xref: /linux/arch/x86/boot/compressed/head_64.S (revision 23ca32e4ead48f68e37000f2552b973ef1439acb)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/boot/head.S
4 *
5 *  Copyright (C) 1991, 1992, 1993  Linus Torvalds
6 */
7
8/*
9 *  head.S contains the 32-bit startup code.
10 *
11 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
12 * the page directory will exist. The startup code will be overwritten by
13 * the page directory. [According to comments etc elsewhere on a compressed
14 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
15 *
16 * Page 0 is deliberately kept safe, since System Management Mode code in
17 * laptops may need to access the BIOS data stored there.  This is also
18 * useful for future device drivers that either access the BIOS via VM86
19 * mode.
20 */
21
22/*
23 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
24 */
25	.code32
26	.text
27
28#include <linux/init.h>
29#include <linux/linkage.h>
30#include <asm/segment.h>
31#include <asm/boot.h>
32#include <asm/msr.h>
33#include <asm/processor-flags.h>
34#include <asm/asm-offsets.h>
35#include <asm/bootparam.h>
36#include <asm/desc_defs.h>
37#include <asm/trapnr.h>
38
39/*
40 * Fix alignment at 16 bytes. Following CONFIG_FUNCTION_ALIGNMENT will result
41 * in assembly errors due to trying to move .org backward due to the excessive
42 * alignment.
43 */
44#undef __ALIGN
45#define __ALIGN		.balign	16, 0x90
46
47/*
48 * Locally defined symbols should be marked hidden:
49 */
50	.hidden _bss
51	.hidden _ebss
52	.hidden _end
53
54	__HEAD
55
56/*
57 * This macro gives the relative virtual address of X, i.e. the offset of X
58 * from startup_32. This is the same as the link-time virtual address of X,
59 * since startup_32 is at 0, but defining it this way tells the
60 * assembler/linker that we do not want the actual run-time address of X. This
61 * prevents the linker from trying to create unwanted run-time relocation
62 * entries for the reference when the compressed kernel is linked as PIE.
63 *
64 * A reference X(%reg) will result in the link-time VA of X being stored with
65 * the instruction, and a run-time R_X86_64_RELATIVE relocation entry that
66 * adds the 64-bit base address where the kernel is loaded.
67 *
68 * Replacing it with (X-startup_32)(%reg) results in the offset being stored,
69 * and no run-time relocation.
70 *
71 * The macro should be used as a displacement with a base register containing
72 * the run-time address of startup_32 [i.e. rva(X)(%reg)], or as an immediate
73 * [$ rva(X)].
74 *
75 * This macro can only be used from within the .head.text section, since the
76 * expression requires startup_32 to be in the same section as the code being
77 * assembled.
78 */
79#define rva(X) ((X) - startup_32)
80
81	.code32
82SYM_FUNC_START(startup_32)
83	/*
84	 * 32bit entry is 0 and it is ABI so immutable!
85	 * If we come here directly from a bootloader,
86	 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
87	 * all need to be under the 4G limit.
88	 */
89	cld
90	cli
91
92/*
93 * Calculate the delta between where we were compiled to run
94 * at and where we were actually loaded at.  This can only be done
95 * with a short local call on x86.  Nothing  else will tell us what
96 * address we are running at.  The reserved chunk of the real-mode
97 * data at 0x1e4 (defined as a scratch field) are used as the stack
98 * for this calculation. Only 4 bytes are needed.
