xref: /linux/arch/x86/boot/compressed/kaslr.c (revision 31368ce83c59a5422ee621a38aeea98142d0ecf7)
1 /*
2  * kaslr.c
3  *
4  * This contains the routines needed to generate a reasonable level of
5  * entropy to choose a randomized kernel base address offset in support
6  * of Kernel Address Space Layout Randomization (KASLR). Additionally
7  * handles walking the physical memory maps (and tracking memory regions
8  * to avoid) in order to select a physical memory location that can
9  * contain the entire properly aligned running kernel image.
10  *
11  */
12 
13 /*
14  * isspace() in linux/ctype.h is expected by next_args() to filter
15  * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
16  * since isdigit() is implemented in both of them. Hence disable it
17  * here.
18  */
19 #define BOOT_CTYPE_H
20 
21 /*
22  * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h.
23  * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL
24  * which is meaningless and will cause compiling error in some cases.
25  * So do not include linux/export.h and define EXPORT_SYMBOL(sym)
26  * as empty.
27  */
28 #define _LINUX_EXPORT_H
29 #define EXPORT_SYMBOL(sym)
30 
31 #include "misc.h"
32 #include "error.h"
33 #include "../string.h"
34 
35 #include <generated/compile.h>
36 #include <linux/module.h>
37 #include <linux/uts.h>
38 #include <linux/utsname.h>
39 #include <linux/ctype.h>
40 #include <generated/utsrelease.h>
41 
42 /* Macros used by the included decompressor code below. */
43 #define STATIC
44 #include <linux/decompress/mm.h>
45 
46 extern unsigned long get_cmd_line_ptr(void);
47 
48 /* Simplified build-specific string for starting entropy. */
49 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
50 		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
51 
52 static unsigned long rotate_xor(unsigned long hash, const void *area,
53 				size_t size)
54 {
55 	size_t i;
56 	unsigned long *ptr = (unsigned long *)area;
57 
58 	for (i = 0; i < size / sizeof(hash); i++) {
59 		/* Rotate by odd number of bits and XOR. */
60 		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
61 		hash ^= ptr[i];
62 	}
63 
64 	return hash;
65 }
66 
67 /* Attempt to create a simple but unpredictable starting entropy. */
68 static unsigned long get_boot_seed(void)
69 {
70 	unsigned long hash = 0;
71 
72 	hash = rotate_xor(hash, build_str, sizeof(build_str));
73 	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
74 
75 	return hash;
76 }
77 
78 #define KASLR_COMPRESSED_BOOT
79 #include "../../lib/kaslr.c"
80 
81 struct mem_vector {
82 	unsigned long long start;
83 	unsigned long long size;
84 };
85 
86 /* Only supporting at most 4 unusable memmap regions with kaslr */
87 #define MAX_MEMMAP_REGIONS	4
88 
89 static bool memmap_too_large;
90 
91 
92 /* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
93 unsigned long long mem_limit = ULLONG_MAX;
94 
95 
96 enum mem_avoid_index {
97 	MEM_AVOID_ZO_RANGE = 0,
98 	MEM_AVOID_INITRD,
99 	MEM_AVOID_CMDLINE,
100 	MEM_AVOID_BOOTPARAMS,
101 	MEM_AVOID_MEMMAP_BEGIN,
102 	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
103 	MEM_AVOID_MAX,
104 };
105 
106 static struct mem_vector mem_avoid[MEM_AVOID_MAX];
107 
108 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
109 {
110 	/* Item one is entirely before item two. */
111 	if (one->start + one->size <= two->start)
112 		return false;
113 	/* Item one is entirely after item two. */
114 	if (one->start >= two->start + two->size)
115 		return false;
116 	return true;
117 }
118 
119 char *skip_spaces(const char *str)
120 {
121 	while (isspace(*str))
122 		++str;
123 	return (char *)str;
124 }
125 #include "../../../../lib/ctype.c"
126 #include "../../../../lib/cmdline.c"
127 
128 static int
129 parse_memmap(char *p, unsigned long long *start, unsigned long long *size)
130 {
131 	char *oldp;
132 
133 	if (!p)
134 		return -EINVAL;
135 
136 	/* We don't care about this option here */
137 	if (!strncmp(p, "exactmap", 8))
138 		return -EINVAL;
139 
140 	oldp = p;
141 	*size = memparse(p, &p);
142 	if (p == oldp)
143 		return -EINVAL;
144 
145 	switch (*p) {
146 	case '#':
147 	case '$':
148 	case '!':
149 		*start = memparse(p + 1, &p);
150 		return 0;
151 	case '@':
152 		/* memmap=nn@ss specifies usable region, should be skipped */
153 		*size = 0;
154 		/* Fall through */
155 	default:
156 		/*
157 		 * If w/o offset, only size specified, memmap=nn[KMG] has the
158 		 * same behaviour as mem=nn[KMG]. It limits the max address
159 		 * system can use. Region above the limit should be avoided.
