xref: /linux/arch/um/os-Linux/skas/process.c (revision 9dbbc3b9d09d6deba9f3b9e1d5b355032ed46a75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4  * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5  */
6 
7 #include <stdlib.h>
8 #include <unistd.h>
9 #include <sched.h>
10 #include <errno.h>
11 #include <string.h>
12 #include <sys/mman.h>
13 #include <sys/wait.h>
14 #include <asm/unistd.h>
15 #include <as-layout.h>
16 #include <init.h>
17 #include <kern_util.h>
18 #include <mem.h>
19 #include <os.h>
20 #include <ptrace_user.h>
21 #include <registers.h>
22 #include <skas.h>
23 #include <sysdep/stub.h>
24 #include <linux/threads.h>
25 
26 int is_skas_winch(int pid, int fd, void *data)
27 {
28 	return pid == getpgrp();
29 }
30 
31 static const char *ptrace_reg_name(int idx)
32 {
33 #define R(n) case HOST_##n: return #n
34 
35 	switch (idx) {
36 #ifdef __x86_64__
37 	R(BX);
38 	R(CX);
39 	R(DI);
40 	R(SI);
41 	R(DX);
42 	R(BP);
43 	R(AX);
44 	R(R8);
45 	R(R9);
46 	R(R10);
47 	R(R11);
48 	R(R12);
49 	R(R13);
50 	R(R14);
51 	R(R15);
52 	R(ORIG_AX);
53 	R(CS);
54 	R(SS);
55 	R(EFLAGS);
56 #elif defined(__i386__)
57 	R(IP);
58 	R(SP);
59 	R(EFLAGS);
60 	R(AX);
61 	R(BX);
62 	R(CX);
63 	R(DX);
64 	R(SI);
65 	R(DI);
66 	R(BP);
67 	R(CS);
68 	R(SS);
69 	R(DS);
70 	R(FS);
71 	R(ES);
72 	R(GS);
73 	R(ORIG_AX);
74 #endif
75 	}
76 	return "";
77 }
78 
79 static int ptrace_dump_regs(int pid)
80 {
81 	unsigned long regs[MAX_REG_NR];
82 	int i;
83 
84 	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
85 		return -errno;
86 
87 	printk(UM_KERN_ERR "Stub registers -\n");
88 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
89 		const char *regname = ptrace_reg_name(i);
90 
91 		printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
92 	}
93 
94 	return 0;
95 }
96 
97 /*
98  * Signals that are OK to receive in the stub - we'll just continue it.
99  * SIGWINCH will happen when UML is inside a detached screen.
100  */
101 #define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
102 
103 /* Signals that the stub will finish with - anything else is an error */
104 #define STUB_DONE_MASK (1 << SIGTRAP)
105 
106 void wait_stub_done(int pid)
107 {
108 	int n, status, err;
109 
110 	while (1) {
111 		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
112 		if ((n < 0) || !WIFSTOPPED(status))
113 			goto bad_wait;
114 
115 		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
116 			break;
117 
118 		err = ptrace(PTRACE_CONT, pid, 0, 0);
119 		if (err) {
120 			printk(UM_KERN_ERR "wait_stub_done : continue failed, "
121 			       "errno = %d\n", errno);
122 			fatal_sigsegv();
123 		}
124 	}
125 
126 	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
127 		return;
128 
129 bad_wait:
130 	err = ptrace_dump_regs(pid);
131 	if (err)
132 		printk(UM_KERN_ERR "Failed to get registers from stub, "
133 		       "errno = %d\n", -err);
134 	printk(UM_KERN_ERR "wait_stub_done : failed to wait for SIGTRAP, "
135 	       "pid = %d, n = %d, errno = %d, status = 0x%x\n", pid, n, errno,
136 	       status);
137 	fatal_sigsegv();
138 }
139 
140 extern unsigned long current_stub_stack(void);
141 
142 static void get_skas_faultinfo(int pid, struct faultinfo *fi, unsigned long *aux_fp_regs)
143 {
144 	int err;
145 
146 	err = get_fp_registers(pid, aux_fp_regs);
147 	if (err < 0) {
148 		printk(UM_KERN_ERR "save_fp_registers returned %d\n",
149 		       err);
150 		fatal_sigsegv();
151 	}
152 	err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
153 	if (err) {
154 		printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
155 		       "errno = %d\n", pid, errno);
156 		fatal_sigsegv();
157 	}
158 	wait_stub_done(pid);
159 
160 	/*
161 	 * faultinfo is prepared by the stub_segv_handler at start of
162 	 * the stub stack page. We just have to copy it.
