xref: /linux/arch/x86/boot/compressed/kaslr.c (revision 221013afb459e5deb8bd08e29b37050af5586d1c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * kaslr.c
4  *
5  * This contains the routines needed to generate a reasonable level of
6  * entropy to choose a randomized kernel base address offset in support
7  * of Kernel Address Space Layout Randomization (KASLR). Additionally
8  * handles walking the physical memory maps (and tracking memory regions
9  * to avoid) in order to select a physical memory location that can
10  * contain the entire properly aligned running kernel image.
11  *
12  */
13 
14 /*
15  * isspace() in linux/ctype.h is expected by next_args() to filter
16  * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
17  * since isdigit() is implemented in both of them. Hence disable it
18  * here.
19  */
20 #define BOOT_CTYPE_H
21 
22 #include "misc.h"
23 #include "error.h"
24 #include "../string.h"
25 #include "efi.h"
26 
27 #include <generated/compile.h>
28 #include <linux/module.h>
29 #include <linux/uts.h>
30 #include <linux/utsname.h>
31 #include <linux/ctype.h>
32 #include <generated/utsversion.h>
33 #include <generated/utsrelease.h>
34 
35 #define _SETUP
36 #include <asm/setup.h>	/* For COMMAND_LINE_SIZE */
37 #undef _SETUP
38 
39 extern unsigned long get_cmd_line_ptr(void);
40 
41 /* Simplified build-specific string for starting entropy. */
42 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
43 		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
44 
45 static unsigned long rotate_xor(unsigned long hash, const void *area,
46 				size_t size)
47 {
48 	size_t i;
49 	unsigned long *ptr = (unsigned long *)area;
50 
51 	for (i = 0; i < size / sizeof(hash); i++) {
52 		/* Rotate by odd number of bits and XOR. */
53 		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
54 		hash ^= ptr[i];
55 	}
56 
57 	return hash;
58 }
59 
60 /* Attempt to create a simple but unpredictable starting entropy. */
61 static unsigned long get_boot_seed(void)
62 {
63 	unsigned long hash = 0;
64 
65 	hash = rotate_xor(hash, build_str, sizeof(build_str));
66 	hash = rotate_xor(hash, boot_params_ptr, sizeof(*boot_params_ptr));
67 
68 	return hash;
69 }
70 
71 #define KASLR_COMPRESSED_BOOT
72 #include "../../lib/kaslr.c"
73 
74 
75 /* Only supporting at most 4 unusable memmap regions with kaslr */
76 #define MAX_MEMMAP_REGIONS	4
77 
78 static bool memmap_too_large;
79 
80 
81 /*
82  * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
83  * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
84  */
85 static u64 mem_limit;
86 
87 /* Number of immovable memory regions */
88 static int num_immovable_mem;
89 
90 enum mem_avoid_index {
91 	MEM_AVOID_ZO_RANGE = 0,
92 	MEM_AVOID_INITRD,
93 	MEM_AVOID_CMDLINE,
94 	MEM_AVOID_BOOTPARAMS,
95 	MEM_AVOID_MEMMAP_BEGIN,
96 	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
97 	MEM_AVOID_MAX,
98 };
99 
100 static struct mem_vector mem_avoid[MEM_AVOID_MAX];
101 
102 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
103 {
104 	/* Item one is entirely before item two. */
105 	if (one->start + one->size <= two->start)
106 		return false;
107 	/* Item one is entirely after item two. */
108 	if (one->start >= two->start + two->size)
109 		return false;
110 	return true;
111 }
112 
113 char *skip_spaces(const char *str)
114 {
115 	while (isspace(*str))
116 		++str;
117 	return (char *)str;
118 }
119 #include "../../../../lib/ctype.c"
120 #include "../../../../lib/cmdline.c"
121 
122 static int
123 parse_memmap(char *p, u64 *start, u64 *size)
124 {
125 	char *oldp;
126 
127 	if (!p)
128 		return -EINVAL;
129 
130 	/* We don't care about this option here */
131 	if (!strncmp(p, "exactmap", 8))
132 		return -EINVAL;
133 
134 	oldp = p;
135 	*size = memparse(p, &p);
136 	if (p == oldp)
137 		return -EINVAL;
138 
139 	switch (*p) {
140 	case '#':
141 	case '$':
142 	case '!':
143 		*start = memparse(p + 1, &p);
144 		return 0;
145 	case '@':
146 		/*
147 		 * memmap=nn@ss specifies usable region, should
148 		 * be skipped
149 		 */
150 		*size = 0;
151 		fallthrough;
152 	default:
153 		/*
154 		 * If w/o offset, only size specified, memmap=nn[KMG] has the
155 		 * same behaviour as mem=nn[KMG]. It limits the max address
156 		 * system can use. Region above the limit should be avoided.
