xref: /linux/arch/um/os-Linux/skas/process.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4  * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5  */
6 
7 #include <stdlib.h>
8 #include <stdbool.h>
9 #include <unistd.h>
10 #include <sched.h>
11 #include <errno.h>
12 #include <string.h>
13 #include <fcntl.h>
14 #include <mem_user.h>
15 #include <sys/mman.h>
16 #include <sys/wait.h>
17 #include <sys/stat.h>
18 #include <asm/unistd.h>
19 #include <as-layout.h>
20 #include <init.h>
21 #include <kern_util.h>
22 #include <mem.h>
23 #include <os.h>
24 #include <ptrace_user.h>
25 #include <registers.h>
26 #include <skas.h>
27 #include <sysdep/stub.h>
28 #include <linux/threads.h>
29 #include <timetravel.h>
30 #include "../internal.h"
31 
32 int is_skas_winch(int pid, int fd, void *data)
33 {
34 	return pid == getpgrp();
35 }
36 
37 static const char *ptrace_reg_name(int idx)
38 {
39 #define R(n) case HOST_##n: return #n
40 
41 	switch (idx) {
42 #ifdef __x86_64__
43 	R(BX);
44 	R(CX);
45 	R(DI);
46 	R(SI);
47 	R(DX);
48 	R(BP);
49 	R(AX);
50 	R(R8);
51 	R(R9);
52 	R(R10);
53 	R(R11);
54 	R(R12);
55 	R(R13);
56 	R(R14);
57 	R(R15);
58 	R(ORIG_AX);
59 	R(CS);
60 	R(SS);
61 	R(EFLAGS);
62 #elif defined(__i386__)
63 	R(IP);
64 	R(SP);
65 	R(EFLAGS);
66 	R(AX);
67 	R(BX);
68 	R(CX);
69 	R(DX);
70 	R(SI);
71 	R(DI);
72 	R(BP);
73 	R(CS);
74 	R(SS);
75 	R(DS);
76 	R(FS);
77 	R(ES);
78 	R(GS);
79 	R(ORIG_AX);
80 #endif
81 	}
82 	return "";
83 }
84 
85 static int ptrace_dump_regs(int pid)
86 {
87 	unsigned long regs[MAX_REG_NR];
88 	int i;
89 
90 	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
91 		return -errno;
92 
93 	printk(UM_KERN_ERR "Stub registers -\n");
94 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
95 		const char *regname = ptrace_reg_name(i);
96 
97 		printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
98 	}
99 
100 	return 0;
101 }
102 
103 /*
104  * Signals that are OK to receive in the stub - we'll just continue it.
105  * SIGWINCH will happen when UML is inside a detached screen.
106  */
107 #define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
108 
109 /* Signals that the stub will finish with - anything else is an error */
110 #define STUB_DONE_MASK (1 << SIGTRAP)
111 
112 void wait_stub_done(int pid)
113 {
114 	int n, status, err;
115 
116 	while (1) {
117 		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
118 		if ((n < 0) || !WIFSTOPPED(status))
119 			goto bad_wait;
120 
121 		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
122 			break;
123 
124 		err = ptrace(PTRACE_CONT, pid, 0, 0);
125 		if (err) {
126 			printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
127 			       __func__, errno);
128 			fatal_sigsegv();
129 		}
130 	}
131 
132 	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
133 		return;
134 
135 bad_wait:
136 	err = ptrace_dump_regs(pid);
137 	if (err)
138 		printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
139 		       -err);
140 	printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
141 	       __func__, pid, n, errno, status);
142 	fatal_sigsegv();
143 }
144 
145 extern unsigned long current_stub_stack(void);
146 
147 static void get_skas_faultinfo(int pid, struct faultinfo *fi)
148 {
149 	int err;
150 
151 	err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
152 	if (err) {
153 		printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
154 		       "errno = %d\n", pid, errno);
155 		fatal_sigsegv();
156 	}
157 	wait_stub_done(pid);
158 
159 	/*
160 	 * faultinfo is prepared by the stub_segv_handler at start of
161 	 * the stub stack page. We just have to copy it.
