xref: /linux/arch/x86/boot/compressed/kaslr.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * kaslr.c
3  *
4  * This contains the routines needed to generate a reasonable level of
5  * entropy to choose a randomized kernel base address offset in support
6  * of Kernel Address Space Layout Randomization (KASLR). Additionally
7  * handles walking the physical memory maps (and tracking memory regions
8  * to avoid) in order to select a physical memory location that can
9  * contain the entire properly aligned running kernel image.
10  *
11  */
12 #include "misc.h"
13 #include "error.h"
14 
15 #include <asm/msr.h>
16 #include <asm/archrandom.h>
17 #include <asm/e820.h>
18 
19 #include <generated/compile.h>
20 #include <linux/module.h>
21 #include <linux/uts.h>
22 #include <linux/utsname.h>
23 #include <generated/utsrelease.h>
24 
25 /* Simplified build-specific string for starting entropy. */
26 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
27 		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
28 
29 #define I8254_PORT_CONTROL	0x43
30 #define I8254_PORT_COUNTER0	0x40
31 #define I8254_CMD_READBACK	0xC0
32 #define I8254_SELECT_COUNTER0	0x02
33 #define I8254_STATUS_NOTREADY	0x40
34 static inline u16 i8254(void)
35 {
36 	u16 status, timer;
37 
38 	do {
39 		outb(I8254_PORT_CONTROL,
40 		     I8254_CMD_READBACK | I8254_SELECT_COUNTER0);
41 		status = inb(I8254_PORT_COUNTER0);
42 		timer  = inb(I8254_PORT_COUNTER0);
43 		timer |= inb(I8254_PORT_COUNTER0) << 8;
44 	} while (status & I8254_STATUS_NOTREADY);
45 
46 	return timer;
47 }
48 
49 static unsigned long rotate_xor(unsigned long hash, const void *area,
50 				size_t size)
51 {
52 	size_t i;
53 	unsigned long *ptr = (unsigned long *)area;
54 
55 	for (i = 0; i < size / sizeof(hash); i++) {
56 		/* Rotate by odd number of bits and XOR. */
57 		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
58 		hash ^= ptr[i];
59 	}
60 
61 	return hash;
62 }
63 
64 /* Attempt to create a simple but unpredictable starting entropy. */
65 static unsigned long get_random_boot(void)
66 {
67 	unsigned long hash = 0;
68 
69 	hash = rotate_xor(hash, build_str, sizeof(build_str));
70 	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
71 
72 	return hash;
73 }
74 
75 static unsigned long get_random_long(const char *purpose)
76 {
77 #ifdef CONFIG_X86_64
78 	const unsigned long mix_const = 0x5d6008cbf3848dd3UL;
79 #else
80 	const unsigned long mix_const = 0x3f39e593UL;
81 #endif
82 	unsigned long raw, random = get_random_boot();
83 	bool use_i8254 = true;
84 
85 	debug_putstr(purpose);
86 	debug_putstr(" KASLR using");
87 
88 	if (has_cpuflag(X86_FEATURE_RDRAND)) {
89 		debug_putstr(" RDRAND");
90 		if (rdrand_long(&raw)) {
91 			random ^= raw;
92 			use_i8254 = false;
93 		}
94 	}
95 
96 	if (has_cpuflag(X86_FEATURE_TSC)) {
97 		debug_putstr(" RDTSC");
98 		raw = rdtsc();
99 
100 		random ^= raw;
101 		use_i8254 = false;
102 	}
103 
104 	if (use_i8254) {
105 		debug_putstr(" i8254");
106 		random ^= i8254();
107 	}
108 
109 	/* Circular multiply for better bit diffusion */
110 	asm("mul %3"
111 	    : "=a" (random), "=d" (raw)
112 	    : "a" (random), "rm" (mix_const));
113 	random += raw;
114 
115 	debug_putstr("...\n");
116 
117 	return random;
118 }
119 
120 struct mem_vector {
121 	unsigned long start;
122 	unsigned long size;
123 };
124 
125 enum mem_avoid_index {
126 	MEM_AVOID_ZO_RANGE = 0,
127 	MEM_AVOID_INITRD,
128 	MEM_AVOID_CMDLINE,
129 	MEM_AVOID_BOOTPARAMS,
130 	MEM_AVOID_MAX,
131 };
132 
133 static struct mem_vector mem_avoid[MEM_AVOID_MAX];
134 
135 static bool mem_contains(struct mem_vector *region, struct mem_vector *item)
136 {
137 	/* Item at least partially before region. */
138 	if (item->start < region->start)
139 		return false;
140 	/* Item at least partially after region. */
141 	if (item->start + item->size > region->start + region->size)
142 		return false;
143 	return true;
144 }
145 
146 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
147 {
148 	/* Item one is entirely before item two. */
149 	if (one->start + one->size <= two->start)
150 		return false;
151 	/* Item one is entirely after item two. */
152 	if (one->start >= two->start + two->size)
153 		return false;
154 	return true;
155 }
156 
157 /*
158  * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
159  * The mem_avoid array is used to store the ranges that need to be avoided
160  * when KASLR searches for an appropriate random address. We must avoid any
161  * regions that are unsafe to overlap with during decompression, and other
162  * things like the initrd, cmdline and boot_params. This comment seeks to
163  * explain mem_avoid as clearly as possible since incorrect mem_avoid
164  * memory ranges lead to really hard to debug boot failures.
