xref: /linux/arch/um/os-Linux/skas/process.c (revision a674fefd17324fc467f043568e738b80ca22f2b4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4  * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5  */
6 
7 #include <stdlib.h>
8 #include <stdbool.h>
9 #include <unistd.h>
10 #include <sched.h>
11 #include <errno.h>
12 #include <string.h>
13 #include <sys/mman.h>
14 #include <sys/wait.h>
15 #include <asm/unistd.h>
16 #include <as-layout.h>
17 #include <init.h>
18 #include <kern_util.h>
19 #include <mem.h>
20 #include <os.h>
21 #include <ptrace_user.h>
22 #include <registers.h>
23 #include <skas.h>
24 #include <sysdep/stub.h>
25 #include <linux/threads.h>
26 #include "../internal.h"
27 
28 int is_skas_winch(int pid, int fd, void *data)
29 {
30 	return pid == getpgrp();
31 }
32 
33 static const char *ptrace_reg_name(int idx)
34 {
35 #define R(n) case HOST_##n: return #n
36 
37 	switch (idx) {
38 #ifdef __x86_64__
39 	R(BX);
40 	R(CX);
41 	R(DI);
42 	R(SI);
43 	R(DX);
44 	R(BP);
45 	R(AX);
46 	R(R8);
47 	R(R9);
48 	R(R10);
49 	R(R11);
50 	R(R12);
51 	R(R13);
52 	R(R14);
53 	R(R15);
54 	R(ORIG_AX);
55 	R(CS);
56 	R(SS);
57 	R(EFLAGS);
58 #elif defined(__i386__)
59 	R(IP);
60 	R(SP);
61 	R(EFLAGS);
62 	R(AX);
63 	R(BX);
64 	R(CX);
65 	R(DX);
66 	R(SI);
67 	R(DI);
68 	R(BP);
69 	R(CS);
70 	R(SS);
71 	R(DS);
72 	R(FS);
73 	R(ES);
74 	R(GS);
75 	R(ORIG_AX);
76 #endif
77 	}
78 	return "";
79 }
80 
81 static int ptrace_dump_regs(int pid)
82 {
83 	unsigned long regs[MAX_REG_NR];
84 	int i;
85 
86 	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
87 		return -errno;
88 
89 	printk(UM_KERN_ERR "Stub registers -\n");
90 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
91 		const char *regname = ptrace_reg_name(i);
92 
93 		printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
94 	}
95 
96 	return 0;
97 }
98 
99 /*
100  * Signals that are OK to receive in the stub - we'll just continue it.
101  * SIGWINCH will happen when UML is inside a detached screen.
102  */
103 #define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
104 
105 /* Signals that the stub will finish with - anything else is an error */
106 #define STUB_DONE_MASK (1 << SIGTRAP)
107 
108 void wait_stub_done(int pid)
109 {
110 	int n, status, err;
111 
112 	while (1) {
113 		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
114 		if ((n < 0) || !WIFSTOPPED(status))
115 			goto bad_wait;
116 
117 		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
118 			break;
119 
120 		err = ptrace(PTRACE_CONT, pid, 0, 0);
121 		if (err) {
122 			printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
123 			       __func__, errno);
124 			fatal_sigsegv();
125 		}
126 	}
127 
128 	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
129 		return;
130 
131 bad_wait:
132 	err = ptrace_dump_regs(pid);
133 	if (err)
134 		printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
135 		       -err);
136 	printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
137 	       __func__, pid, n, errno, status);
138 	fatal_sigsegv();
139 }
140 
141 extern unsigned long current_stub_stack(void);
142 
143 static void get_skas_faultinfo(int pid, struct faultinfo *fi, unsigned long *aux_fp_regs)
144 {
145 	int err;
146 
147 	err = get_fp_registers(pid, aux_fp_regs);
148 	if (err < 0) {
149 		printk(UM_KERN_ERR "save_fp_registers returned %d\n",
150 		       err);
151 		fatal_sigsegv();
152 	}
153 	err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
154 	if (err) {
155 		printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
156 		       "errno = %d\n", pid, errno);
157 		fatal_sigsegv();
158 	}
159 	wait_stub_done(pid);
160 
161 	/*
162 	 * faultinfo is prepared by the stub_segv_handler at start of
163 	 * the stub stack page. We just have to copy it.
