xref: /linux/arch/um/os-Linux/skas/process.c (revision eed4edda910fe34dfae8c6bfbcf57f4593a54295)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4  * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5  */
6 
7 #include <stdlib.h>
8 #include <stdbool.h>
9 #include <unistd.h>
10 #include <sched.h>
11 #include <errno.h>
12 #include <string.h>
13 #include <sys/mman.h>
14 #include <sys/wait.h>
15 #include <asm/unistd.h>
16 #include <as-layout.h>
17 #include <init.h>
18 #include <kern_util.h>
19 #include <mem.h>
20 #include <os.h>
21 #include <ptrace_user.h>
22 #include <registers.h>
23 #include <skas.h>
24 #include <sysdep/stub.h>
25 #include <linux/threads.h>
26 
27 int is_skas_winch(int pid, int fd, void *data)
28 {
29 	return pid == getpgrp();
30 }
31 
32 static const char *ptrace_reg_name(int idx)
33 {
34 #define R(n) case HOST_##n: return #n
35 
36 	switch (idx) {
37 #ifdef __x86_64__
38 	R(BX);
39 	R(CX);
40 	R(DI);
41 	R(SI);
42 	R(DX);
43 	R(BP);
44 	R(AX);
45 	R(R8);
46 	R(R9);
47 	R(R10);
48 	R(R11);
49 	R(R12);
50 	R(R13);
51 	R(R14);
52 	R(R15);
53 	R(ORIG_AX);
54 	R(CS);
55 	R(SS);
56 	R(EFLAGS);
57 #elif defined(__i386__)
58 	R(IP);
59 	R(SP);
60 	R(EFLAGS);
61 	R(AX);
62 	R(BX);
63 	R(CX);
64 	R(DX);
65 	R(SI);
66 	R(DI);
67 	R(BP);
68 	R(CS);
69 	R(SS);
70 	R(DS);
71 	R(FS);
72 	R(ES);
73 	R(GS);
74 	R(ORIG_AX);
75 #endif
76 	}
77 	return "";
78 }
79 
80 static int ptrace_dump_regs(int pid)
81 {
82 	unsigned long regs[MAX_REG_NR];
83 	int i;
84 
85 	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
86 		return -errno;
87 
88 	printk(UM_KERN_ERR "Stub registers -\n");
89 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
90 		const char *regname = ptrace_reg_name(i);
91 
92 		printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
93 	}
94 
95 	return 0;
96 }
97 
98 /*
99  * Signals that are OK to receive in the stub - we'll just continue it.
100  * SIGWINCH will happen when UML is inside a detached screen.
101  */
102 #define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
103 
104 /* Signals that the stub will finish with - anything else is an error */
105 #define STUB_DONE_MASK (1 << SIGTRAP)
106 
107 void wait_stub_done(int pid)
108 {
109 	int n, status, err;
110 
111 	while (1) {
112 		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
113 		if ((n < 0) || !WIFSTOPPED(status))
114 			goto bad_wait;
115 
116 		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
117 			break;
118 
119 		err = ptrace(PTRACE_CONT, pid, 0, 0);
120 		if (err) {
121 			printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
122 			       __func__, errno);
123 			fatal_sigsegv();
124 		}
125 	}
126 
127 	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
128 		return;
129 
130 bad_wait:
131 	err = ptrace_dump_regs(pid);
132 	if (err)
133 		printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
134 		       -err);
135 	printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
136 	       __func__, pid, n, errno, status);
137 	fatal_sigsegv();
138 }
139 
140 extern unsigned long current_stub_stack(void);
141 
142 static void get_skas_faultinfo(int pid, struct faultinfo *fi, unsigned long *aux_fp_regs)
143 {
144 	int err;
145 
146 	err = get_fp_registers(pid, aux_fp_regs);
147 	if (err < 0) {
148 		printk(UM_KERN_ERR "save_fp_registers returned %d\n",
149 		       err);
150 		fatal_sigsegv();
151 	}
152 	err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
153 	if (err) {
154 		printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
155 		       "errno = %d\n", pid, errno);
156 		fatal_sigsegv();
157 	}
158 	wait_stub_done(pid);
159 
160 	/*
161 	 * faultinfo is prepared by the stub_segv_handler at start of
162 	 * the stub stack page. We just have to copy it.