99 */
100	leal	(BP_scratch+4)(%esi), %esp
101	call	1f
1021:	popl	%ebp
103	subl	$ rva(1b), %ebp
104
105	/* Load new GDT with the 64bit segments using 32bit descriptor */
106	leal	rva(gdt)(%ebp), %eax
107	movl	%eax, 2(%eax)
108	lgdt	(%eax)
109
110	/* Load segment registers with our descriptors */
111	movl	$__BOOT_DS, %eax
112	movl	%eax, %ds
113	movl	%eax, %es
114	movl	%eax, %fs
115	movl	%eax, %gs
116	movl	%eax, %ss
117
118	/* Setup a stack and load CS from current GDT */
119	leal	rva(boot_stack_end)(%ebp), %esp
120
121	pushl	$__KERNEL32_CS
122	leal	rva(1f)(%ebp), %eax
123	pushl	%eax
124	lretl
1251:
126
127	/* Setup Exception handling for SEV-ES */
128#ifdef CONFIG_AMD_MEM_ENCRYPT
129	call	startup32_load_idt
130#endif
131
132	/* Make sure cpu supports long mode. */
133	call	verify_cpu
134	testl	%eax, %eax
135	jnz	.Lno_longmode
136
137/*
138 * Compute the delta between where we were compiled to run at
139 * and where the code will actually run at.
140 *
141 * %ebp contains the address we are loaded at by the boot loader and %ebx
142 * contains the address where we should move the kernel image temporarily
143 * for safe in-place decompression.
144 */
145
146#ifdef CONFIG_RELOCATABLE
147	movl	%ebp, %ebx
148	movl	BP_kernel_alignment(%esi), %eax
149	decl	%eax
150	addl	%eax, %ebx
151	notl	%eax
152	andl	%eax, %ebx
153	cmpl	$LOAD_PHYSICAL_ADDR, %ebx
154	jae	1f
155#endif
156	movl	$LOAD_PHYSICAL_ADDR, %ebx
1571:
158
159	/* Target address to relocate to for decompression */
160	addl	BP_init_size(%esi), %ebx
161	subl	$ rva(_end), %ebx
162
163/*
164 * Prepare for entering 64 bit mode
165 */
166
167	/* Enable PAE mode */
168	movl	%cr4, %eax
169	orl	$X86_CR4_PAE, %eax
170	movl	%eax, %cr4
171
172 /*
173  * Build early 4G boot pagetable
174  */
175	/*
176	 * If SEV is active then set the encryption mask in the page tables.
177	 * This will ensure that when the kernel is copied and decompressed
178	 * it will be done so encrypted.
179	 */
180	xorl	%edx, %edx
181#ifdef	CONFIG_AMD_MEM_ENCRYPT
182	call	get_sev_encryption_bit
183	xorl	%edx, %edx
184	testl	%eax, %eax
185	jz	1f
186	subl	$32, %eax	/* Encryption bit is always above bit 31 */
187	bts	%eax, %edx	/* Set encryption mask for page tables */
188	/*
189	 * Set MSR_AMD64_SEV_ENABLED_BIT in sev_status so that
190	 * startup32_check_sev_cbit() will do a check. sev_enable() will
191	 * initialize sev_status with all the bits reported by
192	 * MSR_AMD_SEV_STATUS later, but only MSR_AMD64_SEV_ENABLED_BIT
193	 * needs to be set for now.