160 		 */
161 		*start = 0;
162 		return 0;
163 	}
164 
165 	return -EINVAL;
166 }
167 
168 static void mem_avoid_memmap(char *str)
169 {
170 	static int i;
171 	int rc;
172 
173 	if (i >= MAX_MEMMAP_REGIONS)
174 		return;
175 
176 	while (str && (i < MAX_MEMMAP_REGIONS)) {
177 		int rc;
178 		unsigned long long start, size;
179 		char *k = strchr(str, ',');
180 
181 		if (k)
182 			*k++ = 0;
183 
184 		rc = parse_memmap(str, &start, &size);
185 		if (rc < 0)
186 			break;
187 		str = k;
188 
189 		if (start == 0) {
190 			/* Store the specified memory limit if size > 0 */
191 			if (size > 0)
192 				mem_limit = size;
193 
194 			continue;
195 		}
196 
197 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
198 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
199 		i++;
200 	}
201 
202 	/* More than 4 memmaps, fail kaslr */
203 	if ((i >= MAX_MEMMAP_REGIONS) && str)
204 		memmap_too_large = true;
205 }
206 
207 static int handle_mem_memmap(void)
208 {
209 	char *args = (char *)get_cmd_line_ptr();
210 	size_t len = strlen((char *)args);
211 	char *tmp_cmdline;
212 	char *param, *val;
213 	u64 mem_size;
214 
215 	if (!strstr(args, "memmap=") && !strstr(args, "mem="))
216 		return 0;
217 
218 	tmp_cmdline = malloc(len + 1);
219 	if (!tmp_cmdline )
220 		error("Failed to allocate space for tmp_cmdline");
221 
222 	memcpy(tmp_cmdline, args, len);
223 	tmp_cmdline[len] = 0;
224 	args = tmp_cmdline;
225 
226 	/* Chew leading spaces */
227 	args = skip_spaces(args);
228 
229 	while (*args) {
230 		args = next_arg(args, &param, &val);
231 		/* Stop at -- */
232 		if (!val && strcmp(param, "--") == 0) {
233 			warn("Only '--' specified in cmdline");
234 			free(tmp_cmdline);
235 			return -1;
236 		}
237 
238 		if (!strcmp(param, "memmap")) {
239 			mem_avoid_memmap(val);
240 		} else if (!strcmp(param, "mem")) {
241 			char *p = val;
242 
243 			if (!strcmp(p, "nopentium"))
244 				continue;
245 			mem_size = memparse(p, &p);
246 			if (mem_size == 0) {
247 				free(tmp_cmdline);
248 				return -EINVAL;
249 			}
250 			mem_limit = mem_size;
251 		}
252 	}
253 
254 	free(tmp_cmdline);
255 	return 0;
256 }
257 
258 /*
259  * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
260  * The mem_avoid array is used to store the ranges that need to be avoided
261  * when KASLR searches for an appropriate random address. We must avoid any
262  * regions that are unsafe to overlap with during decompression, and other
263  * things like the initrd, cmdline and boot_params. This comment seeks to
264  * explain mem_avoid as clearly as possible since incorrect mem_avoid
265  * memory ranges lead to really hard to debug boot failures.
266  *
267  * The initrd, cmdline, and boot_params are trivial to identify for
268  * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
269  * MEM_AVOID_BOOTPARAMS respectively below.
270  *
271  * What is not obvious how to avoid is the range of memory that is used
272  * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
273  * the compressed kernel (ZO) and its run space, which is used to extract
274  * the uncompressed kernel (VO) and relocs.
275  *
276  * ZO's full run size sits against the end of the decompression buffer, so
277  * we can calculate where text, data, bss, etc of ZO are positioned more
278  * easily.
279  *
280  * For additional background, the decompression calculations can be found
281  * in header.S, and the memory diagram is based on the one found in misc.c.