162 	 */
163 	memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
164 }
165 
166 static void handle_segv(int pid, struct uml_pt_regs *regs)
167 {
168 	get_skas_faultinfo(pid, &regs->faultinfo);
169 	segv(regs->faultinfo, 0, 1, NULL);
170 }
171 
172 static void handle_trap(int pid, struct uml_pt_regs *regs)
173 {
174 	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
175 		fatal_sigsegv();
176 
177 	handle_syscall(regs);
178 }
179 
180 extern char __syscall_stub_start[];
181 
182 static int stub_exe_fd;
183 
184 static int userspace_tramp(void *stack)
185 {
186 	char *const argv[] = { "uml-userspace", NULL };
187 	int pipe_fds[2];
188 	unsigned long long offset;
189 	struct stub_init_data init_data = {
190 		.stub_start = STUB_START,
191 		.segv_handler = STUB_CODE +
192 				(unsigned long) stub_segv_handler -
193 				(unsigned long) __syscall_stub_start,
194 	};
195 	struct iomem_region *iomem;
196 	int ret;
197 
198 	init_data.stub_code_fd = phys_mapping(uml_to_phys(__syscall_stub_start),
199 					      &offset);
200 	init_data.stub_code_offset = MMAP_OFFSET(offset);
201 
202 	init_data.stub_data_fd = phys_mapping(uml_to_phys(stack), &offset);
203 	init_data.stub_data_offset = MMAP_OFFSET(offset);
204 
205 	/* Set CLOEXEC on all FDs and then unset on all memory related FDs */
206 	close_range(0, ~0U, CLOSE_RANGE_CLOEXEC);
207 
208 	fcntl(init_data.stub_data_fd, F_SETFD, 0);
209 	for (iomem = iomem_regions; iomem; iomem = iomem->next)
210 		fcntl(iomem->fd, F_SETFD, 0);
211 
212 	/* Create a pipe for init_data (no CLOEXEC) and dup2 to STDIN */
213 	if (pipe(pipe_fds))
214 		exit(2);
215 
216 	if (dup2(pipe_fds[0], 0) < 0)
217 		exit(3);
218 	close(pipe_fds[0]);
219 
220 	/* Write init_data and close write side */
221 	ret = write(pipe_fds[1], &init_data, sizeof(init_data));
222 	close(pipe_fds[1]);
223 
224 	if (ret != sizeof(init_data))
225 		exit(4);
226 
227 	execveat(stub_exe_fd, "", argv, NULL, AT_EMPTY_PATH);
228 
229 	exit(5);
230 }
231 
232 extern char stub_exe_start[];
233 extern char stub_exe_end[];
234 
235 extern char *tempdir;
236 
237 #define STUB_EXE_NAME_TEMPLATE "/uml-userspace-XXXXXX"
238 
239 #ifndef MFD_EXEC
240 #define MFD_EXEC 0x0010U
241 #endif
242 
243 static int __init init_stub_exe_fd(void)
244 {
245 	size_t written = 0;
246 	char *tmpfile = NULL;
247 
248 	stub_exe_fd = memfd_create("uml-userspace",
249 				   MFD_EXEC | MFD_CLOEXEC | MFD_ALLOW_SEALING);
250 
251 	if (stub_exe_fd < 0) {
252 		printk(UM_KERN_INFO "Could not create executable memfd, using temporary file!");
253 
254 		tmpfile = malloc(strlen(tempdir) +
255 				  strlen(STUB_EXE_NAME_TEMPLATE) + 1);
256 		if (tmpfile == NULL)
257 			panic("Failed to allocate memory for stub binary name");
258 
259 		strcpy(tmpfile, tempdir);
260 		strcat(tmpfile, STUB_EXE_NAME_TEMPLATE);
261 
262 		stub_exe_fd = mkstemp(tmpfile);
263 		if (stub_exe_fd < 0)
264 			panic("Could not create temporary file for stub binary: %d",
265 			      -errno);
266 	}
267 
268 	while (written < stub_exe_end - stub_exe_start) {
269 		ssize_t res = write(stub_exe_fd, stub_exe_start + written,
270 				    stub_exe_end - stub_exe_start - written);
271 		if (res < 0) {
272 			if (errno == EINTR)
273 				continue;
274 
275 			if (tmpfile)
276 				unlink(tmpfile);
277 			panic("Failed write stub binary: %d", -errno);
278 		}
279 
280 		written += res;
281 	}
282 
283 	if (!tmpfile) {
284 		fcntl(stub_exe_fd, F_ADD_SEALS,
285 		      F_SEAL_WRITE | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL);
286 	} else {
287 		if (fchmod(stub_exe_fd, 00500) < 0) {
288 			unlink(tmpfile);