163 	 */
164 	memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
165 
166 	err = put_fp_registers(pid, aux_fp_regs);
167 	if (err < 0) {
168 		printk(UM_KERN_ERR "put_fp_registers returned %d\n",
169 		       err);
170 		fatal_sigsegv();
171 	}
172 }
173 
174 static void handle_segv(int pid, struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
175 {
176 	get_skas_faultinfo(pid, &regs->faultinfo, aux_fp_regs);
177 	segv(regs->faultinfo, 0, 1, NULL);
178 }
179 
180 static void handle_trap(int pid, struct uml_pt_regs *regs)
181 {
182 	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
183 		fatal_sigsegv();
184 
185 	handle_syscall(regs);
186 }
187 
188 extern char __syscall_stub_start[];
189 
190 /**
191  * userspace_tramp() - userspace trampoline
192  * @stack:	pointer to the new userspace stack page
193  *
194  * The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed.
195  * This function will run on a temporary stack page.
196  * It ptrace()'es itself, then
197  * Two pages are mapped into the userspace address space:
198  * - STUB_CODE (with EXEC), which contains the skas stub code
199  * - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel.
200  * Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process.
201  * And last the process stops itself to give control to the UML kernel for this userspace process.
202  *
203  * Return: Always zero, otherwise the current userspace process is ended with non null exit() call
204  */
205 static int userspace_tramp(void *stack)
206 {
207 	struct sigaction sa;
208 	void *addr;
209 	int fd;
210 	unsigned long long offset;
211 	unsigned long segv_handler = STUB_CODE +
212 				     (unsigned long) stub_segv_handler -
213 				     (unsigned long) __syscall_stub_start;
214 
215 	ptrace(PTRACE_TRACEME, 0, 0, 0);
216 
217 	signal(SIGTERM, SIG_DFL);
218 	signal(SIGWINCH, SIG_IGN);
219 
220 	fd = phys_mapping(uml_to_phys(__syscall_stub_start), &offset);
221 	addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
222 		      PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
223 	if (addr == MAP_FAILED) {
224 		os_info("mapping mmap stub at 0x%lx failed, errno = %d\n",
225 			STUB_CODE, errno);
226 		exit(1);
227 	}
228 
229 	fd = phys_mapping(uml_to_phys(stack), &offset);
230 	addr = mmap((void *) STUB_DATA,
231 		    STUB_DATA_PAGES * UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
232 		    MAP_FIXED | MAP_SHARED, fd, offset);
233 	if (addr == MAP_FAILED) {
234 		os_info("mapping segfault stack at 0x%lx failed, errno = %d\n",
235 			STUB_DATA, errno);
236 		exit(1);
237 	}
238 
239 	set_sigstack((void *) STUB_DATA, STUB_DATA_PAGES * UM_KERN_PAGE_SIZE);
240 	sigemptyset(&sa.sa_mask);
241 	sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
242 	sa.sa_sigaction = (void *) segv_handler;
243 	sa.sa_restorer = NULL;
244 	if (sigaction(SIGSEGV, &sa, NULL) < 0) {
245 		os_info("%s - setting SIGSEGV handler failed - errno = %d\n",
246 			__func__, errno);
247 		exit(1);
248 	}
249 
250 	kill(os_getpid(), SIGSTOP);
251 	return 0;
252 }
253 
254 int userspace_pid[NR_CPUS];
255 int kill_userspace_mm[NR_CPUS];
256 
257 /**
258  * start_userspace() - prepare a new userspace process
259  * @stub_stack:	pointer to the stub stack.
260  *
261  * Setups a new temporary stack page that is used while userspace_tramp() runs
262  * Clones the kernel process into a new userspace process, with FDs only.
263  *
264  * Return: When positive: the process id of the new userspace process,
265  *         when negative: an error number.
266  * FIXME: can PIDs become negative?!