163 	 */
164 	memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
165 
166 	err = put_fp_registers(pid, aux_fp_regs);
167 	if (err < 0) {
168 		printk(UM_KERN_ERR "put_fp_registers returned %d\n",
169 		       err);
170 		fatal_sigsegv();
171 	}
172 }
173 
174 static void handle_segv(int pid, struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
175 {
176 	get_skas_faultinfo(pid, &regs->faultinfo, aux_fp_regs);
177 	segv(regs->faultinfo, 0, 1, NULL);
178 }
179 
180 /*
181  * To use the same value of using_sysemu as the caller, ask it that value
182  * (in local_using_sysemu
183  */
184 static void handle_trap(int pid, struct uml_pt_regs *regs,
185 			int local_using_sysemu)
186 {
187 	int err, status;
188 
189 	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
190 		fatal_sigsegv();
191 
192 	if (!local_using_sysemu)
193 	{
194 		err = ptrace(PTRACE_POKEUSER, pid, PT_SYSCALL_NR_OFFSET,
195 			     __NR_getpid);
196 		if (err < 0) {
197 			printk(UM_KERN_ERR "handle_trap - nullifying syscall "
198 			       "failed, errno = %d\n", errno);
199 			fatal_sigsegv();
200 		}
201 
202 		err = ptrace(PTRACE_SYSCALL, pid, 0, 0);
203 		if (err < 0) {
204 			printk(UM_KERN_ERR "handle_trap - continuing to end of "
205 			       "syscall failed, errno = %d\n", errno);
206 			fatal_sigsegv();
207 		}
208 
209 		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
210 		if ((err < 0) || !WIFSTOPPED(status) ||
211 		    (WSTOPSIG(status) != SIGTRAP + 0x80)) {
212 			err = ptrace_dump_regs(pid);
213 			if (err)
214 				printk(UM_KERN_ERR "Failed to get registers "
215 				       "from process, errno = %d\n", -err);
216 			printk(UM_KERN_ERR "handle_trap - failed to wait at "
217 			       "end of syscall, errno = %d, status = %d\n",
218 			       errno, status);
219 			fatal_sigsegv();
220 		}
221 	}
222 
223 	handle_syscall(regs);
224 }
225 
226 extern char __syscall_stub_start[];
227 
228 /**
229  * userspace_tramp() - userspace trampoline
230  * @stack:	pointer to the new userspace stack page, can be NULL, if? FIXME:
231  *
232  * The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed.
233  * This function will run on a temporary stack page.
234  * It ptrace()'es itself, then
235  * Two pages are mapped into the userspace address space:
236  * - STUB_CODE (with EXEC), which contains the skas stub code
237  * - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel.
238  * Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process.
239  * And last the process stops itself to give control to the UML kernel for this userspace process.