165  *
166  * The initrd, cmdline, and boot_params are trivial to identify for
167  * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
168  * MEM_AVOID_BOOTPARAMS respectively below.
169  *
170  * What is not obvious how to avoid is the range of memory that is used
171  * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
172  * the compressed kernel (ZO) and its run space, which is used to extract
173  * the uncompressed kernel (VO) and relocs.
174  *
175  * ZO's full run size sits against the end of the decompression buffer, so
176  * we can calculate where text, data, bss, etc of ZO are positioned more
177  * easily.
178  *
179  * For additional background, the decompression calculations can be found
180  * in header.S, and the memory diagram is based on the one found in misc.c.
181  *
182  * The following conditions are already enforced by the image layouts and
183  * associated code:
184  *  - input + input_size >= output + output_size
185  *  - kernel_total_size <= init_size
186  *  - kernel_total_size <= output_size (see Note below)
187  *  - output + init_size >= output + output_size
188  *
189  * (Note that kernel_total_size and output_size have no fundamental
190  * relationship, but output_size is passed to choose_random_location
191  * as a maximum of the two. The diagram is showing a case where
192  * kernel_total_size is larger than output_size, but this case is
193  * handled by bumping output_size.)
194  *
195  * The above conditions can be illustrated by a diagram:
196  *
197  * 0   output            input            input+input_size    output+init_size
198  * |     |                 |                             |             |
199  * |     |                 |                             |             |
200  * |-----|--------|--------|--------------|-----------|--|-------------|
201  *                |                       |           |
202  *                |                       |           |
203  * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
204  *
205  * [output, output+init_size) is the entire memory range used for
206  * extracting the compressed image.
207  *
208  * [output, output+kernel_total_size) is the range needed for the
209  * uncompressed kernel (VO) and its run size (bss, brk, etc).
210  *
211  * [output, output+output_size) is VO plus relocs (i.e. the entire
212  * uncompressed payload contained by ZO). This is the area of the buffer
213  * written to during decompression.
214  *
215  * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
216  * range of the copied ZO and decompression code. (i.e. the range
217  * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
218  *
219  * [input, input+input_size) is the original copied compressed image (ZO)
220  * (i.e. it does not include its run size). This range must be avoided
221  * because it contains the data used for decompression.
222  *
223  * [input+input_size, output+init_size) is [_text, _end) for ZO. This
224  * range includes ZO's heap and stack, and must be avoided since it
225  * performs the decompression.
226  *
227  * Since the above two ranges need to be avoided and they are adjacent,
228  * they can be merged, resulting in: [input, output+init_size) which
229  * becomes the MEM_AVOID_ZO_RANGE below.
230  */
231 static void mem_avoid_init(unsigned long input, unsigned long input_size,
232 			   unsigned long output)
233 {
234 	unsigned long init_size = boot_params->hdr.init_size;
235 	u64 initrd_start, initrd_size;
236 	u64 cmd_line, cmd_line_size;
237 	char *ptr;
238 
239 	/*
240 	 * Avoid the region that is unsafe to overlap during
241 	 * decompression.