289 			panic("Could not make stub binary executable: %d",
290 			      -errno);
291 		}
292 
293 		close(stub_exe_fd);
294 		stub_exe_fd = open(tmpfile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW);
295 		if (stub_exe_fd < 0) {
296 			unlink(tmpfile);
297 			panic("Could not reopen stub binary: %d", -errno);
298 		}
299 
300 		unlink(tmpfile);
301 		free(tmpfile);
302 	}
303 
304 	return 0;
305 }
306 __initcall(init_stub_exe_fd);
307 
308 int userspace_pid[NR_CPUS];
309 
310 /**
311  * start_userspace() - prepare a new userspace process
312  * @stub_stack:	pointer to the stub stack.
313  *
314  * Setups a new temporary stack page that is used while userspace_tramp() runs
315  * Clones the kernel process into a new userspace process, with FDs only.
316  *
317  * Return: When positive: the process id of the new userspace process,
318  *         when negative: an error number.
319  * FIXME: can PIDs become negative?!
320  */
321 int start_userspace(unsigned long stub_stack)
322 {
323 	void *stack;
324 	unsigned long sp;
325 	int pid, status, n, err;
326 
327 	/* setup a temporary stack page */
328 	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
329 		     PROT_READ | PROT_WRITE | PROT_EXEC,
330 		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
331 	if (stack == MAP_FAILED) {
332 		err = -errno;
333 		printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
334 		       __func__, errno);
335 		return err;
336 	}
337 
338 	/* set stack pointer to the end of the stack page, so it can grow downwards */
339 	sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
340 
341 	/* clone into new userspace process */
342 	pid = clone(userspace_tramp, (void *) sp,
343 		    CLONE_VFORK | CLONE_VM | SIGCHLD,
344 		    (void *)stub_stack);
345 	if (pid < 0) {
346 		err = -errno;
347 		printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
348 		       __func__, errno);
349 		return err;
350 	}
351 
352 	do {
353 		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
354 		if (n < 0) {
355 			err = -errno;
356 			printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
357 			       __func__, errno);
358 			goto out_kill;
359 		}
360 	} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
361 
362 	if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
363 		err = -EINVAL;
364 		printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
365 		       __func__, status);
366 		goto out_kill;
367 	}
368 
369 	if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
370 		   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
371 		err = -errno;
372 		printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
373 		       __func__, errno);
374 		goto out_kill;
375 	}
376 
377 	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
378 		err = -errno;
379 		printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
380 		       __func__, errno);
381 		goto out_kill;
382 	}
383 
384 	return pid;
385 
386  out_kill:
387 	os_kill_ptraced_process(pid, 1);
388 	return err;
389 }
390 
391 int unscheduled_userspace_iterations;
392 extern unsigned long tt_extra_sched_jiffies;
393 
394 void userspace(struct uml_pt_regs *regs)
395 {
396 	int err, status, op, pid = userspace_pid[0];
397 	siginfo_t si;
398 
399 	/* Handle any immediate reschedules or signals */
400 	interrupt_end();
401 
402 	while (1) {
403 		/*
404 		 * When we are in time-travel mode, userspace can theoretically
405 		 * do a *lot* of work without being scheduled. The problem with
406 		 * this is that it will prevent kernel bookkeeping (primarily
407 		 * the RCU) from running and this can for example cause OOM
408 		 * situations.