282  *
283  * The following conditions are already enforced by the image layouts and
284  * associated code:
285  *  - input + input_size >= output + output_size
286  *  - kernel_total_size <= init_size
287  *  - kernel_total_size <= output_size (see Note below)
288  *  - output + init_size >= output + output_size
289  *
290  * (Note that kernel_total_size and output_size have no fundamental
291  * relationship, but output_size is passed to choose_random_location
292  * as a maximum of the two. The diagram is showing a case where
293  * kernel_total_size is larger than output_size, but this case is
294  * handled by bumping output_size.)
295  *
296  * The above conditions can be illustrated by a diagram:
297  *
298  * 0   output            input            input+input_size    output+init_size
299  * |     |                 |                             |             |
300  * |     |                 |                             |             |
301  * |-----|--------|--------|--------------|-----------|--|-------------|
302  *                |                       |           |
303  *                |                       |           |
304  * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
305  *
306  * [output, output+init_size) is the entire memory range used for
307  * extracting the compressed image.
308  *
309  * [output, output+kernel_total_size) is the range needed for the
310  * uncompressed kernel (VO) and its run size (bss, brk, etc).
311  *
312  * [output, output+output_size) is VO plus relocs (i.e. the entire
313  * uncompressed payload contained by ZO). This is the area of the buffer
314  * written to during decompression.
315  *
316  * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
317  * range of the copied ZO and decompression code. (i.e. the range
318  * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
319  *
320  * [input, input+input_size) is the original copied compressed image (ZO)
321  * (i.e. it does not include its run size). This range must be avoided
322  * because it contains the data used for decompression.
323  *
324  * [input+input_size, output+init_size) is [_text, _end) for ZO. This
325  * range includes ZO's heap and stack, and must be avoided since it
326  * performs the decompression.
327  *
328  * Since the above two ranges need to be avoided and they are adjacent,
329  * they can be merged, resulting in: [input, output+init_size) which
330  * becomes the MEM_AVOID_ZO_RANGE below.
331  */
332 static void mem_avoid_init(unsigned long input, unsigned long input_size,
333 			   unsigned long output)
334 {
335 	unsigned long init_size = boot_params->hdr.init_size;
336 	u64 initrd_start, initrd_size;
337 	u64 cmd_line, cmd_line_size;
338 	char *ptr;
339 
340 	/*
341 	 * Avoid the region that is unsafe to overlap during
342 	 * decompression.
343 	 */
344 	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
345 	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
346 	add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
347 			 mem_avoid[MEM_AVOID_ZO_RANGE].size);
348 
349 	/* Avoid initrd. */
350 	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
351 	initrd_start |= boot_params->hdr.ramdisk_image;
352 	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
353 	initrd_size |= boot_params->hdr.ramdisk_size;
354 	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
355 	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
356 	/* No need to set mapping for initrd, it will be handled in VO. */
357 
358 	/* Avoid kernel command line. */
359 	cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
360 	cmd_line |= boot_params->hdr.cmd_line_ptr;
361 	/* Calculate size of cmd_line. */
362 	ptr = (char *)(unsigned long)cmd_line;
363 	for (cmd_line_size = 0; ptr[cmd_line_size++]; )
364 		;
365 	mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
366 	mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
367 	add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
368 			 mem_avoid[MEM_AVOID_CMDLINE].size);
369 
370 	/* Avoid boot parameters. */
371 	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
372 	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
373 	add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
374 			 mem_avoid[MEM_AVOID_BOOTPARAMS].size);
375 
376 	/* We don't need to set a mapping for setup_data. */
377 
378 	/* Mark the memmap regions we need to avoid */
379 	handle_mem_memmap();
380 
381 #ifdef CONFIG_X86_VERBOSE_BOOTUP
382 	/* Make sure video RAM can be used. */
383 	add_identity_map(0, PMD_SIZE);
384 #endif
385 }
386 
387 /*
388  * Does this memory vector overlap a known avoided area? If so, record the
389  * overlap region with the lowest address.
