / sizeof(hash); i++) { 51 /* Rotate by odd number of bits and XOR. */ 52 hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); 53 hash ^= ptr[i]; 54 } 55 56 return hash; 57 } 58 59 /* Attempt to create a simple but unpredictable starting entropy. */ 60 static unsigned long get_boot_seed(void) 61 { 62 unsigned long hash = 0; 63 64 hash = rotate_xor(hash, build_str, sizeof(build_str)); 65 hash = rotate_xor(hash, boot_params, sizeof(*boot_params)); 66 67 return hash; 68 } 69 70 #define KASLR_COMPRESSED_BOOT 71 #include "../../lib/kaslr.c" 72 73 74 /* Only supporting at most 4 unusable memmap regions with kaslr */ 75 #define MAX_MEMMAP_REGIONS 4 76 77 static bool memmap_too_large; 78 79 80 /* 81 * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit. 82 * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options. 83 */ 84 static u64 mem_limit; 85 86 /* Number of immovable memory regions */ 87 static int num_immovable_mem; 88 89 enum mem_avoid_index { 90 MEM_AVOID_ZO_RANGE = 0, 91 MEM_AVOID_INITRD, 92 MEM_AVOID_CMDLINE, 93 MEM_AVOID_BOOTPARAMS, 94 MEM_AVOID_MEMMAP_BEGIN, 95 MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1, 96 MEM_AVOID_MAX, 97 }; 98 99 static struct mem_vector mem_avoid[MEM_AVOID_MAX]; 100 101 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) 102 { 103 /* Item one is entirely before item two. */ 104 if (one->start + one->size <= two->start) 105 return false; 106 /* Item one is entirely after item two. */ 107 if (one->start >= two->start + two->size) 108 return false; 109 return true; 110 } 111 112 char *skip_spaces(const char *str) 113 { 114 while (isspace(*str)) 115 ++str; 116 return (char *)str; 117 } 118 #include "../../../../lib/ctype.c" 119 #include "../../../../lib/cmdline.c" 120 121 enum parse_mode { 122 PARSE_MEMMAP, 123 PARSE_EFI, 124 }; 125 126 static int 127 parse_memmap(char *p, u64 *start, u64 *size, enum parse_mode mode) 128 { 129 char *oldp; 130 131 if (!p) 132 return -EINVAL; 133 134 /* We don't care about this option here */ 135 if (!strncmp(p, "exactmap", 8)) 136 return -EINVAL; 137 138 oldp = p; 139 *size = memparse(p, &p); 140 if (p == oldp) 141 return -EINVAL; 142 143 switch (*p) { 144 case '#': 145 case '$': 146 case '!': 147 *start = memparse(p + 1, &p); 148 return 0; 149 case '@': 150 if (mode == PARSE_MEMMAP) { 151 /* 152 * memmap=nn@ss specifies usable region, should 153 * be skipped 154 */ 155 *size = 0; 156 } else { 157 u64 flags; 158 159 /* 160 * efi_fake_mem=nn@ss:attr the attr specifies 161 * flags that might imply a soft-reservation. 162 */ 163 *start = memparse(p + 1, &p); 164 if (p && *p == ':') { 165 p++; 166 if (kstrtoull(p, 0, &flags) < 0) 167 *size = 0; 168 else if (flags & EFI_MEMORY_SP) 169 return 0; 170 } 171 *size = 0; 172 } 173 fallthrough; 174 default: 175 /* 176 * If w/o offset, only size specified, memmap=nn[KMG] has the 177 * same behaviour as mem=nn[KMG]. It limits the max address 178 * system can use. Region above the limit should be avoided. 179 */ 180 *start = 0; 181 return 0; 182 } 183 184 return -EINVAL; 185 } 186 187 static void mem_avoid_memmap(enum parse_mode mode, char *str) 188 { 189 static int i; 190 191 if (i >= MAX_MEMMAP_REGIONS) 192 return; 193 194 while (str && (i < MAX_MEMMAP_REGIONS)) { 195 int rc; 196 u64 start, size; 197 char *k = strchr(str, ','); 198 199 if (k) 200 *k++ = 0; 201 202 rc = parse_memmap(str, &start, &size, mode); 203 if (rc < 0) 204 break; 205 str = k; 206 207 if (start == 0) { 208 /* Store the specified memory limit if size > 0 */ 209 if (size > 0 && size < mem_limit) 210 mem_limit = size; 211 212 continue; 213 } 214 215 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start; 216 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size; 217 i++; 218 } 219 220 /* More than 4 memmaps, fail kaslr */ 221 if ((i >= MAX_MEMMAP_REGIONS) && str) 222 memmap_too_large = true; 223 } 224 225 /* Store the number of 1GB huge pages which users specified: */ 226 static unsigned long max_gb_huge_pages; 227 228 static void parse_gb_huge_pages(char *param, char *val) 229 { 230 static bool gbpage_sz; 231 char *p; 232 233 if (!strcmp(param, "hugepagesz")) { 234 p = val; 235 if (memparse(p, &p) != PUD_SIZE) { 236 gbpage_sz = false; 237 return; 238 } 239 240 if (gbpage_sz) 241 warn("Repeatedly set hugeTLB page size of 1G!