240  *
241  * Return: Always zero, otherwise the current userspace process is ended with non null exit() call
242  */
243 static int userspace_tramp(void *stack)
244 {
245 	void *addr;
246 	int fd;
247 	unsigned long long offset;
248 
249 	ptrace(PTRACE_TRACEME, 0, 0, 0);
250 
251 	signal(SIGTERM, SIG_DFL);
252 	signal(SIGWINCH, SIG_IGN);
253 
254 	fd = phys_mapping(to_phys(__syscall_stub_start), &offset);
255 	addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
256 		      PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
257 	if (addr == MAP_FAILED) {
258 		printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, "
259 		       "errno = %d\n", STUB_CODE, errno);
260 		exit(1);
261 	}
262 
263 	if (stack != NULL) {
264 		fd = phys_mapping(to_phys(stack), &offset);
265 		addr = mmap((void *) STUB_DATA,
266 			    UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
267 			    MAP_FIXED | MAP_SHARED, fd, offset);
268 		if (addr == MAP_FAILED) {
269 			printk(UM_KERN_ERR "mapping segfault stack "
270 			       "at 0x%lx failed, errno = %d\n",
271 			       STUB_DATA, errno);
272 			exit(1);
273 		}
274 	}
275 	if (stack != NULL) {
276 		struct sigaction sa;
277 
278 		unsigned long v = STUB_CODE +
279 				  (unsigned long) stub_segv_handler -
280 				  (unsigned long) __syscall_stub_start;
281 
282 		set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE);
283 		sigemptyset(&sa.sa_mask);
284 		sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
285 		sa.sa_sigaction = (void *) v;
286 		sa.sa_restorer = NULL;
287 		if (sigaction(SIGSEGV, &sa, NULL) < 0) {
288 			printk(UM_KERN_ERR "userspace_tramp - setting SIGSEGV "
289 			       "handler failed - errno = %d\n", errno);
290 			exit(1);
291 		}
292 	}
293 
294 	kill(os_getpid(), SIGSTOP);
295 	return 0;
296 }
297 
298 int userspace_pid[NR_CPUS];
299 int kill_userspace_mm[NR_CPUS];
300 
301 /**
302  * start_userspace() - prepare a new userspace process
303  * @stub_stack:	pointer to the stub stack. Can be NULL, if? FIXME:
304  *
305  * Setups a new temporary stack page that is used while userspace_tramp() runs
306  * Clones the kernel process into a new userspace process, with FDs only.
307  *
308  * Return: When positive: the process id of the new userspace process,
309  *         when negative: an error number.
310  * FIXME: can PIDs become negative?!
311  */
312 int start_userspace(unsigned long stub_stack)
313 {
314 	void *stack;
315 	unsigned long sp;
316 	int pid, status, n, flags, err;
317 
318 	/* setup a temporary stack page */
319 	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
320 		     PROT_READ | PROT_WRITE | PROT_EXEC,
321 		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
322 	if (stack == MAP_FAILED) {
323 		err = -errno;
324 		printk(UM_KERN_ERR "start_userspace : mmap failed, "
325 		       "errno = %d\n", errno);
326 		return err;
327 	}
328 
329 	/* set stack pointer to the end of the stack page, so it can grow downwards */
330 	sp = (unsigned long) stack + UM_KERN_PAGE_SIZE - sizeof(void *);
331 
332 	flags = CLONE_FILES | SIGCHLD;
333 
334 	/* clone into new userspace process */
335 	pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
336 	if (pid < 0) {
337 		err = -errno;
338 		printk(UM_KERN_ERR "start_userspace : clone failed, "
339 		       "errno = %d\n", errno);
340 		return err;
341 	}
342 
343 	do {
344 		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
345 		if (n < 0) {
346 			err = -errno;
347 			printk(UM_KERN_ERR "start_userspace : wait failed, "
348 			       "errno = %d\n", errno);
349 			goto out_kill;
350 		}
351 	} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
352 
353 	if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
354 		err = -EINVAL;
355 		printk(UM_KERN_ERR "start_userspace : expected SIGSTOP, got "
356 		       "status = %d\n", status);
357 		goto out_kill;
358 	}
359 
360 	if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
361 		   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
362 		err = -errno;
363 		printk(UM_KERN_ERR "start_userspace : PTRACE_OLDSETOPTIONS "
364 		       "failed, errno = %d\n", errno);
365 		goto out_kill;
366 	}
367 
368 	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
369 		err = -errno;
370 		printk(UM_KERN_ERR "start_userspace : munmap failed, "
371 		       "errno = %d\n", errno);
372 		goto out_kill;
373 	}
374 
375 	return pid;
376 
377  out_kill:
378 	os_kill_ptraced_process(pid, 1);
379 	return err;
380 }
381 
382 void userspace(struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
383 {
384 	int err, status, op, pid = userspace_pid[0];
385 	/* To prevent races if using_sysemu changes under us.*/
386 	int local_using_sysemu;
387 	siginfo_t si;
388 
389 	/* Handle any immediate reschedules or signals */
390 	interrupt_end();
391 
392 	while (1) {
393 		if (kill_userspace_mm[0])
394 			fatal_sigsegv();
395 
396 		/*
397 		 * This can legitimately fail if the process loads a
398 		 * bogus value into a segment register.  It will
399 		 * segfault and PTRACE_GETREGS will read that value
400 		 * out of the process.  However, PTRACE_SETREGS will
401 		 * fail.  In this case, there is nothing to do but
402 		 * just kill the process.