390  */
391 static bool mem_avoid_overlap(struct mem_vector *img,
392 			      struct mem_vector *overlap)
393 {
394 	int i;
395 	struct setup_data *ptr;
396 	unsigned long earliest = img->start + img->size;
397 	bool is_overlapping = false;
398 
399 	for (i = 0; i < MEM_AVOID_MAX; i++) {
400 		if (mem_overlaps(img, &mem_avoid[i]) &&
401 		    mem_avoid[i].start < earliest) {
402 			*overlap = mem_avoid[i];
403 			earliest = overlap->start;
404 			is_overlapping = true;
405 		}
406 	}
407 
408 	/* Avoid all entries in the setup_data linked list. */
409 	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
410 	while (ptr) {
411 		struct mem_vector avoid;
412 
413 		avoid.start = (unsigned long)ptr;
414 		avoid.size = sizeof(*ptr) + ptr->len;
415 
416 		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
417 			*overlap = avoid;
418 			earliest = overlap->start;
419 			is_overlapping = true;
420 		}
421 
422 		ptr = (struct setup_data *)(unsigned long)ptr->next;
423 	}
424 
425 	return is_overlapping;
426 }
427 
428 struct slot_area {
429 	unsigned long addr;
430 	int num;
431 };
432 
433 #define MAX_SLOT_AREA 100
434 
435 static struct slot_area slot_areas[MAX_SLOT_AREA];
436 
437 static unsigned long slot_max;
438 
439 static unsigned long slot_area_index;
440 
441 static void store_slot_info(struct mem_vector *region, unsigned long image_size)
442 {
443 	struct slot_area slot_area;
444 
445 	if (slot_area_index == MAX_SLOT_AREA)
446 		return;
447 
448 	slot_area.addr = region->start;
449 	slot_area.num = (region->size - image_size) /
450 			CONFIG_PHYSICAL_ALIGN + 1;
451 
452 	if (slot_area.num > 0) {
453 		slot_areas[slot_area_index++] = slot_area;
454 		slot_max += slot_area.num;
455 	}
456 }
457 
458 static unsigned long slots_fetch_random(void)
459 {
460 	unsigned long slot;
461 	int i;
462 
463 	/* Handle case of no slots stored. */
464 	if (slot_max == 0)
465 		return 0;
466 
467 	slot = kaslr_get_random_long("Physical") % slot_max;
468 
469 	for (i = 0; i < slot_area_index; i++) {
470 		if (slot >= slot_areas[i].num) {
471 			slot -= slot_areas[i].num;
472 			continue;
473 		}
474 		return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
475 	}
476 
477 	if (i == slot_area_index)
478 		debug_putstr("slots_fetch_random() failed!?\n");
479 	return 0;
480 }
481 
482 static void process_e820_entry(struct boot_e820_entry *entry,
483 			       unsigned long minimum,
484 			       unsigned long image_size)
485 {
486 	struct mem_vector region, overlap;
487 	struct slot_area slot_area;
488 	unsigned long start_orig, end;
489 	struct boot_e820_entry cur_entry;
490 
491 	/* Skip non-RAM entries. */
492 	if (entry->type != E820_TYPE_RAM)
493 		return;
494 
495 	/* On 32-bit, ignore entries entirely above our maximum. */
496 	if (IS_ENABLED(CONFIG_X86_32) && entry->addr >= KERNEL_IMAGE_SIZE)
497 		return;
498 
499 	/* Ignore entries entirely below our minimum. */
500 	if (entry->addr + entry->size < minimum)
501 		return;
502 
503 	/* Ignore entries above memory limit */
504 	end = min(entry->size + entry->addr, mem_limit);
505 	if (entry->addr >= end)
506 		return;
507 	cur_entry.addr = entry->addr;
508 	cur_entry.size = end - entry->addr;
509 
510 	region.start = cur_entry.addr;
511 	region.size = cur_entry.size;
512 
513 	/* Give up if slot area array is full. */
514 	while (slot_area_index < MAX_SLOT_AREA) {
515 		start_orig = region.start;
516 
517 		/* Potentially raise address to minimum location. */
518 		if (region.start < minimum)
519 			region.start = minimum;
520 
521 		/* Potentially raise address to meet alignment needs. */
522 		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
523 
524 		/* Did we raise the address above this e820 region? */
525 		if (region.start > cur_entry.addr + cur_entry.size)
526 			return;
527 
528 		/* Reduce size by any delta from the original address. */
529 		region.size -= region.start - start_orig;
530 
531 		/* On 32-bit, reduce region size to fit within max size. */
532 		if (IS_ENABLED(CONFIG_X86_32) &&
533 		    region.start + region.size > KERNEL_IMAGE_SIZE)
534 			region.size = KERNEL_IMAGE_SIZE - region.start;
535 
536 		/* Return if region can't contain decompressed kernel */
537 		if (region.size < image_size)
538 			return;
539 
540 		/* If nothing overlaps, store the region and return. */
