xref: /linux/arch/um/os-Linux/signal.c (revision c9a3072d13e4b8a6549ecc1db6390a55c7ee2ddf)
1 /*
2  * Copyright (C) 2004 PathScale, Inc
3  * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  * Licensed under the GPL
5  */
6 
7 #include <stdlib.h>
8 #include <stdarg.h>
9 #include <errno.h>
10 #include <signal.h>
11 #include <strings.h>
12 #include "os.h"
13 #include "sysdep/barrier.h"
14 #include "sysdep/sigcontext.h"
15 #include "user.h"
16 
17 /*
18  * These are the asynchronous signals.  SIGPROF is excluded because we want to
19  * be able to profile all of UML, not just the non-critical sections.  If
20  * profiling is not thread-safe, then that is not my problem.  We can disable
21  * profiling when SMP is enabled in that case.
22  */
23 #define SIGIO_BIT 0
24 #define SIGIO_MASK (1 << SIGIO_BIT)
25 
26 #define SIGVTALRM_BIT 1
27 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
28 
29 /*
30  * These are used by both the signal handlers and
31  * block/unblock_signals.  I don't want modifications cached in a
32  * register - they must go straight to memory.
33  */
34 static volatile int signals_enabled = 1;
35 static volatile int pending = 0;
36 
37 void sig_handler(int sig, struct sigcontext *sc)
38 {
39 	int enabled;
40 
41 	enabled = signals_enabled;
42 	if (!enabled && (sig == SIGIO)) {
43 		pending |= SIGIO_MASK;
44 		return;
45 	}
46 
47 	block_signals();
48 
49 	sig_handler_common_skas(sig, sc);
50 
51 	set_signals(enabled);
52 }
53 
54 static void real_alarm_handler(struct sigcontext *sc)
55 {
56 	struct uml_pt_regs regs;
57 
58 	if (sc != NULL)
59 		copy_sc(&regs, sc);
60 	regs.is_user = 0;
61 	unblock_signals();
62 	timer_handler(SIGVTALRM, &regs);
63 }
64 
65 void alarm_handler(int sig, struct sigcontext *sc)
66 {
67 	int enabled;
68 
69 	enabled = signals_enabled;
70 	if (!signals_enabled) {
71 		pending |= SIGVTALRM_MASK;
72 		return;
73 	}
74 
75 	block_signals();
76 
77 	real_alarm_handler(sc);
78 	set_signals(enabled);
79 }
80 
81 void timer_init(void)
82 {
83 	set_handler(SIGVTALRM, (__sighandler_t) alarm_handler,
84 		    SA_ONSTACK | SA_RESTART, SIGUSR1, SIGIO, SIGWINCH, -1);
85 }
86 
87 void set_sigstack(void *sig_stack, int size)
88 {
89 	stack_t stack = ((stack_t) { .ss_flags	= 0,
90 				     .ss_sp	= (__ptr_t) sig_stack,
91 				     .ss_size 	= size - sizeof(void *) });
92 
93 	if (sigaltstack(&stack, NULL) != 0)
94 		panic("enabling signal stack failed, errno = %d\n", errno);
95 }
96 
97 void remove_sigstack(void)
98 {
99 	stack_t stack = ((stack_t) { .ss_flags	= SS_DISABLE,
100 				     .ss_sp	= NULL,
101 				     .ss_size	= 0 });
102 
103 	if (sigaltstack(&stack, NULL) != 0)
104 		panic("disabling signal stack failed, errno = %d\n", errno);
105 }
106 
107 void (*handlers[_NSIG])(int sig, struct sigcontext *sc);
108 
109 void handle_signal(int sig, struct sigcontext *sc)
110 {
111 	unsigned long pending = 1UL << sig;
112 
113 	do {
114 		int nested, bail;
115 
116 		/*
117 		 * pending comes back with one bit set for each
118 		 * interrupt that arrived while setting up the stack,
119 		 * plus a bit for this interrupt, plus the zero bit is
120 		 * set if this is a nested interrupt.
121 		 * If bail is true, then we interrupted another
122 		 * handler setting up the stack.  In this case, we
123 		 * have to return, and the upper handler will deal
124 		 * with this interrupt.