403 		 */
404 		if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
405 			printk(UM_KERN_ERR "userspace - ptrace set regs "
406 			       "failed, errno = %d\n", errno);
407 			fatal_sigsegv();
408 		}
409 
410 		if (put_fp_registers(pid, regs->fp)) {
411 			printk(UM_KERN_ERR "userspace - ptrace set fp regs "
412 			       "failed, errno = %d\n", errno);
413 			fatal_sigsegv();
414 		}
415 
416 		/* Now we set local_using_sysemu to be used for one loop */
417 		local_using_sysemu = get_using_sysemu();
418 
419 		op = SELECT_PTRACE_OPERATION(local_using_sysemu,
420 					     singlestepping(NULL));
421 
422 		if (ptrace(op, pid, 0, 0)) {
423 			printk(UM_KERN_ERR "userspace - ptrace continue "
424 			       "failed, op = %d, errno = %d\n", op, errno);
425 			fatal_sigsegv();
426 		}
427 
428 		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
429 		if (err < 0) {
430 			printk(UM_KERN_ERR "userspace - wait failed, "
431 			       "errno = %d\n", errno);
432 			fatal_sigsegv();
433 		}
434 
435 		regs->is_user = 1;
436 		if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
437 			printk(UM_KERN_ERR "userspace - PTRACE_GETREGS failed, "
438 			       "errno = %d\n", errno);
439 			fatal_sigsegv();
440 		}
441 
442 		if (get_fp_registers(pid, regs->fp)) {
443 			printk(UM_KERN_ERR "userspace -  get_fp_registers failed, "
444 			       "errno = %d\n", errno);
445 			fatal_sigsegv();
446 		}
447 
448 		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
449 
450 		if (WIFSTOPPED(status)) {
451 			int sig = WSTOPSIG(status);
452 
453 			/* These signal handlers need the si argument.
454 			 * The SIGIO and SIGALARM handlers which constitute the
455 			 * majority of invocations, do not use it.