267  */
268 int start_userspace(unsigned long stub_stack)
269 {
270 	void *stack;
271 	unsigned long sp;
272 	int pid, status, n, flags, err;
273 
274 	/* setup a temporary stack page */
275 	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
276 		     PROT_READ | PROT_WRITE | PROT_EXEC,
277 		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
278 	if (stack == MAP_FAILED) {
279 		err = -errno;
280 		printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
281 		       __func__, errno);
282 		return err;
283 	}
284 
285 	/* set stack pointer to the end of the stack page, so it can grow downwards */
286 	sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
287 
288 	flags = CLONE_FILES | SIGCHLD;
289 
290 	/* clone into new userspace process */
291 	pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
292 	if (pid < 0) {
293 		err = -errno;
294 		printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
295 		       __func__, errno);
296 		return err;
297 	}
298 
299 	do {
300 		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
301 		if (n < 0) {
302 			err = -errno;
303 			printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
304 			       __func__, errno);
305 			goto out_kill;
306 		}
307 	} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
308 
309 	if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
310 		err = -EINVAL;
311 		printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
312 		       __func__, status);
313 		goto out_kill;
314 	}
315 
316 	if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
317 		   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
318 		err = -errno;
319 		printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
320 		       __func__, errno);
321 		goto out_kill;
322 	}
323 
324 	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
325 		err = -errno;
326 		printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
327 		       __func__, errno);
328 		goto out_kill;
329 	}
330 
331 	return pid;
332 
333  out_kill:
334 	os_kill_ptraced_process(pid, 1);
335 	return err;
336 }
337 
338 void userspace(struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
339 {
340 	int err, status, op, pid = userspace_pid[0];
341 	siginfo_t si;
342 
343 	/* Handle any immediate reschedules or signals */
344 	interrupt_end();
345 
346 	while (1) {
347 		if (kill_userspace_mm[0])
348 			fatal_sigsegv();
349 
350 		/*
351 		 * This can legitimately fail if the process loads a
352 		 * bogus value into a segment register.  It will
353 		 * segfault and PTRACE_GETREGS will read that value
354 		 * out of the process.  However, PTRACE_SETREGS will
355 		 * fail.  In this case, there is nothing to do but
356 		 * just kill the process.
357 		 */
358 		if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
359 			printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
360 			       __func__, errno);
361 			fatal_sigsegv();
362 		}
363 
364 		if (put_fp_registers(pid, regs->fp)) {
365 			printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
366 			       __func__, errno);
367 			fatal_sigsegv();
368 		}
369 
370 		if (singlestepping())
371 			op = PTRACE_SYSEMU_SINGLESTEP;
372 		else
373 			op = PTRACE_SYSEMU;
374 
375 		if (ptrace(op, pid, 0, 0)) {
376 			printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
377 			       __func__, op, errno);
378 			fatal_sigsegv();
379 		}
380 
381 		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
382 		if (err < 0) {
383 			printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
384 			       __func__, errno);
385 			fatal_sigsegv();
386 		}
387 
388 		regs->is_user = 1;
389 		if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
390 			printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
391 			       __func__, errno);
392 			fatal_sigsegv();
393 		}
394 
395 		if (get_fp_registers(pid, regs->fp)) {
396 			printk(UM_KERN_ERR "%s -  get_fp_registers failed, errno = %d\n",
397 			       __func__, errno);
398 			fatal_sigsegv();
399 		}
400 
401 		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
402 
403 		if (WIFSTOPPED(status)) {
404 			int sig = WSTOPSIG(status);
405 
406 			/* These signal handlers need the si argument.
407 			 * The SIGIO and SIGALARM handlers which constitute the
408 			 * majority of invocations, do not use it.