157 		 */
158 		*start = 0;
159 		return 0;
160 	}
161 
162 	return -EINVAL;
163 }
164 
165 static void mem_avoid_memmap(char *str)
166 {
167 	static int i;
168 
169 	if (i >= MAX_MEMMAP_REGIONS)
170 		return;
171 
172 	while (str && (i < MAX_MEMMAP_REGIONS)) {
173 		int rc;
174 		u64 start, size;
175 		char *k = strchr(str, ',');
176 
177 		if (k)
178 			*k++ = 0;
179 
180 		rc = parse_memmap(str, &start, &size);
181 		if (rc < 0)
182 			break;
183 		str = k;
184 
185 		if (start == 0) {
186 			/* Store the specified memory limit if size > 0 */
187 			if (size > 0 && size < mem_limit)
188 				mem_limit = size;
189 
190 			continue;
191 		}
192 
193 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
194 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
195 		i++;
196 	}
197 
198 	/* More than 4 memmaps, fail kaslr */
199 	if ((i >= MAX_MEMMAP_REGIONS) && str)
200 		memmap_too_large = true;
201 }
202 
203 /* Store the number of 1GB huge pages which users specified: */
204 static unsigned long max_gb_huge_pages;
205 
206 static void parse_gb_huge_pages(char *param, char *val)
207 {
208 	static bool gbpage_sz;
209 	char *p;
210 
211 	if (!strcmp(param, "hugepagesz")) {
212 		p = val;
213 		if (memparse(p, &p) != PUD_SIZE) {
214 			gbpage_sz = false;
215 			return;
216 		}
217 
218 		if (gbpage_sz)
219 			warn("Repeatedly set hugeTLB page size of 1G!\n");
220 		gbpage_sz = true;
221 		return;
222 	}
223 
224 	if (!strcmp(param, "hugepages") && gbpage_sz) {
225 		p = val;
226 		max_gb_huge_pages = simple_strtoull(p, &p, 0);
227 		return;
228 	}
229 }
230 
231 static void handle_mem_options(void)
232 {
233 	char *args = (char *)get_cmd_line_ptr();
234 	size_t len;
235 	char *tmp_cmdline;
236 	char *param, *val;
237 	u64 mem_size;
238 
239 	if (!args)
240 		return;
241 
242 	len = strnlen(args, COMMAND_LINE_SIZE-1);
243 	tmp_cmdline = malloc(len + 1);
244 	if (!tmp_cmdline)
245 		error("Failed to allocate space for tmp_cmdline");
246 
247 	memcpy(tmp_cmdline, args, len);
248 	tmp_cmdline[len] = 0;
249 	args = tmp_cmdline;
250 
251 	/* Chew leading spaces */
252 	args = skip_spaces(args);
253 
254 	while (*args) {
255 		args = next_arg(args, &param, &val);
256 		/* Stop at -- */
257 		if (!val && strcmp(param, "--") == 0)
258 			break;
259 
260 		if (!strcmp(param, "memmap")) {
261 			mem_avoid_memmap(val);
262 		} else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
263 			parse_gb_huge_pages(param, val);
264 		} else if (!strcmp(param, "mem")) {
265 			char *p = val;
266 
267 			if (!strcmp(p, "nopentium"))
268 				continue;
269 			mem_size = memparse(p, &p);
270 			if (mem_size == 0)
271 				break;
272 
273 			if (mem_size < mem_limit)
274 				mem_limit = mem_size;
275 		}
276 	}
277 
278 	free(tmp_cmdline);
279 	return;
280 }
281 
282 /*
283  * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
284  * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
285  *
286  * The mem_avoid array is used to store the ranges that need to be avoided
287  * when KASLR searches for an appropriate random address. We must avoid any
288  * regions that are unsafe to overlap with during decompression, and other
289  * things like the initrd, cmdline and boot_params. This comment seeks to
290  * explain mem_avoid as clearly as possible since incorrect mem_avoid
291  * memory ranges lead to really hard to debug boot failures.