194	 */
195	movl	$1, rva(sev_status)(%ebp)
1961:
197#endif
198
199	/* Initialize Page tables to 0 */
200	leal	rva(pgtable)(%ebx), %edi
201	xorl	%eax, %eax
202	movl	$(BOOT_INIT_PGT_SIZE/4), %ecx
203	rep	stosl
204
205	/* Build Level 4 */
206	leal	rva(pgtable + 0)(%ebx), %edi
207	leal	0x1007 (%edi), %eax
208	movl	%eax, 0(%edi)
209	addl	%edx, 4(%edi)
210
211	/* Build Level 3 */
212	leal	rva(pgtable + 0x1000)(%ebx), %edi
213	leal	0x1007(%edi), %eax
214	movl	$4, %ecx
2151:	movl	%eax, 0x00(%edi)
216	addl	%edx, 0x04(%edi)
217	addl	$0x00001000, %eax
218	addl	$8, %edi
219	decl	%ecx
220	jnz	1b
221
222	/* Build Level 2 */
223	leal	rva(pgtable + 0x2000)(%ebx), %edi
224	movl	$0x00000183, %eax
225	movl	$2048, %ecx
2261:	movl	%eax, 0(%edi)
227	addl	%edx, 4(%edi)
228	addl	$0x00200000, %eax
229	addl	$8, %edi
230	decl	%ecx
231	jnz	1b
232
233	/* Enable the boot page tables */
234	leal	rva(pgtable)(%ebx), %eax
235	movl	%eax, %cr3
236
237	/* Enable Long mode in EFER (Extended Feature Enable Register) */
238	movl	$MSR_EFER, %ecx
239	rdmsr
240	btsl	$_EFER_LME, %eax
241	wrmsr
242
243	/* After gdt is loaded */
244	xorl	%eax, %eax
245	lldt	%ax
246	movl    $__BOOT_TSS, %eax
247	ltr	%ax
248
249#ifdef CONFIG_AMD_MEM_ENCRYPT
250	/* Check if the C-bit position is correct when SEV is active */
251	call	startup32_check_sev_cbit
252#endif
253
254	/*
255	 * Setup for the jump to 64bit mode
256	 *
257	 * When the jump is performed we will be in long mode but
258	 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
259	 * (and in turn EFER.LMA = 1).	To jump into 64bit mode we use
260	 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
261	 * We place all of the values on our mini stack so lret can
262	 * used to perform that far jump.
263	 */
264	leal	rva(startup_64)(%ebp), %eax
265	pushl	$__KERNEL_CS
266	pushl	%eax
267
268	/* Enter paged protected Mode, activating Long Mode */
269	movl	$CR0_STATE, %eax
270	movl	%eax, %cr0
271
272	/* Jump from 32bit compatibility mode into 64bit mode. */
273	lret
274SYM_FUNC_END(startup_32)
275
276	.code64
277	.org 0x200
278SYM_CODE_START(startup_64)
279	/*
280	 * 64bit entry is 0x200 and it is ABI so immutable!
281	 * We come here either from startup_32 or directly from a
282	 * 64bit bootloader.
283	 * If we come here from a bootloader, kernel(text+data+bss+brk),
284	 * ramdisk, zero_page, command line could be above 4G.
285	 * We depend on an identity mapped page table being provided
286	 * that maps our entire kernel(text+data+bss+brk), zero page
287	 * and command line.
288	 */
289
290	cld
291	cli
292
293	/* Setup data segments. */
294	xorl	%eax, %eax
295	movl	%eax, %ds
296	movl	%eax, %es
297	movl	%eax, %ss
298	movl	%eax, %fs
299	movl	%eax, %gs
300
301	/*
302	 * Compute the decompressed kernel start address.  It is where
303	 * we were loaded at aligned to a 2M boundary. %rbp contains the
304	 * decompressed kernel start address.
305	 *
306	 * If it is a relocatable kernel then decompress and run the kernel
307	 * from load address aligned to 2MB addr, otherwise decompress and
308	 * run the kernel from LOAD_PHYSICAL_ADDR
309	 *
310	 * We cannot rely on the calculation done in 32-bit mode, since we
311	 * may have been invoked via the 64-bit entry point.
312	 */
313
314	/* Start with the delta to where the kernel will run at. */
315#ifdef CONFIG_RELOCATABLE
316	leaq	startup_32(%rip) /* - $startup_32 */, %rbp
317	movl	BP_kernel_alignment(%rsi), %eax
318	decl	%eax
319	addq	%rax, %rbp
320	notq	%rax
321	andq	%rax, %rbp
322	cmpq	$LOAD_PHYSICAL_ADDR, %rbp
323	jae	1f
324#endif
325	movq	$LOAD_PHYSICAL_ADDR, %rbp
3261:
327
328	/* Target address to relocate to for decompression */
329	movl	BP_init_size(%rsi), %ebx
330	subl	$ rva(_end), %ebx
331	addq	%rbp, %rbx
332
333	/* Set up the stack */
334	leaq	rva(boot_stack_end)(%rbx), %rsp
335
336	/*
337	 * At this point we are in long mode with 4-level paging enabled,
338	 * but we might want to enable 5-level paging or vice versa.