164 	 */
165 	memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
166 
167 	err = put_fp_registers(pid, aux_fp_regs);
168 	if (err < 0) {
169 		printk(UM_KERN_ERR "put_fp_registers returned %d\n",
170 		       err);
171 		fatal_sigsegv();
172 	}
173 }
174 
175 static void handle_segv(int pid, struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
176 {
177 	get_skas_faultinfo(pid, &regs->faultinfo, aux_fp_regs);
178 	segv(regs->faultinfo, 0, 1, NULL);
179 }
180 
181 static void handle_trap(int pid, struct uml_pt_regs *regs)
182 {
183 	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
184 		fatal_sigsegv();
185 
186 	handle_syscall(regs);
187 }
188 
189 extern char __syscall_stub_start[];
190 
191 /**
192  * userspace_tramp() - userspace trampoline
193  * @stack:	pointer to the new userspace stack page
194  *
195  * The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed.
196  * This function will run on a temporary stack page.
197  * It ptrace()'es itself, then
198  * Two pages are mapped into the userspace address space:
199  * - STUB_CODE (with EXEC), which contains the skas stub code
200  * - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel.
201  * Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process.
202  * And last the process stops itself to give control to the UML kernel for this userspace process.
203  *
204  * Return: Always zero, otherwise the current userspace process is ended with non null exit() call
205  */
206 static int userspace_tramp(void *stack)
207 {
208 	struct sigaction sa;
209 	void *addr;
210 	int fd;
211 	unsigned long long offset;
212 	unsigned long segv_handler = STUB_CODE +
213 				     (unsigned long) stub_segv_handler -
214 				     (unsigned long) __syscall_stub_start;
215 
216 	ptrace(PTRACE_TRACEME, 0, 0, 0);
217 
218 	signal(SIGTERM, SIG_DFL);
219 	signal(SIGWINCH, SIG_IGN);
220 
221 	fd = phys_mapping(uml_to_phys(__syscall_stub_start), &offset);
222 	addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
223 		      PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
224 	if (addr == MAP_FAILED) {
225 		os_info("mapping mmap stub at 0x%lx failed, errno = %d\n",
226 			STUB_CODE, errno);
227 		exit(1);
228 	}
229 
230 	fd = phys_mapping(uml_to_phys(stack), &offset);
231 	addr = mmap((void *) STUB_DATA,
232 		    STUB_DATA_PAGES * UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
233 		    MAP_FIXED | MAP_SHARED, fd, offset);
234 	if (addr == MAP_FAILED) {
235 		os_info("mapping segfault stack at 0x%lx failed, errno = %d\n",
236 			STUB_DATA, errno);
237 		exit(1);
238 	}
239 
240 	set_sigstack((void *) STUB_DATA, STUB_DATA_PAGES * UM_KERN_PAGE_SIZE);
241 	sigemptyset(&sa.sa_mask);
242 	sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
243 	sa.sa_sigaction = (void *) segv_handler;
244 	sa.sa_restorer = NULL;
245 	if (sigaction(SIGSEGV, &sa, NULL) < 0) {
246 		os_info("%s - setting SIGSEGV handler failed - errno = %d\n",
247 			__func__, errno);
248 		exit(1);
249 	}
250 
251 	kill(os_getpid(), SIGSTOP);
252 	return 0;
253 }
254 
255 int userspace_pid[NR_CPUS];
256 int kill_userspace_mm[NR_CPUS];
257 
258 /**
259  * start_userspace() - prepare a new userspace process
260  * @stub_stack:	pointer to the stub stack.
261  *
262  * Setups a new temporary stack page that is used while userspace_tramp() runs
263  * Clones the kernel process into a new userspace process, with FDs only.
264  *
265  * Return: When positive: the process id of the new userspace process,
266  *         when negative: an error number.
267  * FIXME: can PIDs become negative?!