292  *
293  * The initrd, cmdline, and boot_params are trivial to identify for
294  * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
295  * MEM_AVOID_BOOTPARAMS respectively below.
296  *
297  * What is not obvious how to avoid is the range of memory that is used
298  * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
299  * the compressed kernel (ZO) and its run space, which is used to extract
300  * the uncompressed kernel (VO) and relocs.
301  *
302  * ZO's full run size sits against the end of the decompression buffer, so
303  * we can calculate where text, data, bss, etc of ZO are positioned more
304  * easily.
305  *
306  * For additional background, the decompression calculations can be found
307  * in header.S, and the memory diagram is based on the one found in misc.c.
308  *
309  * The following conditions are already enforced by the image layouts and
310  * associated code:
311  *  - input + input_size >= output + output_size
312  *  - kernel_total_size <= init_size
313  *  - kernel_total_size <= output_size (see Note below)
314  *  - output + init_size >= output + output_size
315  *
316  * (Note that kernel_total_size and output_size have no fundamental
317  * relationship, but output_size is passed to choose_random_location
318  * as a maximum of the two. The diagram is showing a case where
319  * kernel_total_size is larger than output_size, but this case is
320  * handled by bumping output_size.)
321  *
322  * The above conditions can be illustrated by a diagram:
323  *
324  * 0   output            input            input+input_size    output+init_size
325  * |     |                 |                             |             |
326  * |     |                 |                             |             |
327  * |-----|--------|--------|--------------|-----------|--|-------------|
328  *                |                       |           |
329  *                |                       |           |
330  * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
331  *
332  * [output, output+init_size) is the entire memory range used for
333  * extracting the compressed image.
334  *
335  * [output, output+kernel_total_size) is the range needed for the
336  * uncompressed kernel (VO) and its run size (bss, brk, etc).
337  *
338  * [output, output+output_size) is VO plus relocs (i.e. the entire
339  * uncompressed payload contained by ZO). This is the area of the buffer
340  * written to during decompression.
341  *
342  * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
343  * range of the copied ZO and decompression code. (i.e. the range
344  * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
345  *
346  * [input, input+input_size) is the original copied compressed image (ZO)
347  * (i.e. it does not include its run size). This range must be avoided
348  * because it contains the data used for decompression.
349  *
350  * [input+input_size, output+init_size) is [_text, _end) for ZO. This
351  * range includes ZO's heap and stack, and must be avoided since it
352  * performs the decompression.
353  *
354  * Since the above two ranges need to be avoided and they are adjacent,
355  * they can be merged, resulting in: [input, output+init_size) which
356  * becomes the MEM_AVOID_ZO_RANGE below.
357  */
358 static void mem_avoid_init(unsigned long input, unsigned long input_size,
359 			   unsigned long output)
360 {
361 	unsigned long init_size = boot_params_ptr->hdr.init_size;
362 	u64 initrd_start, initrd_size;
363 	unsigned long cmd_line, cmd_line_size;
364 
365 	/*
366 	 * Avoid the region that is unsafe to overlap during
367 	 * decompression.