125 		 */
126 		bail = to_irq_stack(&pending);
127 		if (bail)
128 			return;
129 
130 		nested = pending & 1;
131 		pending &= ~1;
132 
133 		while ((sig = ffs(pending)) != 0){
134 			sig--;
135 			pending &= ~(1 << sig);
136 			(*handlers[sig])(sig, sc);
137 		}
138 
139 		/*
140 		 * Again, pending comes back with a mask of signals
141 		 * that arrived while tearing down the stack.  If this
142 		 * is non-zero, we just go back, set up the stack
143 		 * again, and handle the new interrupts.
144 		 */
145 		if (!nested)
146 			pending = from_irq_stack(nested);
147 	} while (pending);
148 }
149 
150 extern void hard_handler(int sig);
151 
152 void set_handler(int sig, void (*handler)(int), int flags, ...)
153 {
154 	struct sigaction action;
155 	va_list ap;
156 	sigset_t sig_mask;
157 	int mask;
158 
159 	handlers[sig] = (void (*)(int, struct sigcontext *)) handler;
160 	action.sa_handler = hard_handler;
161 
162 	sigemptyset(&action.sa_mask);
163 
164 	va_start(ap, flags);
165 	while ((mask = va_arg(ap, int)) != -1)
166 		sigaddset(&action.sa_mask, mask);
167 	va_end(ap);
168 
169 	action.sa_flags = flags;
170 	action.sa_restorer = NULL;
171 	if (sigaction(sig, &action, NULL) < 0)
172 		panic("sigaction failed - errno = %d\n", errno);
173 
174 	sigemptyset(&sig_mask);
175 	sigaddset(&sig_mask, sig);
176 	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
177 		panic("sigprocmask failed - errno = %d\n", errno);
178 }
179 
180 int change_sig(int signal, int on)
181 {
182 	sigset_t sigset, old;
183 
184 	sigemptyset(&sigset);
185 	sigaddset(&sigset, signal);
186 	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, &old) < 0)
187 		return -errno;
188 	return !sigismember(&old, signal);
189 }
190 
191 void block_signals(void)
192 {
193 	signals_enabled = 0;
194 	/*
195 	 * This must return with signals disabled, so this barrier
196 	 * ensures that writes are flushed out before the return.
197 	 * This might matter if gcc figures out how to inline this and
198 	 * decides to shuffle this code into the caller.
199 	 */
200 	mb();
201 }
202 
203 void unblock_signals(void)
204 {
205 	int save_pending;
206 
207 	if (signals_enabled == 1)
208 		return;
209 
210 	/*
211 	 * We loop because the IRQ handler returns with interrupts off.  So,
212 	 * interrupts may have arrived and we need to re-enable them and
213 	 * recheck pending.
214 	 */
215 	while(1) {
216 		/*
217 		 * Save and reset save_pending after enabling signals.  This
218 		 * way, pending won't be changed while we're reading it.
219 		 */
220 		signals_enabled = 1;
221 
222 		/*
223 		 * Setting signals_enabled and reading pending must
224 		 * happen in this order.
225 		 */
226 		mb();
227 
228 		save_pending = pending;
229 		if (save_pending == 0) {
230 			/*
231 			 * This must return with signals enabled, so
232 			 * this barrier ensures that writes are
233 			 * flushed out before the return.  This might
234 			 * matter if gcc figures out how to inline
235 			 * this (unlikely, given its size) and decides
236 			 * to shuffle this code into the caller.
237 			 */
238 			mb();
239 			return;
240 		}
241 
242 		pending = 0;
243 
244 		/*
245 		 * We have pending interrupts, so disable signals, as the
246 		 * handlers expect them off when they are called.  They will
247 		 * be enabled again above.
248 		 */
249 
250 		signals_enabled = 0;
251 
252 		/*
253 		 * Deal with SIGIO first because the alarm handler might
254 		 * schedule, leaving the pending SIGIO stranded until we come
255 		 * back here.
256 		 */
257 		if (save_pending & SIGIO_MASK)
258 			sig_handler_common_skas(SIGIO, NULL);
259 
260 		if (save_pending & SIGVTALRM_MASK)
261 			real_alarm_handler(NULL);
262 	}
263 }
264 
265 int get_signals(void)
266 {
267 	return signals_enabled;
268 }
269 
270 int set_signals(int enable)
271 {
272 	int ret;
273 	if (signals_enabled == enable)
274 		return enable;
275 
276 	ret = signals_enabled;
277 	if (enable)
278 		unblock_signals();
279 	else block_signals();
280 
281 	return ret;
282 }
283