409 		 *
410 		 * This code accounts a jiffie against the scheduling clock
411 		 * after the defined userspace iterations in the same thread.
412 		 * By doing so the situation is effectively prevented.
413 		 */
414 		if (time_travel_mode == TT_MODE_INFCPU ||
415 		    time_travel_mode == TT_MODE_EXTERNAL) {
416 #ifdef CONFIG_UML_MAX_USERSPACE_ITERATIONS
417 			if (CONFIG_UML_MAX_USERSPACE_ITERATIONS &&
418 			    unscheduled_userspace_iterations++ >
419 			    CONFIG_UML_MAX_USERSPACE_ITERATIONS) {
420 				tt_extra_sched_jiffies += 1;
421 				unscheduled_userspace_iterations = 0;
422 			}
423 #endif
424 		}
425 
426 		time_travel_print_bc_msg();
427 
428 		current_mm_sync();
429 
430 		/* Flush out any pending syscalls */
431 		err = syscall_stub_flush(current_mm_id());
432 		if (err) {
433 			if (err == -ENOMEM)
434 				report_enomem();
435 
436 			printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d",
437 				__func__, -err);
438 			fatal_sigsegv();
439 		}
440 
441 		/*
442 		 * This can legitimately fail if the process loads a
443 		 * bogus value into a segment register.  It will
444 		 * segfault and PTRACE_GETREGS will read that value
445 		 * out of the process.  However, PTRACE_SETREGS will
446 		 * fail.  In this case, there is nothing to do but
447 		 * just kill the process.
448 		 */
449 		if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
450 			printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
451 			       __func__, errno);
452 			fatal_sigsegv();
453 		}
454 
455 		if (put_fp_registers(pid, regs->fp)) {
456 			printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
457 			       __func__, errno);
458 			fatal_sigsegv();
459 		}
460 
461 		if (singlestepping())
462 			op = PTRACE_SYSEMU_SINGLESTEP;
463 		else
464 			op = PTRACE_SYSEMU;
465 
466 		if (ptrace(op, pid, 0, 0)) {
467 			printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
468 			       __func__, op, errno);
469 			fatal_sigsegv();
470 		}
471 
472 		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
473 		if (err < 0) {
474 			printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
475 			       __func__, errno);
476 			fatal_sigsegv();
477 		}
478 
479 		regs->is_user = 1;
480 		if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
481 			printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
482 			       __func__, errno);
483 			fatal_sigsegv();
484 		}
485 
486 		if (get_fp_registers(pid, regs->fp)) {
487 			printk(UM_KERN_ERR "%s -  get_fp_registers failed, errno = %d\n",
488 			       __func__, errno);
489 			fatal_sigsegv();
490 		}
491 
492 		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
493 
494 		if (WIFSTOPPED(status)) {
495 			int sig = WSTOPSIG(status);
496 
497 			/* These signal handlers need the si argument.
498 			 * The SIGIO and SIGALARM handlers which constitute the
499 			 * majority of invocations, do not use it.