368 	 */
369 	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
370 	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
371 
372 	/* Avoid initrd. */
373 	initrd_start  = (u64)boot_params_ptr->ext_ramdisk_image << 32;
374 	initrd_start |= boot_params_ptr->hdr.ramdisk_image;
375 	initrd_size  = (u64)boot_params_ptr->ext_ramdisk_size << 32;
376 	initrd_size |= boot_params_ptr->hdr.ramdisk_size;
377 	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
378 	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
379 	/* No need to set mapping for initrd, it will be handled in VO. */
380 
381 	/* Avoid kernel command line. */
382 	cmd_line = get_cmd_line_ptr();
383 	/* Calculate size of cmd_line. */
384 	if (cmd_line) {
385 		cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
386 		mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
387 		mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
388 	}
389 
390 	/* Avoid boot parameters. */
391 	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params_ptr;
392 	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params_ptr);
393 
394 	/* We don't need to set a mapping for setup_data. */
395 
396 	/* Mark the memmap regions we need to avoid */
397 	handle_mem_options();
398 
399 	/* Enumerate the immovable memory regions */
400 	num_immovable_mem = count_immovable_mem_regions();
401 }
402 
403 /*
404  * Does this memory vector overlap a known avoided area? If so, record the
405  * overlap region with the lowest address.
406  */
407 static bool mem_avoid_overlap(struct mem_vector *img,
408 			      struct mem_vector *overlap)
409 {
410 	int i;
411 	struct setup_data *ptr;
412 	u64 earliest = img->start + img->size;
413 	bool is_overlapping = false;
414 
415 	for (i = 0; i < MEM_AVOID_MAX; i++) {
416 		if (mem_overlaps(img, &mem_avoid[i]) &&
417 		    mem_avoid[i].start < earliest) {
418 			*overlap = mem_avoid[i];
419 			earliest = overlap->start;
420 			is_overlapping = true;
421 		}
422 	}
423 
424 	/* Avoid all entries in the setup_data linked list. */
425 	ptr = (struct setup_data *)(unsigned long)boot_params_ptr->hdr.setup_data;
426 	while (ptr) {
427 		struct mem_vector avoid;
428 
429 		avoid.start = (unsigned long)ptr;
430 		avoid.size = sizeof(*ptr) + ptr->len;
431 
432 		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
433 			*overlap = avoid;
434 			earliest = overlap->start;
435 			is_overlapping = true;
436 		}
437 
438 		if (ptr->type == SETUP_INDIRECT &&
439 		    ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
440 			avoid.start = ((struct setup_indirect *)ptr->data)->addr;
441 			avoid.size = ((struct setup_indirect *)ptr->data)->len;
442 
443 			if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
444 				*overlap = avoid;
445 				earliest = overlap->start;
446 				is_overlapping = true;
447 			}
448 		}
449 
450 		ptr = (struct setup_data *)(unsigned long)ptr->next;
451 	}
452 
453 	return is_overlapping;
454 }
455 
456 struct slot_area {
457 	u64 addr;
458 	unsigned long num;
459 };
460 
461 #define MAX_SLOT_AREA 100
462 
463 static struct slot_area slot_areas[MAX_SLOT_AREA];
464 static unsigned int slot_area_index;
465 static unsigned long slot_max;
466 
467 static void store_slot_info(struct mem_vector *region, unsigned long image_size)
468 {
469 	struct slot_area slot_area;
470 
471 	if (slot_area_index == MAX_SLOT_AREA)
472 		return;
473 
474 	slot_area.addr = region->start;
475 	slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
476 
477 	slot_areas[slot_area_index++] = slot_area;
478 	slot_max += slot_area.num;
479 }
480 
481 /*
482  * Skip as many 1GB huge pages as possible in the passed region
483  * according to the number which users specified:
484  */
485 static void