\n"); 242 gbpage_sz = true; 243 return; 244 } 245 246 if (!strcmp(param, "hugepages") && gbpage_sz) { 247 p = val; 248 max_gb_huge_pages = simple_strtoull(p, &p, 0); 249 return; 250 } 251 } 252 253 static void handle_mem_options(void) 254 { 255 char *args = (char *)get_cmd_line_ptr(); 256 size_t len; 257 char *tmp_cmdline; 258 char *param, *val; 259 u64 mem_size; 260 261 if (!args) 262 return; 263 264 len = strnlen(args, COMMAND_LINE_SIZE-1); 265 tmp_cmdline = malloc(len + 1); 266 if (!tmp_cmdline) 267 error("Failed to allocate space for tmp_cmdline"); 268 269 memcpy(tmp_cmdline, args, len); 270 tmp_cmdline[len] = 0; 271 args = tmp_cmdline; 272 273 /* Chew leading spaces */ 274 args = skip_spaces(args); 275 276 while (*args) { 277 args = next_arg(args, ¶m, &val); 278 /* Stop at -- */ 279 if (!val && strcmp(param, "--") == 0) 280 break; 281 282 if (!strcmp(param, "memmap")) { 283 mem_avoid_memmap(PARSE_MEMMAP, val); 284 } else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) { 285 parse_gb_huge_pages(param, val); 286 } else if (!strcmp(param, "mem")) { 287 char *p = val; 288 289 if (!strcmp(p, "nopentium")) 290 continue; 291 mem_size = memparse(p, &p); 292 if (mem_size == 0) 293 break; 294 295 if (mem_size < mem_limit) 296 mem_limit = mem_size; 297 } else if (!strcmp(param, "efi_fake_mem")) { 298 mem_avoid_memmap(PARSE_EFI, val); 299 } 300 } 301 302 free(tmp_cmdline); 303 return; 304 } 305 306 /* 307 * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM) 308 * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit. 309 * 310 * The mem_avoid array is used to store the ranges that need to be avoided 311 * when KASLR searches for an appropriate random address. We must avoid any 312 * regions that are unsafe to overlap with during decompression, and other 313 * things like the initrd, cmdline and boot_params. This comment seeks to 314 * explain mem_avoid as clearly as possible since incorrect mem_avoid 315 * memory ranges lead to really hard to debug boot failures. 316 * 317 * The initrd, cmdline, and boot_params are trivial to identify for 318 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and 319 * MEM_AVOID_BOOTPARAMS respectively below. 320 * 321 * What is not obvious how to avoid is the range of memory that is used 322 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover 323 * the compressed kernel (ZO) and its run space, which is used to extract 324 * the uncompressed kernel (VO) and relocs. 325 * 326 * ZO's full run size sits against the end of the decompression buffer, so 327 * we can calculate where text, data, bss, etc of ZO are positioned more 328 * easily. 329 * 330 * For additional background, the decompression calculations can be found 331 * in header.S, and the memory diagram is based on the one found in misc.c. 332 * 333 * The following conditions are already enforced by the image layouts and 334 * associated code: 335 * - input + input_size >= output + output_size 336 * - kernel_total_size <= init_size 337 * - kernel_total_size <= output_size (see Note below) 338 * - output + init_size >= output + output_size 339 * 340 * (Note that kernel_total_size and output_size have no fundamental 341 * relationship, but output_size is passed to choose_random_location 342 * as a maximum of the two. The diagram is showing a case where 343 * kernel_total_size is larger than output_size, but this case is 344 * handled by bumping output_size.) 345 * 346 * The above conditions can be illustrated by a diagram: 347 * 348 * 0 output input input+input_size output+init_size 349 * | | | | | 350 * | | | | | 351 * |-----|--------|--------|--------------|-----------|--|-------------| 352 * | | | 353 * | | | 354 * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size 355 * 356 * [output, output+init_size) is the entire memory range used for 357 * extracting the compressed image. 