409 			 */
410 			switch (sig) {
411 			case SIGSEGV:
412 			case SIGTRAP:
413 			case SIGILL:
414 			case SIGBUS:
415 			case SIGFPE:
416 			case SIGWINCH:
417 				ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
418 				break;
419 			}
420 
421 			switch (sig) {
422 			case SIGSEGV:
423 				if (PTRACE_FULL_FAULTINFO) {
424 					get_skas_faultinfo(pid,
425 							   &regs->faultinfo, aux_fp_regs);
426 					(*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
427 							     regs);
428 				}
429 				else handle_segv(pid, regs, aux_fp_regs);
430 				break;
431 			case SIGTRAP + 0x80:
432 				handle_trap(pid, regs);
433 				break;
434 			case SIGTRAP:
435 				relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
436 				break;
437 			case SIGALRM:
438 				break;
439 			case SIGIO:
440 			case SIGILL:
441 			case SIGBUS:
442 			case SIGFPE:
443 			case SIGWINCH:
444 				block_signals_trace();
445 				(*sig_info[sig])(sig, (struct siginfo *)&si, regs);
446 				unblock_signals_trace();
447 				break;
448 			default:
449 				printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
450 				       __func__, sig);
451 				fatal_sigsegv();
452 			}
453 			pid = userspace_pid[0];
454 			interrupt_end();
455 
456 			/* Avoid -ERESTARTSYS handling in host */
457 			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
458 				PT_SYSCALL_NR(regs->gp) = -1;
459 		}
460 	}
461 }
462 
463 static unsigned long thread_regs[MAX_REG_NR];
464 static unsigned long thread_fp_regs[FP_SIZE];
465 
466 static int __init init_thread_regs(void)
467 {
468 	get_safe_registers(thread_regs, thread_fp_regs);
469 	/* Set parent's instruction pointer to start of clone-stub */
470 	thread_regs[REGS_IP_INDEX] = STUB_CODE +
471 				(unsigned long) stub_clone_handler -
472 				(unsigned long) __syscall_stub_start;
473 	thread_regs[REGS_SP_INDEX] = STUB_DATA + STUB_DATA_PAGES * UM_KERN_PAGE_SIZE -
474 		sizeof(void *);
475 #ifdef __SIGNAL_FRAMESIZE
476 	thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
477 #endif
478 	return 0;
479 }
480 
481 __initcall(init_thread_regs);
482 
483 int copy_context_skas0(unsigned long new_stack, int pid)
484 {
485 	int err;
486 	unsigned long current_stack = current_stub_stack();
487 	struct stub_data *data = (struct stub_data *) current_stack;
488 	struct stub_data *child_data = (struct stub_data *) new_stack;
489 	unsigned long long new_offset;
490 	int new_fd = phys_mapping(uml_to_phys((void *)new_stack), &new_offset);
491 
492 	/*
493 	 * prepare offset and fd of child's stack as argument for parent's
494 	 * and child's mmap2 calls
495 	 */
496 	*data = ((struct stub_data) {
497 		.offset	= MMAP_OFFSET(new_offset),
498 		.fd     = new_fd,
499 		.parent_err = -ESRCH,
500 		.child_err = 0,
501 	});
502 
503 	*child_data = ((struct stub_data) {
504 		.child_err = -ESRCH,
505 	});
506 
507 	err = ptrace_setregs(pid, thread_regs);
508 	if (err < 0) {
509 		err = -errno;
510 		printk(UM_KERN_ERR "%s : PTRACE_SETREGS failed, pid = %d, errno = %d\n",
511 		      __func__, pid, -err);
512 		return err;
513 	}
514 
515 	err = put_fp_registers(pid, thread_fp_regs);
516 	if (err < 0) {
517 		printk(UM_KERN_ERR "%s : put_fp_registers failed, pid = %d, err = %d\n",
518 		       __func__, pid, err);
519 		return err;
520 	}
521 
522 	/*
523 	 * Wait, until parent has finished its work: read child's pid from
524 	 * parent's stack, and check, if bad result.
525 	 */
526 	err = ptrace(PTRACE_CONT, pid, 0, 0);
527 	if (err) {
528 		err = -errno;
529 		printk(UM_KERN_ERR "Failed to continue new process, pid = %d, errno = %d\n",
530 		       pid, errno);
531 		return err;
532 	}
533 
534 	wait_stub_done(pid);
535 
536 	pid = data->parent_err;
537 	if (pid < 0) {
538 		printk(UM_KERN_ERR "%s - stub-parent reports error %d\n",
539 		      __func__, -pid);
540 		return pid;
541 	}
542 
543 	/*
544 	 * Wait, until child has finished too: read child's result from
545 	 * child's stack and check it.