242 	 */
243 	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
244 	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
245 	add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
246 			 mem_avoid[MEM_AVOID_ZO_RANGE].size);
247 
248 	/* Avoid initrd. */
249 	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
250 	initrd_start |= boot_params->hdr.ramdisk_image;
251 	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
252 	initrd_size |= boot_params->hdr.ramdisk_size;
253 	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
254 	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
255 	/* No need to set mapping for initrd, it will be handled in VO. */
256 
257 	/* Avoid kernel command line. */
258 	cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
259 	cmd_line |= boot_params->hdr.cmd_line_ptr;
260 	/* Calculate size of cmd_line. */
261 	ptr = (char *)(unsigned long)cmd_line;
262 	for (cmd_line_size = 0; ptr[cmd_line_size++]; )
263 		;
264 	mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
265 	mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
266 	add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
267 			 mem_avoid[MEM_AVOID_CMDLINE].size);
268 
269 	/* Avoid boot parameters. */
270 	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
271 	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
272 	add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
273 			 mem_avoid[MEM_AVOID_BOOTPARAMS].size);
274 
275 	/* We don't need to set a mapping for setup_data. */
276 
277 #ifdef CONFIG_X86_VERBOSE_BOOTUP
278 	/* Make sure video RAM can be used. */
279 	add_identity_map(0, PMD_SIZE);
280 #endif
281 }
282 
283 /*
284  * Does this memory vector overlap a known avoided area? If so, record the
285  * overlap region with the lowest address.
286  */
287 static bool mem_avoid_overlap(struct mem_vector *img,
288 			      struct mem_vector *overlap)
289 {
290 	int i;
291 	struct setup_data *ptr;
292 	unsigned long earliest = img->start + img->size;
293 	bool is_overlapping = false;
294 
295 	for (i = 0; i < MEM_AVOID_MAX; i++) {
296 		if (mem_overlaps(img, &mem_avoid[i]) &&
297 		    mem_avoid[i].start < earliest) {
298 			*overlap = mem_avoid[i];
299 			is_overlapping = true;
300 		}
301 	}
302 
303 	/* Avoid all entries in the setup_data linked list. */
304 	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
305 	while (ptr) {
306 		struct mem_vector avoid;
307 
308 		avoid.start = (unsigned long)ptr;
309 		avoid.size = sizeof(*ptr) + ptr->len;
310 
311 		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
312 			*overlap = avoid;
313 			is_overlapping = true;
314 		}
315 
316 		ptr = (struct setup_data *)(unsigned long)ptr->next;
317 	}
318 
319 	return is_overlapping;
320 }
321 
322 static unsigned long slots[KERNEL_IMAGE_SIZE / CONFIG_PHYSICAL_ALIGN];
323 
324 struct slot_area {
325 	unsigned long addr;
326 	int num;
327 };
328 
329 #define MAX_SLOT_AREA 100
330 
331 static struct slot_area slot_areas[MAX_SLOT_AREA];
332 
333 static unsigned long slot_max;
334 
335 static unsigned long slot_area_index;
336 
337 static void store_slot_info(struct mem_vector *region, unsigned long image_size)
338 {
339 	struct slot_area slot_area;
340 
341 	if (slot_area_index == MAX_SLOT_AREA)
342 		return;
343 
344 	slot_area.addr = region->start;
345 	slot_area.num = (region->size - image_size) /
346 			CONFIG_PHYSICAL_ALIGN + 1;
347 
348 	if (slot_area.num > 0) {
349 		slot_areas[slot_area_index++] = slot_area;
350 		slot_max += slot_area.num;
351 	}
352 }
353 
354 static void slots_append(unsigned long addr)
355 {
356 	/* Overflowing the slots list should be impossible. */
357 	if (slot_max >= KERNEL_IMAGE_SIZE / CONFIG_PHYSICAL_ALIGN)
358 		return;
359 
360 	slots[slot_max++] = addr;
361 }
362 
363 static unsigned long slots_fetch_random(void)
364 {
365 	/* Handle case of no slots stored. */
366 	if (slot_max == 0)
367 		return 0;
368 
369 	return slots[get_random_long("Physical") % slot_max];
370 }
371 
372 static void process_e820_entry(struct e820entry *entry,
373 			       unsigned long minimum,
374 			       unsigned long image_size)
375 {
376 	struct mem_vector region, img, overlap;