358 * 359 * [output, output+kernel_total_size) is the range needed for the 360 * uncompressed kernel (VO) and its run size (bss, brk, etc). 361 * 362 * [output, output+output_size) is VO plus relocs (i.e. the entire 363 * uncompressed payload contained by ZO). This is the area of the buffer 364 * written to during decompression. 365 * 366 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case 367 * range of the copied ZO and decompression code. (i.e. the range 368 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.) 369 * 370 * [input, input+input_size) is the original copied compressed image (ZO) 371 * (i.e. it does not include its run size). This range must be avoided 372 * because it contains the data used for decompression. 373 * 374 * [input+input_size, output+init_size) is [_text, _end) for ZO. This 375 * range includes ZO's heap and stack, and must be avoided since it 376 * performs the decompression. 377 * 378 * Since the above two ranges need to be avoided and they are adjacent, 379 * they can be merged, resulting in: [input, output+init_size) which 380 * becomes the MEM_AVOID_ZO_RANGE below. 381 */ 382 static void mem_avoid_init(unsigned long input, unsigned long input_size, 383 unsigned long output) 384 { 385 unsigned long init_size = boot_params->hdr.init_size; 386 u64 initrd_start, initrd_size; 387 unsigned long cmd_line, cmd_line_size; 388 389 /* 390 * Avoid the region that is unsafe to overlap during 391 * decompression. 392 */ 393 mem_avoid[MEM_AVOID_ZO_RANGE].start = input; 394 mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input; 395 396 /* Avoid initrd. */ 397 initrd_start = (u64)boot_params->ext_ramdisk_image << 32; 398 initrd_start |= boot_params->hdr.ramdisk_image; 399 initrd_size = (u64)boot_params->ext_ramdisk_size << 32; 400 initrd_size |= boot_params->hdr.ramdisk_size; 401 mem_avoid[MEM_AVOID_INITRD].start = initrd_start; 402 mem_avoid[MEM_AVOID_INITRD].size = initrd_size; 403 /* No need to set mapping for initrd, it will be handled in VO. */ 404 405 /* Avoid kernel command line. */ 406 cmd_line = get_cmd_line_ptr(); 407 /* Calculate size of cmd_line. */ 408 if (cmd_line) { 409 cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1; 410 mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line; 411 mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size; 412 } 413 414 /* Avoid boot parameters. */ 415 mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params; 416 mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params); 417 418 /* We don't need to set a mapping for setup_data. */ 419 420 /* Mark the memmap regions we need to avoid */ 421 handle_mem_options(); 422 423 /* Enumerate the immovable memory regions */ 424 num_immovable_mem = count_immovable_mem_regions(); 425 } 426 427 /* 428 * Does this memory vector overlap a known avoided area? If so, record the 429 * overlap region with the lowest address. 430 */ 431 static bool mem_avoid_overlap(struct mem_vector *img, 432 struct mem_vector *overlap) 433 { 434 int i; 435 struct setup_data *ptr; 436 u64 earliest = img->start + img->size; 437 bool is_overlapping = false; 438 439 for (i = 0; i < MEM_AVOID_MAX; i++) { 440 if (mem_overlaps(img, &mem_avoid[i]) && 441 mem_avoid[i].start < earliest) { 442 *overlap = mem_avoid[i]; 443 earliest = overlap->start; 444 is_overlapping = true; 445 } 446 } 447 448 /* Avoid all entries in the setup_data linked list. */ 449 ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; 450 while (ptr) { 451 struct mem_vector avoid; 452 453 avoid.start = (unsigned long)ptr; 454 avoid.size = sizeof(*ptr) + ptr->len; 455 456 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { 457 *overlap = avoid; 