268  */
269 int start_userspace(unsigned long stub_stack)
270 {
271 	void *stack;
272 	unsigned long sp;
273 	int pid, status, n, flags, err;
274 
275 	/* setup a temporary stack page */
276 	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
277 		     PROT_READ | PROT_WRITE | PROT_EXEC,
278 		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
279 	if (stack == MAP_FAILED) {
280 		err = -errno;
281 		printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
282 		       __func__, errno);
283 		return err;
284 	}
285 
286 	/* set stack pointer to the end of the stack page, so it can grow downwards */
287 	sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
288 
289 	flags = CLONE_FILES | SIGCHLD;
290 
291 	/* clone into new userspace process */
292 	pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
293 	if (pid < 0) {
294 		err = -errno;
295 		printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
296 		       __func__, errno);
297 		return err;
298 	}
299 
300 	do {
301 		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
302 		if (n < 0) {
303 			err = -errno;
304 			printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
305 			       __func__, errno);
306 			goto out_kill;
307 		}
308 	} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
309 
310 	if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
311 		err = -EINVAL;
312 		printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
313 		       __func__, status);
314 		goto out_kill;
315 	}
316 
317 	if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
318 		   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
319 		err = -errno;
320 		printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
321 		       __func__, errno);
322 		goto out_kill;
323 	}
324 
325 	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
326 		err = -errno;
327 		printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
328 		       __func__, errno);
329 		goto out_kill;
330 	}
331 
332 	return pid;
333 
334  out_kill:
335 	os_kill_ptraced_process(pid, 1);
336 	return err;
337 }
338 
339 void userspace(struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
340 {
341 	int err, status, op, pid = userspace_pid[0];
342 	siginfo_t si;
343 
344 	/* Handle any immediate reschedules or signals */
345 	interrupt_end();
346 
347 	while (1) {
348 		if (kill_userspace_mm[0])
349 			fatal_sigsegv();
350 
351 		/*
352 		 * This can legitimately fail if the process loads a
353 		 * bogus value into a segment register.  It will
354 		 * segfault and PTRACE_GETREGS will read that value
355 		 * out of the process.  However, PTRACE_SETREGS will
356 		 * fail.  In this case, there is nothing to do but
357 		 * just kill the process.
358 		 */
359 		if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
360 			printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
361 			       __func__, errno);
362 			fatal_sigsegv();
363 		}
364 
365 		if (put_fp_registers(pid, regs->fp)) {
366 			printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
367 			       __func__, errno);
368 			fatal_sigsegv();
369 		}
370 
371 		if (singlestepping())
372 			op = PTRACE_SYSEMU_SINGLESTEP;
373 		else
374 			op = PTRACE_SYSEMU;
375 
376 		if (ptrace(op, pid, 0, 0)) {
377 			printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
378 			       __func__, op, errno);
379 			fatal_sigsegv();
380 		}
381 
382 		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
383 		if (err < 0) {
384 			printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
385 			       __func__, errno);
386 			fatal_sigsegv();
387 		}
388 
389 		regs->is_user = 1;
390 		if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
391 			printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
392 			       __func__, errno);
393 			fatal_sigsegv();
394 		}
395 
396 		if (get_fp_registers(pid, regs->fp)) {
397 			printk(UM_KERN_ERR "%s -  get_fp_registers failed, errno = %d\n",
398 			       __func__, errno);
399 			fatal_sigsegv();
400 		}
401 
402 		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
403 
404 		if (WIFSTOPPED(status)) {
405 			int sig = WSTOPSIG(status);
406 
407 			/* These signal handlers need the si argument.
408 			 * The SIGIO and SIGALARM handlers which constitute the
409 			 * majority of invocations, do not use it.