486 process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
487 {
488 	u64 pud_start, pud_end;
489 	unsigned long gb_huge_pages;
490 	struct mem_vector tmp;
491 
492 	if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
493 		store_slot_info(region, image_size);
494 		return;
495 	}
496 
497 	/* Are there any 1GB pages in the region? */
498 	pud_start = ALIGN(region->start, PUD_SIZE);
499 	pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
500 
501 	/* No good 1GB huge pages found: */
502 	if (pud_start >= pud_end) {
503 		store_slot_info(region, image_size);
504 		return;
505 	}
506 
507 	/* Check if the head part of the region is usable. */
508 	if (pud_start >= region->start + image_size) {
509 		tmp.start = region->start;
510 		tmp.size = pud_start - region->start;
511 		store_slot_info(&tmp, image_size);
512 	}
513 
514 	/* Skip the good 1GB pages. */
515 	gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
516 	if (gb_huge_pages > max_gb_huge_pages) {
517 		pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
518 		max_gb_huge_pages = 0;
519 	} else {
520 		max_gb_huge_pages -= gb_huge_pages;
521 	}
522 
523 	/* Check if the tail part of the region is usable. */
524 	if (region->start + region->size >= pud_end + image_size) {
525 		tmp.start = pud_end;
526 		tmp.size = region->start + region->size - pud_end;
527 		store_slot_info(&tmp, image_size);
528 	}
529 }
530 
531 static u64 slots_fetch_random(void)
532 {
533 	unsigned long slot;
534 	unsigned int i;
535 
536 	/* Handle case of no slots stored. */
537 	if (slot_max == 0)
538 		return 0;
539 
540 	slot = kaslr_get_random_long("Physical") % slot_max;
541 
542 	for (i = 0; i < slot_area_index; i++) {
543 		if (slot >= slot_areas[i].num) {
544 			slot -= slot_areas[i].num;
545 			continue;
546 		}
547 		return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
548 	}
549 
550 	if (i == slot_area_index)
551 		debug_putstr("slots_fetch_random() failed!?\n");
552 	return 0;
553 }
554 
555 static void __process_mem_region(struct mem_vector *entry,
556 				 unsigned long minimum,
557 				 unsigned long image_size)
558 {
559 	struct mem_vector region, overlap;
560 	u64 region_end;
561 
562 	/* Enforce minimum and memory limit. */
563 	region.start = max_t(u64, entry->start, minimum);
564 	region_end = min(entry->start + entry->size, mem_limit);
565 
566 	/* Give up if slot area array is full. */
567 	while (slot_area_index < MAX_SLOT_AREA) {
568 		/* Potentially raise address to meet alignment needs. */
569 		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
570 
571 		/* Did we raise the address above the passed in memory entry? */
572 		if (region.start > region_end)
573 			return;
574 
575 		/* Reduce size by any delta from the original address. */
576 		region.size = region_end - region.start;
577 
578 		/* Return if region can't contain decompressed kernel */
579 		if (region.size < image_size)
580 			return;
581 
582 		/* If nothing overlaps, store the region and return. */
583 		if (!mem_avoid_overlap(&region, &overlap)) {
584 			process_gb_huge_pages(&region, image_size);
585 			return;
586 		}
587 
588 		/* Store beginning of region if holds at least image_size. */
589 		if (overlap.start >= region.start + image_size) {
590 			region.size = overlap.start - region.start;
591 			process_gb_huge_pages(&region, image_size);
592 		}
593 
594 		/* Clip off the overlapping region and start over. */
595 		region.start = overlap.start + overlap.size;
596 	}
597 }
598 
599 static bool process_mem_region(struct mem_vector *region,
600 			       unsigned long minimum,
601 			       unsigned long image_size)
602 {
603 	int i;
604 	/*
605 	 * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
606 	 * use @region directly.