458 earliest = overlap->start; 459 is_overlapping = true; 460 } 461 462 if (ptr->type == SETUP_INDIRECT && 463 ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) { 464 avoid.start = ((struct setup_indirect *)ptr->data)->addr; 465 avoid.size = ((struct setup_indirect *)ptr->data)->len; 466 467 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { 468 *overlap = avoid; 469 earliest = overlap->start; 470 is_overlapping = true; 471 } 472 } 473 474 ptr = (struct setup_data *)(unsigned long)ptr->next; 475 } 476 477 return is_overlapping; 478 } 479 480 struct slot_area { 481 u64 addr; 482 unsigned long num; 483 }; 484 485 #define MAX_SLOT_AREA 100 486 487 static struct slot_area slot_areas[MAX_SLOT_AREA]; 488 static unsigned int slot_area_index; 489 static unsigned long slot_max; 490 491 static void store_slot_info(struct mem_vector *region, unsigned long image_size) 492 { 493 struct slot_area slot_area; 494 495 if (slot_area_index == MAX_SLOT_AREA) 496 return; 497 498 slot_area.addr = region->start; 499 slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN; 500 501 slot_areas[slot_area_index++] = slot_area; 502 slot_max += slot_area.num; 503 } 504 505 /* 506 * Skip as many 1GB huge pages as possible in the passed region 507 * according to the number which users specified: 508 */ 509 static void 510 process_gb_huge_pages(struct mem_vector *region, unsigned long image_size) 511 { 512 u64 pud_start, pud_end; 513 unsigned long gb_huge_pages; 514 struct mem_vector tmp; 515 516 if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) { 517 store_slot_info(region, image_size); 518 return; 519 } 520 521 /* Are there any 1GB pages in the region? */ 522 pud_start = ALIGN(region->start, PUD_SIZE); 523 pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE); 524 525 /* No good 1GB huge pages found: */ 526 if (pud_start >= pud_end) { 527 store_slot_info(region, image_size); 528 return; 529 } 530 531 /* Check if the head part of the region is usable. */ 532 if (pud_start >= region->start + image_size) { 533 tmp.start = region->start; 534 tmp.size = pud_start - region->start; 535 store_slot_info(&tmp, image_size); 536 } 537 538 /* Skip the good 1GB pages. */ 539 gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT; 540 if (gb_huge_pages > max_gb_huge_pages) { 541 pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT); 542 max_gb_huge_pages = 0; 543 } else { 544 max_gb_huge_pages -= gb_huge_pages; 545 } 546 547 /* Check if the tail part of the region is usable. */ 548 if (region->start + region->size >= pud_end + image_size) { 549 tmp.start = pud_end; 550 tmp.size = region->start + region->size - pud_end; 551 store_slot_info(&tmp, image_size); 552 } 553 } 554 555 static u64 slots_fetch_random(void) 556 { 557 unsigned long slot; 558 unsigned int i; 559 560 /* Handle case of no slots stored. */ 561 if (slot_max == 0) 562 return 0; 563 564 slot = kaslr_get_random_long("Physical") % slot_max; 565 566 for (i = 0; i < slot_area_index; i++) { 567 if (slot >= slot_areas[i].num) { 568 slot -= slot_areas[i].num; 569 continue; 570 } 571 return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN); 572 } 573 574 if (i == slot_area_index) 575 debug_putstr("slots_fetch_random() failed!?\n"); 576 return 0; 577 } 578 579 static void __process_mem_region(struct mem_vector *entry, 580 unsigned long minimum, 581 unsigned long image_size) 582 { 583 struct mem_vector region, overlap; 584 u64 region_end; 585 586 /* Enforce minimum and memory limit. */ 587 region.start = max_t(u64, entry->start, minimum); 588 region_end = min(entry->start + entry->size, mem_limit); 589 590 /* Give up if slot area array is full. */ 591 while (slot_area_index < MAX_SLOT_AREA) { 592 /* Potentially raise address to meet alignment needs. */ 593 region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); 594 595 /* Did we raise the address above the passed in memory entry? */ 596 if (region.start > region_end) 597 return; 598 