456 			 */
457 			switch (sig) {
458 			case SIGSEGV:
459 			case SIGTRAP:
460 			case SIGILL:
461 			case SIGBUS:
462 			case SIGFPE:
463 			case SIGWINCH:
464 				ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
465 				break;
466 			}
467 
468 			switch (sig) {
469 			case SIGSEGV:
470 				if (PTRACE_FULL_FAULTINFO) {
471 					get_skas_faultinfo(pid,
472 							   &regs->faultinfo, aux_fp_regs);
473 					(*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
474 							     regs);
475 				}
476 				else handle_segv(pid, regs, aux_fp_regs);
477 				break;
478 			case SIGTRAP + 0x80:
479 			        handle_trap(pid, regs, local_using_sysemu);
480 				break;
481 			case SIGTRAP:
482 				relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
483 				break;
484 			case SIGALRM:
485 				break;
486 			case SIGIO:
487 			case SIGILL:
488 			case SIGBUS:
489 			case SIGFPE:
490 			case SIGWINCH:
491 				block_signals_trace();
492 				(*sig_info[sig])(sig, (struct siginfo *)&si, regs);
493 				unblock_signals_trace();
494 				break;
495 			default:
496 				printk(UM_KERN_ERR "userspace - child stopped "
497 				       "with signal %d\n", sig);
498 				fatal_sigsegv();
499 			}
500 			pid = userspace_pid[0];
501 			interrupt_end();
502 
503 			/* Avoid -ERESTARTSYS handling in host */
504 			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
505 				PT_SYSCALL_NR(regs->gp) = -1;
506 		}
507 	}
508 }
509 
510 static unsigned long thread_regs[MAX_REG_NR];
511 static unsigned long thread_fp_regs[FP_SIZE];
512 
513 static int __init init_thread_regs(void)
514 {
515 	get_safe_registers(thread_regs, thread_fp_regs);
516 	/* Set parent's instruction pointer to start of clone-stub */
517 	thread_regs[REGS_IP_INDEX] = STUB_CODE +
518 				(unsigned long) stub_clone_handler -
519 				(unsigned long) __syscall_stub_start;
520 	thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE -
521 		sizeof(void *);
522 #ifdef __SIGNAL_FRAMESIZE
523 	thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
524 #endif
525 	return 0;
526 }
527 
528 __initcall(init_thread_regs);
529 
530 int copy_context_skas0(unsigned long new_stack, int pid)
531 {
532 	int err;
533 	unsigned long current_stack = current_stub_stack();
534 	struct stub_data *data = (struct stub_data *) current_stack;
535 	struct stub_data *child_data = (struct stub_data *) new_stack;
536 	unsigned long long new_offset;
537 	int new_fd = phys_mapping(to_phys((void *)new_stack), &new_offset);
538 
539 	/*
540 	 * prepare offset and fd of child's stack as argument for parent's
541 	 * and child's mmap2 calls
542 	 */
543 	*data = ((struct stub_data) {
544 		.offset	= MMAP_OFFSET(new_offset),
545 		.fd     = new_fd,
546 		.parent_err = -ESRCH,
547 		.child_err = 0,
548 	});
549 
550 	*child_data = ((struct stub_data) {
551 		.child_err = -ESRCH,
552 	});
553 
554 	err = ptrace_setregs(pid, thread_regs);
555 	if (err < 0) {
556 		err = -errno;
557 		printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_SETREGS "
558 		       "failed, pid = %d, errno = %d\n", pid, -err);
559 		return err;
560 	}
561 
562 	err = put_fp_registers(pid, thread_fp_regs);
563 	if (err < 0) {
564 		printk(UM_KERN_ERR "copy_context_skas0 : put_fp_registers "
565 		       "failed, pid = %d, err = %d\n", pid, err);
566 		return err;
567 	}
568 
569 	/*
570 	 * Wait, until parent has finished its work: read child's pid from
571 	 * parent's stack, and check, if bad result.
572 	 */
573 	err = ptrace(PTRACE_CONT, pid, 0, 0);
574 	if (err) {
575 		err = -errno;
576 		printk(UM_KERN_ERR "Failed to continue new process, pid = %d, "
577 		       "errno = %d\n", pid, errno);
578 		return err;
579 	}
580 
581 	wait_stub_done(pid);
582 
583 	pid = data->parent_err;
584 	if (pid < 0) {
585 		printk(UM_KERN_ERR "copy_context_skas0 - stub-parent reports "
586 		       "error %d\n", -pid);
587 		return pid;
588 	}
589 
590 	/*
591 	 * Wait, until child has finished too: read child's result from
592 	 * child's stack and check it.