500 			 */
501 			switch (sig) {
502 			case SIGSEGV:
503 			case SIGTRAP:
504 			case SIGILL:
505 			case SIGBUS:
506 			case SIGFPE:
507 			case SIGWINCH:
508 				ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
509 				break;
510 			}
511 
512 			switch (sig) {
513 			case SIGSEGV:
514 				if (PTRACE_FULL_FAULTINFO) {
515 					get_skas_faultinfo(pid,
516 							   &regs->faultinfo);
517 					(*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
518 							     regs);
519 				}
520 				else handle_segv(pid, regs);
521 				break;
522 			case SIGTRAP + 0x80:
523 				handle_trap(pid, regs);
524 				break;
525 			case SIGTRAP:
526 				relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
527 				break;
528 			case SIGALRM:
529 				break;
530 			case SIGIO:
531 			case SIGILL:
532 			case SIGBUS:
533 			case SIGFPE:
534 			case SIGWINCH:
535 				block_signals_trace();
536 				(*sig_info[sig])(sig, (struct siginfo *)&si, regs);
537 				unblock_signals_trace();
538 				break;
539 			default:
540 				printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
541 				       __func__, sig);
542 				fatal_sigsegv();
543 			}
544 			pid = userspace_pid[0];
545 			interrupt_end();
546 
547 			/* Avoid -ERESTARTSYS handling in host */
548 			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
549 				PT_SYSCALL_NR(regs->gp) = -1;
550 		}
551 	}
552 }
553 
554 void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
555 {
556 	(*buf)[0].JB_IP = (unsigned long) handler;
557 	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
558 		sizeof(void *);
559 }
560 
561 #define INIT_JMP_NEW_THREAD 0
562 #define INIT_JMP_CALLBACK 1
563 #define INIT_JMP_HALT 2
564 #define INIT_JMP_REBOOT 3
565 
566 void switch_threads(jmp_buf *me, jmp_buf *you)
567 {
568 	unscheduled_userspace_iterations = 0;
569 
570 	if (UML_SETJMP(me) == 0)
571 		UML_LONGJMP(you, 1);
572 }
573 
574 static jmp_buf initial_jmpbuf;
575 
576 /* XXX Make these percpu */
577 static void (*cb_proc)(void *arg);
578 static void *cb_arg;
579 static jmp_buf *cb_back;
580 
581 int start_idle_thread(void *stack, jmp_buf *switch_buf)
582 {
583 	int n;
584 
585 	set_handler(SIGWINCH);
586 
587 	/*
588 	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
589 	 * and restore signals, with the possible side-effect of
590 	 * trying to handle any signals which came when they were
591 	 * blocked, which can't be done on this stack.
592 	 * Signals must be blocked when jumping back here and restored
593 	 * after returning to the jumper.
594 	 */
595 	n = setjmp(initial_jmpbuf);
596 	switch (n) {
597 	case INIT_JMP_NEW_THREAD:
598 		(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
599 		(*switch_buf)[0].JB_SP = (unsigned long) stack +
600 			UM_THREAD_SIZE - sizeof(void *);
601 		break;
602 	case INIT_JMP_CALLBACK:
603 		(*cb_proc)(cb_arg);
604 		longjmp(*cb_back, 1);
605 		break;
606 	case INIT_JMP_HALT:
607 		kmalloc_ok = 0;
608 		return 0;
609 	case INIT_JMP_REBOOT:
610 		kmalloc_ok = 0;
611 		return 1;
612 	default:
613 		printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
614 		       __func__, n);
615 		fatal_sigsegv();
616 	}
617 	longjmp(*switch_buf, 1);
618 
619 	/* unreachable */
620 	printk(UM_KERN_ERR "impossible long jump!");
621 	fatal_sigsegv();
622 	return 0;
623 }
624 
625 void initial_thread_cb_skas(void (*proc)(void *), void *arg)
626 {
627 	jmp_buf here;
628 
629 	cb_proc = proc;
630 	cb_arg = arg;
631 	cb_back = &here;
632 
633 	block_signals_trace();
634 	if (UML_SETJMP(&here) == 0)
635 		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
636 	unblock_signals_trace();
637 
638 	cb_proc = NULL;
639 	cb_arg = NULL;
640 	cb_back = NULL;
641 }
642 
643 void halt_skas(void)
644 {
645 	block_signals_trace();
646 	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
647 }
648 
649 static bool noreboot;
650 
651 static int __init noreboot_cmd_param(char *str, int *add)
652 {
653 	*add = 0;
654 	noreboot = true;
655 	return 0;
656 }
657 
658 __uml_setup("noreboot", noreboot_cmd_param,
659 "noreboot\n"
660 "    Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
661 "    This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
662 "    crashes in CI\n");
663 
664 void reboot_skas(void)
665 {
666 	block_signals_trace();
667 	UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
668 }
669 
670 void __switch_mm(struct mm_id *mm_idp)
671 {
672 	userspace_pid[0] = mm_idp->pid;
673 }
674