410 			 */
411 			switch (sig) {
412 			case SIGSEGV:
413 			case SIGTRAP:
414 			case SIGILL:
415 			case SIGBUS:
416 			case SIGFPE:
417 			case SIGWINCH:
418 				ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
419 				break;
420 			}
421 
422 			switch (sig) {
423 			case SIGSEGV:
424 				if (PTRACE_FULL_FAULTINFO) {
425 					get_skas_faultinfo(pid,
426 							   &regs->faultinfo, aux_fp_regs);
427 					(*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
428 							     regs);
429 				}
430 				else handle_segv(pid, regs, aux_fp_regs);
431 				break;
432 			case SIGTRAP + 0x80:
433 				handle_trap(pid, regs);
434 				break;
435 			case SIGTRAP:
436 				relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
437 				break;
438 			case SIGALRM:
439 				break;
440 			case SIGIO:
441 			case SIGILL:
442 			case SIGBUS:
443 			case SIGFPE:
444 			case SIGWINCH:
445 				block_signals_trace();
446 				(*sig_info[sig])(sig, (struct siginfo *)&si, regs);
447 				unblock_signals_trace();
448 				break;
449 			default:
450 				printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
451 				       __func__, sig);
452 				fatal_sigsegv();
453 			}
454 			pid = userspace_pid[0];
455 			interrupt_end();
456 
457 			/* Avoid -ERESTARTSYS handling in host */
458 			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
459 				PT_SYSCALL_NR(regs->gp) = -1;
460 		}
461 	}
462 }
463 
464 static unsigned long thread_regs[MAX_REG_NR];
465 static unsigned long thread_fp_regs[FP_SIZE];
466 
467 static int __init init_thread_regs(void)
468 {
469 	get_safe_registers(thread_regs, thread_fp_regs);
470 	/* Set parent's instruction pointer to start of clone-stub */
471 	thread_regs[REGS_IP_INDEX] = STUB_CODE +
472 				(unsigned long) stub_clone_handler -
473 				(unsigned long) __syscall_stub_start;
474 	thread_regs[REGS_SP_INDEX] = STUB_DATA + STUB_DATA_PAGES * UM_KERN_PAGE_SIZE -
475 		sizeof(void *);
476 #ifdef __SIGNAL_FRAMESIZE
477 	thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
478 #endif
479 	return 0;
480 }
481 
482 __initcall(init_thread_regs);
483 
484 int copy_context_skas0(unsigned long new_stack, int pid)
485 {
486 	int err;
487 	unsigned long current_stack = current_stub_stack();
488 	struct stub_data *data = (struct stub_data *) current_stack;
489 	struct stub_data *child_data = (struct stub_data *) new_stack;
490 	unsigned long long new_offset;
491 	int new_fd = phys_mapping(uml_to_phys((void *)new_stack), &new_offset);
492 
493 	/*
494 	 * prepare offset and fd of child's stack as argument for parent's
495 	 * and child's mmap2 calls
496 	 */
497 	*data = ((struct stub_data) {
498 		.offset	= MMAP_OFFSET(new_offset),
499 		.fd     = new_fd,
500 		.parent_err = -ESRCH,
501 		.child_err = 0,
502 	});
503 
504 	*child_data = ((struct stub_data) {
505 		.child_err = -ESRCH,
506 	});
507 
508 	err = ptrace_setregs(pid, thread_regs);
509 	if (err < 0) {
510 		err = -errno;
511 		printk(UM_KERN_ERR "%s : PTRACE_SETREGS failed, pid = %d, errno = %d\n",
512 		      __func__, pid, -err);
513 		return err;
514 	}
515 
516 	err = put_fp_registers(pid, thread_fp_regs);
517 	if (err < 0) {
518 		printk(UM_KERN_ERR "%s : put_fp_registers failed, pid = %d, err = %d\n",
519 		       __func__, pid, err);
520 		return err;
521 	}
522 
523 	/*
524 	 * Wait, until parent has finished its work: read child's pid from
525 	 * parent's stack, and check, if bad result.
526 	 */
527 	err = ptrace(PTRACE_CONT, pid, 0, 0);
528 	if (err) {
529 		err = -errno;
530 		printk(UM_KERN_ERR "Failed to continue new process, pid = %d, errno = %d\n",
531 		       pid, errno);
532 		return err;
533 	}
534 
535 	wait_stub_done(pid);
536 
537 	pid = data->parent_err;
538 	if (pid < 0) {
539 		printk(UM_KERN_ERR "%s - stub-parent reports error %d\n",
540 		      __func__, -pid);
541 		return pid;
542 	}
543 
544 	/*
545 	 * Wait, until child has finished too: read child's result from
546 	 * child's stack and check it.