593 	 */
594 	wait_stub_done(pid);
595 	if (child_data->child_err != STUB_DATA) {
596 		printk(UM_KERN_ERR "copy_context_skas0 - stub-child %d reports "
597 		       "error %ld\n", pid, data->child_err);
598 		err = data->child_err;
599 		goto out_kill;
600 	}
601 
602 	if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
603 		   (void *)PTRACE_O_TRACESYSGOOD) < 0) {
604 		err = -errno;
605 		printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_OLDSETOPTIONS "
606 		       "failed, errno = %d\n", errno);
607 		goto out_kill;
608 	}
609 
610 	return pid;
611 
612  out_kill:
613 	os_kill_ptraced_process(pid, 1);
614 	return err;
615 }
616 
617 void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
618 {
619 	(*buf)[0].JB_IP = (unsigned long) handler;
620 	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
621 		sizeof(void *);
622 }
623 
624 #define INIT_JMP_NEW_THREAD 0
625 #define INIT_JMP_CALLBACK 1
626 #define INIT_JMP_HALT 2
627 #define INIT_JMP_REBOOT 3
628 
629 void switch_threads(jmp_buf *me, jmp_buf *you)
630 {
631 	if (UML_SETJMP(me) == 0)
632 		UML_LONGJMP(you, 1);
633 }
634 
635 static jmp_buf initial_jmpbuf;
636 
637 /* XXX Make these percpu */
638 static void (*cb_proc)(void *arg);
639 static void *cb_arg;
640 static jmp_buf *cb_back;
641 
642 int start_idle_thread(void *stack, jmp_buf *switch_buf)
643 {
644 	int n;
645 
646 	set_handler(SIGWINCH);
647 
648 	/*
649 	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
650 	 * and restore signals, with the possible side-effect of
651 	 * trying to handle any signals which came when they were
652 	 * blocked, which can't be done on this stack.
653 	 * Signals must be blocked when jumping back here and restored
654 	 * after returning to the jumper.
655 	 */
656 	n = setjmp(initial_jmpbuf);
657 	switch (n) {
658 	case INIT_JMP_NEW_THREAD:
659 		(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
660 		(*switch_buf)[0].JB_SP = (unsigned long) stack +
661 			UM_THREAD_SIZE - sizeof(void *);
662 		break;
663 	case INIT_JMP_CALLBACK:
664 		(*cb_proc)(cb_arg);
665 		longjmp(*cb_back, 1);
666 		break;
667 	case INIT_JMP_HALT:
668 		kmalloc_ok = 0;
669 		return 0;
670 	case INIT_JMP_REBOOT:
671 		kmalloc_ok = 0;
672 		return 1;
673 	default:
674 		printk(UM_KERN_ERR "Bad sigsetjmp return in "
675 		       "start_idle_thread - %d\n", n);
676 		fatal_sigsegv();
677 	}
678 	longjmp(*switch_buf, 1);
679 
680 	/* unreachable */
681 	printk(UM_KERN_ERR "impossible long jump!");
682 	fatal_sigsegv();
683 	return 0;
684 }
685 
686 void initial_thread_cb_skas(void (*proc)(void *), void *arg)
687 {
688 	jmp_buf here;
689 
690 	cb_proc = proc;
691 	cb_arg = arg;
692 	cb_back = &here;
693 
694 	block_signals_trace();
695 	if (UML_SETJMP(&here) == 0)
696 		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
697 	unblock_signals_trace();
698 
699 	cb_proc = NULL;
700 	cb_arg = NULL;
701 	cb_back = NULL;
702 }
703 
704 void halt_skas(void)
705 {
706 	block_signals_trace();
707 	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
708 }
709 
710 void reboot_skas(void)
711 {
712 	block_signals_trace();
713 	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_REBOOT);
714 }
715 
716 void __switch_mm(struct mm_id *mm_idp)
717 {
718 	userspace_pid[0] = mm_idp->u.pid;
719 	kill_userspace_mm[0] = mm_idp->kill;
720 }
721