339	 *
340	 * The problem is that we cannot do it directly. Setting or clearing
341	 * CR4.LA57 in long mode would trigger #GP. So we need to switch off
342	 * long mode and paging first.
343	 *
344	 * We also need a trampoline in lower memory to switch over from
345	 * 4- to 5-level paging for cases when the bootloader puts the kernel
346	 * above 4G, but didn't enable 5-level paging for us.
347	 *
348	 * The same trampoline can be used to switch from 5- to 4-level paging
349	 * mode, like when starting 4-level paging kernel via kexec() when
350	 * original kernel worked in 5-level paging mode.
351	 *
352	 * For the trampoline, we need the top page table to reside in lower
353	 * memory as we don't have a way to load 64-bit values into CR3 in
354	 * 32-bit mode.
355	 */
356
357	/* Make sure we have GDT with 32-bit code segment */
358	leaq	gdt64(%rip), %rax
359	addq	%rax, 2(%rax)
360	lgdt	(%rax)
361
362	/* Reload CS so IRET returns to a CS actually in the GDT */
363	pushq	$__KERNEL_CS
364	leaq	.Lon_kernel_cs(%rip), %rax
365	pushq	%rax
366	lretq
367
368.Lon_kernel_cs:
369	/*
370	 * RSI holds a pointer to a boot_params structure provided by the
371	 * loader, and this needs to be preserved across C function calls. So
372	 * move it into a callee saved register.
373	 */
374	movq	%rsi, %r15
375
376	call	load_stage1_idt
377
378#ifdef CONFIG_AMD_MEM_ENCRYPT
379	/*
380	 * Now that the stage1 interrupt handlers are set up, #VC exceptions from
381	 * CPUID instructions can be properly handled for SEV-ES guests.
382	 *
383	 * For SEV-SNP, the CPUID table also needs to be set up in advance of any
384	 * CPUID instructions being issued, so go ahead and do that now via
385	 * sev_enable(), which will also handle the rest of the SEV-related
386	 * detection/setup to ensure that has been done in advance of any dependent
387	 * code. Pass the boot_params pointer as the first argument.
388	 */
389	movq	%r15, %rdi
390	call	sev_enable
391#endif
392
393	/* Preserve only the CR4 bits that must be preserved, and clear the rest */
394	movq	%cr4, %rax
395	andl	$(X86_CR4_PAE | X86_CR4_MCE | X86_CR4_LA57), %eax
396	movq	%rax, %cr4
397
398	/*
399	 * configure_5level_paging() updates the number of paging levels using
400	 * a trampoline in 32-bit addressable memory if the current number does
401	 * not match the desired number.
402	 *
403	 * Pass the boot_params pointer as the first argument. The second
404	 * argument is the relocated address of the page table to use instead
405	 * of the page table in trampoline memory (if required).
406	 */
407	movq	%r15, %rdi
408	leaq	rva(top_pgtable)(%rbx), %rsi
409	call	configure_5level_paging
410
411	/* Zero EFLAGS */
412	pushq	$0
413	popfq
414
415/*
416 * Copy the compressed kernel to the end of our buffer
417 * where decompression in place becomes safe.
418 */
419	leaq	(_bss-8)(%rip), %rsi
420	leaq	rva(_bss-8)(%rbx), %rdi
421	movl	$(_bss - startup_32), %ecx
422	shrl	$3, %ecx
423	std
424	rep	movsq
425	cld
426
427	/*
428	 * The GDT may get overwritten either during the copy we just did or
429	 * during extract_kernel below. To avoid any issues, repoint the GDTR
430	 * to the new copy of the GDT.