541 		if (!mem_avoid_overlap(&region, &overlap)) {
542 			store_slot_info(&region, image_size);
543 			return;
544 		}
545 
546 		/* Store beginning of region if holds at least image_size. */
547 		if (overlap.start > region.start + image_size) {
548 			struct mem_vector beginning;
549 
550 			beginning.start = region.start;
551 			beginning.size = overlap.start - region.start;
552 			store_slot_info(&beginning, image_size);
553 		}
554 
555 		/* Return if overlap extends to or past end of region. */
556 		if (overlap.start + overlap.size >= region.start + region.size)
557 			return;
558 
559 		/* Clip off the overlapping region and start over. */
560 		region.size -= overlap.start - region.start + overlap.size;
561 		region.start = overlap.start + overlap.size;
562 	}
563 }
564 
565 static unsigned long find_random_phys_addr(unsigned long minimum,
566 					   unsigned long image_size)
567 {
568 	int i;
569 	unsigned long addr;
570 
571 	/* Check if we had too many memmaps. */
572 	if (memmap_too_large) {
573 		debug_putstr("Aborted e820 scan (more than 4 memmap= args)!\n");
574 		return 0;
575 	}
576 
577 	/* Make sure minimum is aligned. */
578 	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
579 
580 	/* Verify potential e820 positions, appending to slots list. */
581 	for (i = 0; i < boot_params->e820_entries; i++) {
582 		process_e820_entry(&boot_params->e820_table[i], minimum,
583 				   image_size);
584 		if (slot_area_index == MAX_SLOT_AREA) {
585 			debug_putstr("Aborted e820 scan (slot_areas full)!\n");
586 			break;
587 		}
588 	}
589 
590 	return slots_fetch_random();
591 }
592 
593 static unsigned long find_random_virt_addr(unsigned long minimum,
594 					   unsigned long image_size)
595 {
596 	unsigned long slots, random_addr;
597 
598 	/* Make sure minimum is aligned. */
599 	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
600 	/* Align image_size for easy slot calculations. */
601 	image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
602 
603 	/*
604 	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
605 	 * that can hold image_size within the range of minimum to
606 	 * KERNEL_IMAGE_SIZE?
607 	 */
608 	slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
609 		 CONFIG_PHYSICAL_ALIGN + 1;
610 
611 	random_addr = kaslr_get_random_long("Virtual") % slots;
612 
613 	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
614 }
615 
616 /*
617  * Since this function examines addresses much more numerically,
618  * it takes the input and output pointers as 'unsigned long'.
619  */
620 void choose_random_location(unsigned long input,
621 			    unsigned long input_size,
622 			    unsigned long *output,
623 			    unsigned long output_size,
624 			    unsigned long *virt_addr)
625 {
626 	unsigned long random_addr, min_addr;
627 
628 	if (cmdline_find_option_bool("nokaslr")) {
629 		warn("KASLR disabled: 'nokaslr' on cmdline.");
630 		return;
631 	}
632 
633 	boot_params->hdr.loadflags |= KASLR_FLAG;
634 
635 	/* Prepare to add new identity pagetables on demand. */
636 	initialize_identity_maps();
637 
638 	/* Record the various known unsafe memory ranges. */
639 	mem_avoid_init(input, input_size, *output);
640 
641 	/*
642 	 * Low end of the randomization range should be the
643 	 * smaller of 512M or the initial kernel image
644 	 * location:
645 	 */
646 	min_addr = min(*output, 512UL << 20);
647 
648 	/* Walk e820 and find a random address. */
649 	random_addr = find_random_phys_addr(min_addr, output_size);
650 	if (!random_addr) {
651 		warn("Physical KASLR disabled: no suitable memory region!");
652 	} else {
653 		/* Update the new physical address location. */
654 		if (*output != random_addr) {
655 			add_identity_map(random_addr, output_size);
656 			*output = random_addr;
657 		}
658 
659 		/*
660 		 * This loads the identity mapping page table.
661 		 * This should only be done if a new physical address
662 		 * is found for the kernel, otherwise we should keep
663 		 * the old page table to make it be like the "nokaslr"
664 		 * case.
665 		 */
666 		finalize_identity_maps();
667 	}
668 
669 
670 	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
671 	if (IS_ENABLED(CONFIG_X86_64))
672 		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
673 	*virt_addr = random_addr;
674 }
675