599 /* Reduce size by any delta from the original address. */ 600 region.size = region_end - region.start; 601 602 /* Return if region can't contain decompressed kernel */ 603 if (region.size < image_size) 604 return; 605 606 /* If nothing overlaps, store the region and return. */ 607 if (!mem_avoid_overlap(®ion, &overlap)) { 608 process_gb_huge_pages(®ion, image_size); 609 return; 610 } 611 612 /* Store beginning of region if holds at least image_size. */ 613 if (overlap.start >= region.start + image_size) { 614 region.size = overlap.start - region.start; 615 process_gb_huge_pages(®ion, image_size); 616 } 617 618 /* Clip off the overlapping region and start over. */ 619 region.start = overlap.start + overlap.size; 620 } 621 } 622 623 static bool process_mem_region(struct mem_vector *region, 624 unsigned long minimum, 625 unsigned long image_size) 626 { 627 int i; 628 /* 629 * If no immovable memory found, or MEMORY_HOTREMOVE disabled, 630 * use @region directly. 631 */ 632 if (!num_immovable_mem) { 633 __process_mem_region(region, minimum, image_size); 634 635 if (slot_area_index == MAX_SLOT_AREA) { 636 debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n"); 637 return true; 638 } 639 return false; 640 } 641 642 #if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI) 643 /* 644 * If immovable memory found, filter the intersection between 645 * immovable memory and @region. 646 */ 647 for (i = 0; i < num_immovable_mem; i++) { 648 u64 start, end, entry_end, region_end; 649 struct mem_vector entry; 650 651 if (!mem_overlaps(region, &immovable_mem[i])) 652 continue; 653 654 start = immovable_mem[i].start; 655 end = start + immovable_mem[i].size; 656 region_end = region->start + region->size; 657 658 entry.start = clamp(region->start, start, end); 659 entry_end = clamp(region_end, start, end); 660 entry.size = entry_end - entry.start; 661 662 __process_mem_region(&entry, minimum, image_size); 663 664 if (slot_area_index == MAX_SLOT_AREA) { 665 debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n"); 666 return true; 667 } 668 } 669 #endif 670 return 0; 671 } 672 673 #ifdef CONFIG_EFI 674 /* 675 * Returns true if we processed the EFI memmap, which we prefer over the E820 676 * table if it is available. 677 */ 678 static bool 679 process_efi_entries(unsigned long minimum, unsigned long image_size) 680 { 681 struct efi_info *e = &boot_params->efi_info; 682 bool efi_mirror_found = false; 683 struct mem_vector region; 684 efi_memory_desc_t *md; 685 unsigned long pmap; 686 char *signature; 687 u32 nr_desc; 688 int i; 689 690 signature = (char *)&e->efi_loader_signature; 691 if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) && 692 strncmp(signature, EFI64_LOADER_SIGNATURE, 4)) 693 return false; 694 695 #ifdef CONFIG_X86_32 696 /* Can't handle data above 4GB at this time */ 697 if (e->efi_memmap_hi) { 698 warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n"); 699 return false; 700 } 701 pmap = e->efi_memmap; 702 #else 703 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); 704 #endif 705 706 nr_desc = e->efi_memmap_size / e->efi_memdesc_size; 707 for (i = 0; i < nr_desc; i++) { 708 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); 709 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { 710 efi_mirror_found = true; 711 break; 712 } 713 } 714 715 for (i = 0; i < nr_desc; i++) { 716 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); 717 718 /* 719 * Here we are more conservative in picking free memory than 720 * the EFI spec allows: 721 * 722 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also 723 * free memory and thus available to place the kernel image into, 724 * but in practice there's firmware where using that memory leads 725 * to crashes. 726 * 727 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free. 728 */ 729 if (md->type != EFI_CONVENTIONAL_MEMORY) 730 continue; 731 732 if (efi_soft_reserve_enabled() && 733 (md->attribute & EFI_MEMORY_SP)) 734 continue; 735 736 if (efi_mirror_found && 737 !