431	 */
432	leaq	rva(gdt64)(%rbx), %rax
433	leaq	rva(gdt)(%rbx), %rdx
434	movq	%rdx, 2(%rax)
435	lgdt	(%rax)
436
437/*
438 * Jump to the relocated address.
439 */
440	leaq	rva(.Lrelocated)(%rbx), %rax
441	jmp	*%rax
442SYM_CODE_END(startup_64)
443
444	.text
445SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)
446
447/*
448 * Clear BSS (stack is currently empty)
449 */
450	xorl	%eax, %eax
451	leaq    _bss(%rip), %rdi
452	leaq    _ebss(%rip), %rcx
453	subq	%rdi, %rcx
454	shrq	$3, %rcx
455	rep	stosq
456
457	call	load_stage2_idt
458
459	/* Pass boot_params to initialize_identity_maps() */
460	movq	%r15, %rdi
461	call	initialize_identity_maps
462
463/*
464 * Do the extraction, and jump to the new kernel..
465 */
466	/* pass struct boot_params pointer and output target address */
467	movq	%r15, %rdi
468	movq	%rbp, %rsi
469	call	extract_kernel		/* returns kernel entry point in %rax */
470
471/*
472 * Jump to the decompressed kernel.
473 */
474	movq	%r15, %rsi
475	jmp	*%rax
476SYM_FUNC_END(.Lrelocated)
477
478	.code32
479SYM_FUNC_START_LOCAL_NOALIGN(.Lno_longmode)
480	/* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */
4811:
482	hlt
483	jmp     1b
484SYM_FUNC_END(.Lno_longmode)
485
486	.globl	verify_cpu
487#include "../../kernel/verify_cpu.S"
488
489	.data
490SYM_DATA_START_LOCAL(gdt64)
491	.word	gdt_end - gdt - 1
492	.quad   gdt - gdt64
493SYM_DATA_END(gdt64)
494	.balign	8
495SYM_DATA_START_LOCAL(gdt)
496	.word	gdt_end - gdt - 1
497	.long	0
498	.word	0
499	.quad	0x00cf9a000000ffff	/* __KERNEL32_CS */
500	.quad	0x00af9a000000ffff	/* __KERNEL_CS */
501	.quad	0x00cf92000000ffff	/* __KERNEL_DS */
502	.quad	0x0080890000000000	/* TS descriptor */
503	.quad   0x0000000000000000	/* TS continued */
504SYM_DATA_END_LABEL(gdt, SYM_L_LOCAL, gdt_end)
505
506SYM_DATA_START(boot_idt_desc)
507	.word	boot_idt_end - boot_idt - 1
508	.quad	0
509SYM_DATA_END(boot_idt_desc)
510	.balign 8
511SYM_DATA_START(boot_idt)
512	.rept	BOOT_IDT_ENTRIES
513	.quad	0
514	.quad	0
515	.endr
516SYM_DATA_END_LABEL(boot_idt, SYM_L_GLOBAL, boot_idt_end)
517
518/*
519 * Stack and heap for uncompression
520 */
521	.bss
522	.balign 4
523SYM_DATA_START_LOCAL(boot_stack)
524	.fill BOOT_STACK_SIZE, 1, 0
525	.balign 16
526SYM_DATA_END_LABEL(boot_stack, SYM_L_LOCAL, boot_stack_end)
527
528/*
529 * Space for page tables (not in .bss so not zeroed)
530 */
531	.section ".pgtable","aw",@nobits
532	.balign 4096
533SYM_DATA_LOCAL(pgtable,		.fill BOOT_PGT_SIZE, 1, 0)
534
535/*
536 * The page table is going to be used instead of page table in the trampoline
537 * memory.
538 */
539SYM_DATA_LOCAL(top_pgtable,	.fill PAGE_SIZE, 1, 0)
540