607 	 */
608 	if (!num_immovable_mem) {
609 		__process_mem_region(region, minimum, image_size);
610 
611 		if (slot_area_index == MAX_SLOT_AREA) {
612 			debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
613 			return true;
614 		}
615 		return false;
616 	}
617 
618 #if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
619 	/*
620 	 * If immovable memory found, filter the intersection between
621 	 * immovable memory and @region.
622 	 */
623 	for (i = 0; i < num_immovable_mem; i++) {
624 		u64 start, end, entry_end, region_end;
625 		struct mem_vector entry;
626 
627 		if (!mem_overlaps(region, &immovable_mem[i]))
628 			continue;
629 
630 		start = immovable_mem[i].start;
631 		end = start + immovable_mem[i].size;
632 		region_end = region->start + region->size;
633 
634 		entry.start = clamp(region->start, start, end);
635 		entry_end = clamp(region_end, start, end);
636 		entry.size = entry_end - entry.start;
637 
638 		__process_mem_region(&entry, minimum, image_size);
639 
640 		if (slot_area_index == MAX_SLOT_AREA) {
641 			debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
642 			return true;
643 		}
644 	}
645 #endif
646 	return false;
647 }
648 
649 #ifdef CONFIG_EFI
650 
651 /*
652  * Only EFI_CONVENTIONAL_MEMORY and EFI_UNACCEPTED_MEMORY (if supported) are
653  * guaranteed to be free.
654  *
655  * Pick free memory more conservatively than the EFI spec allows: according to
656  * the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also free memory and thus
657  * available to place the kernel image into, but in practice there's firmware
658  * where using that memory leads to crashes. Buggy vendor EFI code registers
659  * for an event that triggers on SetVirtualAddressMap(). The handler assumes
660  * that EFI_BOOT_SERVICES_DATA memory has not been touched by loader yet, which
661  * is probably true for Windows.
662  *
663  * Preserve EFI_BOOT_SERVICES_* regions until after SetVirtualAddressMap().
664  */
665 static inline bool memory_type_is_free(efi_memory_desc_t *md)
666 {
667 	if (md->type == EFI_CONVENTIONAL_MEMORY)
668 		return true;
669 
670 	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
671 	    md->type == EFI_UNACCEPTED_MEMORY)
672 		    return true;
673 
674 	return false;
675 }
676 
677 /*
678  * Returns true if we processed the EFI memmap, which we prefer over the E820
679  * table if it is available.
680  */
681 static bool
682 process_efi_entries(unsigned long minimum, unsigned long image_size)
683 {
684 	struct efi_info *e = &boot_params_ptr->efi_info;
685 	bool efi_mirror_found = false;
686 	struct mem_vector region;
687 	efi_memory_desc_t *md;
688 	unsigned long pmap;
689 	char *signature;
690 	u32 nr_desc;
691 	int i;
692 
693 	signature = (char *)&e->efi_loader_signature;
694 	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
695 	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
696 		return false;
697 
698 #ifdef CONFIG_X86_32
699 	/* Can't handle data above 4GB at this time */
700 	if (e->efi_memmap_hi) {
701 		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
702 		return false;
703 	}
704 	pmap =  e->efi_memmap;
705 #else
706 	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
707 #endif
708 
709 	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
710 	for (i = 0; i < nr_desc; i++) {
711 		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
712 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
713 			efi_mirror_found = true;
714 			break;
715 		}
716 	}
717 
718 	for (i = 0; i < nr_desc; i++) {
719 		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
720 
721 		if (!memory_type_is_free(md))
722 			continue;
723 
724 		if (efi_soft_reserve_enabled() &&
725 		    (md->attribute & EFI_MEMORY_SP))
726 			continue;
727 
728 		if (efi_mirror_found &&
729 		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
730 			continue;
731 
732 		region.start = md->phys_addr;