(md->attribute & EFI_MEMORY_MORE_RELIABLE)) 738 continue; 739 740 region.start = md->phys_addr; 741 region.size = md->num_pages << EFI_PAGE_SHIFT; 742 if (process_mem_region(®ion, minimum, image_size)) 743 break; 744 } 745 return true; 746 } 747 #else 748 static inline bool 749 process_efi_entries(unsigned long minimum, unsigned long image_size) 750 { 751 return false; 752 } 753 #endif 754 755 static void process_e820_entries(unsigned long minimum, 756 unsigned long image_size) 757 { 758 int i; 759 struct mem_vector region; 760 struct boot_e820_entry *entry; 761 762 /* Verify potential e820 positions, appending to slots list. */ 763 for (i = 0; i < boot_params->e820_entries; i++) { 764 entry = &boot_params->e820_table[i]; 765 /* Skip non-RAM entries. */ 766 if (entry->type != E820_TYPE_RAM) 767 continue; 768 region.start = entry->addr; 769 region.size = entry->size; 770 if (process_mem_region(®ion, minimum, image_size)) 771 break; 772 } 773 } 774 775 static unsigned long find_random_phys_addr(unsigned long minimum, 776 unsigned long image_size) 777 { 778 u64 phys_addr; 779 780 /* Bail out early if it's impossible to succeed. */ 781 if (minimum + image_size > mem_limit) 782 return 0; 783 784 /* Check if we had too many memmaps. */ 785 if (memmap_too_large) { 786 debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n"); 787 return 0; 788 } 789 790 if (!process_efi_entries(minimum, image_size)) 791 process_e820_entries(minimum, image_size); 792 793 phys_addr = slots_fetch_random(); 794 795 /* Perform a final check to make sure the address is in range. */ 796 if (phys_addr < minimum || phys_addr + image_size > mem_limit) { 797 warn("Invalid physical address chosen!\n"); 798 return 0; 799 } 800 801 return (unsigned long)phys_addr; 802 } 803 804 static unsigned long find_random_virt_addr(unsigned long minimum, 805 unsigned long image_size) 806 { 807 unsigned long slots, random_addr; 808 809 /* 810 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots 811 * that can hold image_size within the range of minimum to 812 * KERNEL_IMAGE_SIZE? 813 */ 814 slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN; 815 816 random_addr = kaslr_get_random_long("Virtual") % slots; 817 818 return random_addr * CONFIG_PHYSICAL_ALIGN + minimum; 819 } 820 821 /* 822 * Since this function examines addresses much more numerically, 823 * it takes the input and output pointers as 'unsigned long'. 824 */ 825 void choose_random_location(unsigned long input, 826 unsigned long input_size, 827 unsigned long *output, 828 unsigned long output_size, 829 unsigned long *virt_addr) 830 { 831 unsigned long random_addr, min_addr; 832 833 if (cmdline_find_option_bool("nokaslr")) { 834 warn("KASLR disabled: 'nokaslr' on cmdline."); 835 return; 836 } 837 838 boot_params->hdr.loadflags |= KASLR_FLAG; 839 840 if (IS_ENABLED(CONFIG_X86_32)) 841 mem_limit = KERNEL_IMAGE_SIZE; 842 else 843 mem_limit = MAXMEM; 844 845 /* Record the various known unsafe memory ranges. */ 846 mem_avoid_init(input, input_size, *output); 847 848 /* 849 * Low end of the randomization range should be the 850 * smaller of 512M or the initial kernel image 851 * location: 852 */ 853 min_addr = min(*output, 512UL << 20); 854 /* Make sure minimum is aligned. */ 855 min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN); 856 857 /* Walk available memory entries to find a random address. */ 858 random_addr = find_random_phys_addr(min_addr, output_size); 859 if (!random_addr) { 860 warn("Physical KASLR disabled: no suitable memory region!"); 861 } else { 862 /* Update the new physical address location. */ 863 if (*output != random_addr) 864 *output = random_addr; 865 } 866 867 868 /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */ 869 if (IS_ENABLED(CONFIG_X86_64)) 870 random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size); 871 *virt_addr = random_addr; 872 } 873