377 
378 	/* Skip non-RAM entries. */
379 	if (entry->type != E820_RAM)
380 		return;
381 
382 	/* Ignore entries entirely above our maximum. */
383 	if (entry->addr >= KERNEL_IMAGE_SIZE)
384 		return;
385 
386 	/* Ignore entries entirely below our minimum. */
387 	if (entry->addr + entry->size < minimum)
388 		return;
389 
390 	region.start = entry->addr;
391 	region.size = entry->size;
392 
393 	/* Potentially raise address to minimum location. */
394 	if (region.start < minimum)
395 		region.start = minimum;
396 
397 	/* Potentially raise address to meet alignment requirements. */
398 	region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
399 
400 	/* Did we raise the address above the bounds of this e820 region? */
401 	if (region.start > entry->addr + entry->size)
402 		return;
403 
404 	/* Reduce size by any delta from the original address. */
405 	region.size -= region.start - entry->addr;
406 
407 	/* Reduce maximum size to fit end of image within maximum limit. */
408 	if (region.start + region.size > KERNEL_IMAGE_SIZE)
409 		region.size = KERNEL_IMAGE_SIZE - region.start;
410 
411 	/* Walk each aligned slot and check for avoided areas. */
412 	for (img.start = region.start, img.size = image_size ;
413 	     mem_contains(&region, &img) ;
414 	     img.start += CONFIG_PHYSICAL_ALIGN) {
415 		if (mem_avoid_overlap(&img, &overlap))
416 			continue;
417 		slots_append(img.start);
418 	}
419 }
420 
421 static unsigned long find_random_phys_addr(unsigned long minimum,
422 					   unsigned long image_size)
423 {
424 	int i;
425 	unsigned long addr;
426 
427 	/* Make sure minimum is aligned. */
428 	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
429 
430 	/* Verify potential e820 positions, appending to slots list. */
431 	for (i = 0; i < boot_params->e820_entries; i++) {
432 		process_e820_entry(&boot_params->e820_map[i], minimum,
433 				   image_size);
434 	}
435 
436 	return slots_fetch_random();
437 }
438 
439 static unsigned long find_random_virt_addr(unsigned long minimum,
440 					   unsigned long image_size)
441 {
442 	unsigned long slots, random_addr;
443 
444 	/* Make sure minimum is aligned. */
445 	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
446 	/* Align image_size for easy slot calculations. */
447 	image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
448 
449 	/*
450 	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
451 	 * that can hold image_size within the range of minimum to
452 	 * KERNEL_IMAGE_SIZE?
453 	 */
454 	slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
455 		 CONFIG_PHYSICAL_ALIGN + 1;
456 
457 	random_addr = get_random_long("Virtual") % slots;
458 
459 	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
460 }
461 
462 /*
463  * Since this function examines addresses much more numerically,
464  * it takes the input and output pointers as 'unsigned long'.
465  */
466 unsigned char *choose_random_location(unsigned long input,
467 				      unsigned long input_size,
468 				      unsigned long output,
469 				      unsigned long output_size)
470 {
471 	unsigned long choice = output;
472 	unsigned long random_addr;
473 
474 #ifdef CONFIG_HIBERNATION
475 	if (!cmdline_find_option_bool("kaslr")) {
476 		warn("KASLR disabled: 'kaslr' not on cmdline (hibernation selected).");
477 		goto out;
478 	}
479 #else
480 	if (cmdline_find_option_bool("nokaslr")) {
481 		warn("KASLR disabled: 'nokaslr' on cmdline.");
482 		goto out;
483 	}
484 #endif
485 
486 	boot_params->hdr.loadflags |= KASLR_FLAG;
487 
488 	/* Record the various known unsafe memory ranges. */
489 	mem_avoid_init(input, input_size, output);
490 
491 	/* Walk e820 and find a random address. */
492 	random_addr = find_random_phys_addr(output, output_size);
493 	if (!random_addr) {
494 		warn("KASLR disabled: could not find suitable E820 region!");
495 		goto out;
496 	}
497 
498 	/* Always enforce the minimum. */
499 	if (random_addr < choice)
500 		goto out;
501 
502 	choice = random_addr;
503 
504 	add_identity_map(choice, output_size);
505 
506 	/* This actually loads the identity pagetable on x86_64. */
507 	finalize_identity_maps();
508 out:
509 	return (unsigned char *)choice;
510 }
511