546 	 */
547 	wait_stub_done(pid);
548 	if (child_data->child_err != STUB_DATA) {
549 		printk(UM_KERN_ERR "%s - stub-child %d reports error %ld\n",
550 		       __func__, pid, data->child_err);
551 		err = data->child_err;
552 		goto out_kill;
553 	}
554 
555 	if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
556 		   (void *)PTRACE_O_TRACESYSGOOD) < 0) {
557 		err = -errno;
558 		printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
559 		       __func__, errno);
560 		goto out_kill;
561 	}
562 
563 	return pid;
564 
565  out_kill:
566 	os_kill_ptraced_process(pid, 1);
567 	return err;
568 }
569 
570 void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
571 {
572 	(*buf)[0].JB_IP = (unsigned long) handler;
573 	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
574 		sizeof(void *);
575 }
576 
577 #define INIT_JMP_NEW_THREAD 0
578 #define INIT_JMP_CALLBACK 1
579 #define INIT_JMP_HALT 2
580 #define INIT_JMP_REBOOT 3
581 
582 void switch_threads(jmp_buf *me, jmp_buf *you)
583 {
584 	if (UML_SETJMP(me) == 0)
585 		UML_LONGJMP(you, 1);
586 }
587 
588 static jmp_buf initial_jmpbuf;
589 
590 /* XXX Make these percpu */
591 static void (*cb_proc)(void *arg);
592 static void *cb_arg;
593 static jmp_buf *cb_back;
594 
595 int start_idle_thread(void *stack, jmp_buf *switch_buf)
596 {
597 	int n;
598 
599 	set_handler(SIGWINCH);
600 
601 	/*
602 	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
603 	 * and restore signals, with the possible side-effect of
604 	 * trying to handle any signals which came when they were
605 	 * blocked, which can't be done on this stack.
606 	 * Signals must be blocked when jumping back here and restored
607 	 * after returning to the jumper.
608 	 */
609 	n = setjmp(initial_jmpbuf);
610 	switch (n) {
611 	case INIT_JMP_NEW_THREAD:
612 		(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
613 		(*switch_buf)[0].JB_SP = (unsigned long) stack +
614 			UM_THREAD_SIZE - sizeof(void *);
615 		break;
616 	case INIT_JMP_CALLBACK:
617 		(*cb_proc)(cb_arg);
618 		longjmp(*cb_back, 1);
619 		break;
620 	case INIT_JMP_HALT:
621 		kmalloc_ok = 0;
622 		return 0;
623 	case INIT_JMP_REBOOT:
624 		kmalloc_ok = 0;
625 		return 1;
626 	default:
627 		printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
628 		       __func__, n);
629 		fatal_sigsegv();
630 	}
631 	longjmp(*switch_buf, 1);
632 
633 	/* unreachable */
634 	printk(UM_KERN_ERR "impossible long jump!");
635 	fatal_sigsegv();
636 	return 0;
637 }
638 
639 void initial_thread_cb_skas(void (*proc)(void *), void *arg)
640 {
641 	jmp_buf here;
642 
643 	cb_proc = proc;
644 	cb_arg = arg;
645 	cb_back = &here;
646 
647 	block_signals_trace();
648 	if (UML_SETJMP(&here) == 0)
649 		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
650 	unblock_signals_trace();
651 
652 	cb_proc = NULL;
653 	cb_arg = NULL;
654 	cb_back = NULL;
655 }
656 
657 void halt_skas(void)
658 {
659 	block_signals_trace();
660 	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
661 }
662 
663 static bool noreboot;
664 
665 static int __init noreboot_cmd_param(char *str, int *add)
666 {
667 	noreboot = true;
668 	return 0;
669 }
670 
671 __uml_setup("noreboot", noreboot_cmd_param,
672 "noreboot\n"
673 "    Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
674 "    This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
675 "    crashes in CI\n");
676 
677 void reboot_skas(void)
678 {
679 	block_signals_trace();
680 	UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
681 }
682 
683 void __switch_mm(struct mm_id *mm_idp)
684 {
685 	userspace_pid[0] = mm_idp->u.pid;
686 	kill_userspace_mm[0] = mm_idp->kill;
687 }
688