1 /* 2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk}) 3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de) 4 * Copyright (C) 2004 PathScale, Inc 5 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 6 * Licensed under the GPL 7 */ 8 9 #include <stdlib.h> 10 #include <stdarg.h> 11 #include <errno.h> 12 #include <signal.h> 13 #include <strings.h> 14 #include <as-layout.h> 15 #include <kern_util.h> 16 #include <os.h> 17 #include <sysdep/mcontext.h> 18 #include <um_malloc.h> 19 20 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = { 21 [SIGTRAP] = relay_signal, 22 [SIGFPE] = relay_signal, 23 [SIGILL] = relay_signal, 24 [SIGWINCH] = winch, 25 [SIGBUS] = bus_handler, 26 [SIGSEGV] = segv_handler, 27 [SIGIO] = sigio_handler, 28 [SIGALRM] = timer_handler 29 }; 30 31 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc) 32 { 33 struct uml_pt_regs *r; 34 int save_errno = errno; 35 36 r = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC); 37 if (!r) 38 panic("out of memory"); 39 40 r->is_user = 0; 41 if (sig == SIGSEGV) { 42 /* For segfaults, we want the data from the sigcontext. */ 43 get_regs_from_mc(r, mc); 44 GET_FAULTINFO_FROM_MC(r->faultinfo, mc); 45 } 46 47 /* enable signals if sig isn't IRQ signal */ 48 if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGALRM)) 49 unblock_signals(); 50 51 (*sig_info[sig])(sig, si, r); 52 53 errno = save_errno; 54 55 free(r); 56 } 57 58 /* 59 * These are the asynchronous signals. SIGPROF is excluded because we want to 60 * be able to profile all of UML, not just the non-critical sections. If 61 * profiling is not thread-safe, then that is not my problem. We can disable 62 * profiling when SMP is enabled in that case. 63 */ 64 #define SIGIO_BIT 0 65 #define SIGIO_MASK (1 << SIGIO_BIT) 66 67 #define SIGALRM_BIT 1 68 #define SIGALRM_MASK (1 << SIGALRM_BIT) 69 70 static int signals_enabled; 71 static unsigned int signals_pending; 72 static unsigned int signals_active = 0; 73 74 void sig_handler(int sig, struct siginfo *si, mcontext_t *mc) 75 { 76 int enabled; 77 78 enabled = signals_enabled; 79 if (!enabled && (sig == SIGIO)) { 80 signals_pending |= SIGIO_MASK; 81 return; 82 } 83 84 block_signals(); 85 86 sig_handler_common(sig, si, mc); 87 88 set_signals(enabled); 89 } 90 91 static void timer_real_alarm_handler(mcontext_t *mc) 92 { 93 struct uml_pt_regs *regs; 94 95 regs = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC); 96 if (!regs) 97 panic("out of memory"); 98 99 if (mc != NULL) 100 get_regs_from_mc(regs, mc); 101 timer_handler(SIGALRM, NULL, regs); 102 103 free(regs); 104 } 105 106 void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc) 107 { 108 int enabled; 109 110 enabled = signals_enabled; 111 if (!signals_enabled) { 112 signals_pending |= SIGALRM_MASK; 113 return; 114 } 115 116 block_signals(); 117 118 signals_active |= SIGALRM_MASK; 119 120 timer_real_alarm_handler(mc); 121 122 signals_active &= ~SIGALRM_MASK; 123 124 set_signals(enabled); 125 } 126 127 void deliver_alarm(void) { 128 timer_alarm_handler(SIGALRM, NULL, NULL); 129 } 130 131 void timer_set_signal_handler(void) 132 { 133 set_handler(SIGALRM); 134 } 135 136 void set_sigstack(void *sig_stack, int size) 137 { 138 stack_t stack = { 139 .ss_flags = 0, 140 .ss_sp = sig_stack, 141 .ss_size = size - sizeof(void *) 142 }; 143 144 if (sigaltstack(&stack, NULL) != 0) 145 panic("enabling signal stack failed, errno = %d\n", errno); 146 } 147 148 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = { 149 [SIGSEGV] = sig_handler, 150 [SIGBUS] = sig_handler, 151 [SIGILL] = sig_handler, 152 [SIGFPE] = sig_handler, 153 [SIGTRAP] = sig_handler, 154 155 [SIGIO] = sig_handler, 156 [SIGWINCH] = sig_handler, 157 [SIGALRM] = timer_alarm_handler 158 }; 159 160 static void hard_handler(int sig, siginfo_t *si, void *p) 161 { 162 struct ucontext *uc = p; 163 mcontext_t *mc = &uc->uc_mcontext; 164 unsigned long pending = 1UL << sig; 165 166 do { 167 int nested, bail; 168 169 /* 170 * pending comes back with one bit set for each 171 * interrupt that arrived while setting up the stack, 172 * plus a bit for this interrupt, plus the zero bit is 173 * set if this is a nested interrupt. 