547 	 */
548 	wait_stub_done(pid);
549 	if (child_data->child_err != STUB_DATA) {
550 		printk(UM_KERN_ERR "%s - stub-child %d reports error %ld\n",
551 		       __func__, pid, data->child_err);
552 		err = data->child_err;
553 		goto out_kill;
554 	}
555 
556 	if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
557 		   (void *)PTRACE_O_TRACESYSGOOD) < 0) {
558 		err = -errno;
559 		printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
560 		       __func__, errno);
561 		goto out_kill;
562 	}
563 
564 	return pid;
565 
566  out_kill:
567 	os_kill_ptraced_process(pid, 1);
568 	return err;
569 }
570 
571 void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
572 {
573 	(*buf)[0].JB_IP = (unsigned long) handler;
574 	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
575 		sizeof(void *);
576 }
577 
578 #define INIT_JMP_NEW_THREAD 0
579 #define INIT_JMP_CALLBACK 1
580 #define INIT_JMP_HALT 2
581 #define INIT_JMP_REBOOT 3
582 
583 void switch_threads(jmp_buf *me, jmp_buf *you)
584 {
585 	if (UML_SETJMP(me) == 0)
586 		UML_LONGJMP(you, 1);
587 }
588 
589 static jmp_buf initial_jmpbuf;
590 
591 /* XXX Make these percpu */
592 static void (*cb_proc)(void *arg);
593 static void *cb_arg;
594 static jmp_buf *cb_back;
595 
596 int start_idle_thread(void *stack, jmp_buf *switch_buf)
597 {
598 	int n;
599 
600 	set_handler(SIGWINCH);
601 
602 	/*
603 	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
604 	 * and restore signals, with the possible side-effect of
605 	 * trying to handle any signals which came when they were
606 	 * blocked, which can't be done on this stack.
607 	 * Signals must be blocked when jumping back here and restored
608 	 * after returning to the jumper.
609 	 */
610 	n = setjmp(initial_jmpbuf);
611 	switch (n) {
612 	case INIT_JMP_NEW_THREAD:
613 		(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
614 		(*switch_buf)[0].JB_SP = (unsigned long) stack +
615 			UM_THREAD_SIZE - sizeof(void *);
616 		break;
617 	case INIT_JMP_CALLBACK:
618 		(*cb_proc)(cb_arg);
619 		longjmp(*cb_back, 1);
620 		break;
621 	case INIT_JMP_HALT:
622 		kmalloc_ok = 0;
623 		return 0;
624 	case INIT_JMP_REBOOT:
625 		kmalloc_ok = 0;
626 		return 1;
627 	default:
628 		printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
629 		       __func__, n);
630 		fatal_sigsegv();
631 	}
632 	longjmp(*switch_buf, 1);
633 
634 	/* unreachable */
635 	printk(UM_KERN_ERR "impossible long jump!");
636 	fatal_sigsegv();
637 	return 0;
638 }
639 
640 void initial_thread_cb_skas(void (*proc)(void *), void *arg)
641 {
642 	jmp_buf here;
643 
644 	cb_proc = proc;
645 	cb_arg = arg;
646 	cb_back = &here;
647 
648 	block_signals_trace();
649 	if (UML_SETJMP(&here) == 0)
650 		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
651 	unblock_signals_trace();
652 
653 	cb_proc = NULL;
654 	cb_arg = NULL;
655 	cb_back = NULL;
656 }
657 
658 void halt_skas(void)
659 {
660 	block_signals_trace();
661 	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
662 }
663 
664 static bool noreboot;
665 
666 static int __init noreboot_cmd_param(char *str, int *add)
667 {
668 	noreboot = true;
669 	return 0;
670 }
671 
672 __uml_setup("noreboot", noreboot_cmd_param,
673 "noreboot\n"
674 "    Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
675 "    This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
676 "    crashes in CI\n");
677 
678 void reboot_skas(void)
679 {
680 	block_signals_trace();
681 	UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
682 }
683 
684 void __switch_mm(struct mm_id *mm_idp)
685 {
686 	userspace_pid[0] = mm_idp->u.pid;
687 	kill_userspace_mm[0] = mm_idp->kill;
688 }
689