733 		region.size = md->num_pages << EFI_PAGE_SHIFT;
734 		if (process_mem_region(&region, minimum, image_size))
735 			break;
736 	}
737 	return true;
738 }
739 #else
740 static inline bool
741 process_efi_entries(unsigned long minimum, unsigned long image_size)
742 {
743 	return false;
744 }
745 #endif
746 
747 static void process_e820_entries(unsigned long minimum,
748 				 unsigned long image_size)
749 {
750 	int i;
751 	struct mem_vector region;
752 	struct boot_e820_entry *entry;
753 
754 	/* Verify potential e820 positions, appending to slots list. */
755 	for (i = 0; i < boot_params_ptr->e820_entries; i++) {
756 		entry = &boot_params_ptr->e820_table[i];
757 		/* Skip non-RAM entries. */
758 		if (entry->type != E820_TYPE_RAM)
759 			continue;
760 		region.start = entry->addr;
761 		region.size = entry->size;
762 		if (process_mem_region(&region, minimum, image_size))
763 			break;
764 	}
765 }
766 
767 static unsigned long find_random_phys_addr(unsigned long minimum,
768 					   unsigned long image_size)
769 {
770 	u64 phys_addr;
771 
772 	/* Bail out early if it's impossible to succeed. */
773 	if (minimum + image_size > mem_limit)
774 		return 0;
775 
776 	/* Check if we had too many memmaps. */
777 	if (memmap_too_large) {
778 		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
779 		return 0;
780 	}
781 
782 	if (!process_efi_entries(minimum, image_size))
783 		process_e820_entries(minimum, image_size);
784 
785 	phys_addr = slots_fetch_random();
786 
787 	/* Perform a final check to make sure the address is in range. */
788 	if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
789 		warn("Invalid physical address chosen!\n");
790 		return 0;
791 	}
792 
793 	return (unsigned long)phys_addr;
794 }
795 
796 static unsigned long find_random_virt_addr(unsigned long minimum,
797 					   unsigned long image_size)
798 {
799 	unsigned long slots, random_addr;
800 
801 	/*
802 	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
803 	 * that can hold image_size within the range of minimum to
804 	 * KERNEL_IMAGE_SIZE?
805 	 */
806 	slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
807 
808 	random_addr = kaslr_get_random_long("Virtual") % slots;
809 
810 	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
811 }
812 
813 /*
814  * Since this function examines addresses much more numerically,
815  * it takes the input and output pointers as 'unsigned long'.
816  */
817 void choose_random_location(unsigned long input,
818 			    unsigned long input_size,
819 			    unsigned long *output,
820 			    unsigned long output_size,
821 			    unsigned long *virt_addr)
822 {
823 	unsigned long random_addr, min_addr;
824 
825 	if (cmdline_find_option_bool("nokaslr")) {
826 		warn("KASLR disabled: 'nokaslr' on cmdline.");
827 		return;
828 	}
829 
830 	boot_params_ptr->hdr.loadflags |= KASLR_FLAG;
831 
832 	if (IS_ENABLED(CONFIG_X86_32))
833 		mem_limit = KERNEL_IMAGE_SIZE;
834 	else
835 		mem_limit = MAXMEM;
836 
837 	/* Record the various known unsafe memory ranges. */
838 	mem_avoid_init(input, input_size, *output);
839 
840 	/*
841 	 * Low end of the randomization range should be the
842 	 * smaller of 512M or the initial kernel image
843 	 * location:
844 	 */
845 	min_addr = min(*output, 512UL << 20);
846 	/* Make sure minimum is aligned. */
847 	min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
848 
849 	/* Walk available memory entries to find a random address. */
850 	random_addr = find_random_phys_addr(min_addr, output_size);
851 	if (!random_addr) {
852 		warn("Physical KASLR disabled: no suitable memory region!");
853 	} else {
854 		/* Update the new physical address location. */
855 		if (*output != random_addr)
856 			*output = random_addr;
857 	}
858 
859 
860 	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
861 	if (IS_ENABLED(CONFIG_X86_64))
862 		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
863 	*virt_addr = random_addr;
864 }
865