174 * If bail is true, then we interrupted another 175 * handler setting up the stack. In this case, we 176 * have to return, and the upper handler will deal 177 * with this interrupt. 178 */ 179 bail = to_irq_stack(&pending); 180 if (bail) 181 return; 182 183 nested = pending & 1; 184 pending &= ~1; 185 186 while ((sig = ffs(pending)) != 0){ 187 sig--; 188 pending &= ~(1 << sig); 189 (*handlers[sig])(sig, (struct siginfo *)si, mc); 190 } 191 192 /* 193 * Again, pending comes back with a mask of signals 194 * that arrived while tearing down the stack. If this 195 * is non-zero, we just go back, set up the stack 196 * again, and handle the new interrupts. 197 */ 198 if (!nested) 199 pending = from_irq_stack(nested); 200 } while (pending); 201 } 202 203 void set_handler(int sig) 204 { 205 struct sigaction action; 206 int flags = SA_SIGINFO | SA_ONSTACK; 207 sigset_t sig_mask; 208 209 action.sa_sigaction = hard_handler; 210 211 /* block irq ones */ 212 sigemptyset(&action.sa_mask); 213 sigaddset(&action.sa_mask, SIGIO); 214 sigaddset(&action.sa_mask, SIGWINCH); 215 sigaddset(&action.sa_mask, SIGALRM); 216 217 if (sig == SIGSEGV) 218 flags |= SA_NODEFER; 219 220 if (sigismember(&action.sa_mask, sig)) 221 flags |= SA_RESTART; /* if it's an irq signal */ 222 223 action.sa_flags = flags; 224 action.sa_restorer = NULL; 225 if (sigaction(sig, &action, NULL) < 0) 226 panic("sigaction failed - errno = %d\n", errno); 227 228 sigemptyset(&sig_mask); 229 sigaddset(&sig_mask, sig); 230 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0) 231 panic("sigprocmask failed - errno = %d\n", errno); 232 } 233 234 int change_sig(int signal, int on) 235 { 236 sigset_t sigset; 237 238 sigemptyset(&sigset); 239 sigaddset(&sigset, signal); 240 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0) 241 return -errno; 242 243 return 0; 244 } 245 246 void block_signals(void) 247 { 248 signals_enabled = 0; 249 /* 250 * This must return with signals disabled, so this barrier 251 * ensures that writes are flushed out before the return. 252 * This might matter if gcc figures out how to inline this and 253 * decides to shuffle this code into the caller. 254 */ 255 barrier(); 256 } 257 258 void unblock_signals(void) 259 { 260 int save_pending; 261 262 if (signals_enabled == 1) 263 return; 264 265 /* 266 * We loop because the IRQ handler returns with interrupts off. So, 267 * interrupts may have arrived and we need to re-enable them and 268 * recheck signals_pending. 269 */ 270 while (1) { 271 /* 272 * Save and reset save_pending after enabling signals. This 273 * way, signals_pending won't be changed while we're reading it. 274 */ 275 signals_enabled = 1; 276 277 /* 278 * Setting signals_enabled and reading signals_pending must 279 * happen in this order. 280 */ 281 barrier(); 282 283 save_pending = signals_pending; 284 if (save_pending == 0) 285 return; 286 287 signals_pending = 0; 288 289 /* 290 * We have pending interrupts, so disable signals, as the 291 * handlers expect them off when they are called. They will 292 * be enabled again above. 293 */ 294 295 signals_enabled = 0; 296 297 /* 298 * Deal with SIGIO first because the alarm handler might 299 * schedule, leaving the pending SIGIO stranded until we come 300 * back here. 301 * 302 * SIGIO's handler doesn't use siginfo or mcontext, 303 * so they can be NULL. 304 */ 305 if (save_pending & SIGIO_MASK) 306 sig_handler_common(SIGIO, NULL, NULL); 307 308 /* Do not reenter the handler */ 309 310 if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK))) 311 timer_real_alarm_handler(NULL); 312 313 /* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */ 314 315 if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK)) 316 return; 317 318 } 319 } 320 321 int get_signals(void) 322 { 323 return signals_enabled; 324 } 325 326 int set_signals(int enable) 327 { 328 int ret; 329 if (signals_enabled == enable) 330 return enable; 331 332 ret = signals_enabled; 333 if (enable) 334 unblock_signals(); 335 else block_signals(); 336 337 return ret; 338 } 339 340 int os_is_signal_stack(void) 341 { 342 stack_t ss; 343 sigaltstack(NULL, &ss); 344 345 return ss.ss_flags & SS_ONSTACK; 346 } 347