xref: /linux/arch/um/os-Linux/signal.c (revision 61b63c556c0877ee6d3832ee641bc427ff4d94d6)
1 /*
2  * Copyright (C) 2004 PathScale, Inc
3  * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  * Licensed under the GPL
5  */
6 
7 #include <stdlib.h>
8 #include <stdarg.h>
9 #include <errno.h>
10 #include <signal.h>
11 #include <strings.h>
12 #include "os.h"
13 #include "sysdep/barrier.h"
14 #include "sysdep/sigcontext.h"
15 #include "user.h"
16 
17 /*
18  * These are the asynchronous signals.  SIGPROF is excluded because we want to
19  * be able to profile all of UML, not just the non-critical sections.  If
20  * profiling is not thread-safe, then that is not my problem.  We can disable
21  * profiling when SMP is enabled in that case.
22  */
23 #define SIGIO_BIT 0
24 #define SIGIO_MASK (1 << SIGIO_BIT)
25 
26 #define SIGVTALRM_BIT 1
27 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
28 
29 /*
30  * These are used by both the signal handlers and
31  * block/unblock_signals.  I don't want modifications cached in a
32  * register - they must go straight to memory.
33  */
34 static volatile int signals_enabled = 1;
35 static volatile int pending = 0;
36 
37 void sig_handler(int sig, struct sigcontext *sc)
38 {
39 	int enabled;
40 
41 	enabled = signals_enabled;
42 	if (!enabled && (sig == SIGIO)) {
43 		pending |= SIGIO_MASK;
44 		return;
45 	}
46 
47 	block_signals();
48 
49 	sig_handler_common_skas(sig, sc);
50 
51 	set_signals(enabled);
52 }
53 
54 static void real_alarm_handler(struct sigcontext *sc)
55 {
56 	struct uml_pt_regs regs;
57 
58 	if (sc != NULL)
59 		copy_sc(&regs, sc);
60 	regs.is_user = 0;
61 	unblock_signals();
62 	timer_handler(SIGVTALRM, &regs);
63 }
64 
65 void alarm_handler(int sig, struct sigcontext *sc)
66 {
67 	int enabled;
68 
69 	enabled = signals_enabled;
70 	if (!signals_enabled) {
71 		pending |= SIGVTALRM_MASK;
72 		return;
73 	}
74 
75 	block_signals();
76 
77 	real_alarm_handler(sc);
78 	set_signals(enabled);
79 }
80 
81 void timer_init(void)
82 {
83 	set_handler(SIGVTALRM, (__sighandler_t) alarm_handler,
84 		    SA_ONSTACK | SA_RESTART, SIGUSR1, SIGIO, SIGWINCH, -1);
85 }
86 
87 void set_sigstack(void *sig_stack, int size)
88 {
89 	stack_t stack = ((stack_t) { .ss_flags	= 0,
90 				     .ss_sp	= (__ptr_t) sig_stack,
91 				     .ss_size 	= size - sizeof(void *) });
92 
93 	if (sigaltstack(&stack, NULL) != 0)
94 		panic("enabling signal stack failed, errno = %d\n", errno);
95 }
96 
97 void remove_sigstack(void)
98 {
99 	stack_t stack = ((stack_t) { .ss_flags	= SS_DISABLE,
100 				     .ss_sp	= NULL,
101 				     .ss_size	= 0 });
102 
103 	if (sigaltstack(&stack, NULL) != 0)
104 		panic("disabling signal stack failed, errno = %d\n", errno);
105 }
106 
107 void (*handlers[_NSIG])(int sig, struct sigcontext *sc);
108 
109 void handle_signal(int sig, struct sigcontext *sc)
110 {
111 	unsigned long pending = 1UL << sig;
112 
113 	do {
114 		int nested, bail;
115 
116 		/*
117 		 * pending comes back with one bit set for each
118 		 * interrupt that arrived while setting up the stack,
119 		 * plus a bit for this interrupt, plus the zero bit is
120 		 * set if this is a nested interrupt.
121 		 * If bail is true, then we interrupted another
122 		 * handler setting up the stack.  In this case, we
123 		 * have to return, and the upper handler will deal
124 		 * with this interrupt.
125 		 */
126 		bail = to_irq_stack(&pending);
127 		if (bail)
128 			return;
129 
130 		nested = pending & 1;
131 		pending &= ~1;
132 
133 		while ((sig = ffs(pending)) != 0){
134 			sig--;
135 			pending &= ~(1 << sig);
136 			(*handlers[sig])(sig, sc);
137 		}
138 
139 		/*
140 		 * Again, pending comes back with a mask of signals
141 		 * that arrived while tearing down the stack.  If this
142 		 * is non-zero, we just go back, set up the stack
143 		 * again, and handle the new interrupts.
144 		 */
145 		if (!nested)
146 			pending = from_irq_stack(nested);
147 	} while (pending);
148 }
149 
150 extern void hard_handler(int sig);
151 
152 void set_handler(int sig, void (*handler)(int), int flags, ...)
153 {
154 	struct sigaction action;
155 	va_list ap;
156 	sigset_t sig_mask;
157 	int mask;
158 
159 	handlers[sig] = (void (*)(int, struct sigcontext *)) handler;
160 	action.sa_handler = hard_handler;
161 
162 	sigemptyset(&action.sa_mask);
163 
164 	va_start(ap, flags);
165 	while ((mask = va_arg(ap, int)) != -1)
166 		sigaddset(&action.sa_mask, mask);
167 	va_end(ap);
168 
169 	action.sa_flags = flags;
170 	action.sa_restorer = NULL;
171 	if (sigaction(sig, &action, NULL) < 0)
172 		panic("sigaction failed - errno = %d\n", errno);
173 
174 	sigemptyset(&sig_mask);
175 	sigaddset(&sig_mask, sig);
176 	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
177 		panic("sigprocmask failed - errno = %d\n", errno);
178 }
179 
180 int change_sig(int signal, int on)
181 {
182 	sigset_t sigset, old;
183 
184 	sigemptyset(&sigset);
185 	sigaddset(&sigset, signal);
186 	sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, &old);
187 	return !sigismember(&old, signal);
188 }
189 
190 void block_signals(void)
191 {
192 	signals_enabled = 0;
193 	/*
194 	 * This must return with signals disabled, so this barrier
195 	 * ensures that writes are flushed out before the return.
196 	 * This might matter if gcc figures out how to inline this and
197 	 * decides to shuffle this code into the caller.
198 	 */
199 	mb();
200 }
201 
202 void unblock_signals(void)
203 {
204 	int save_pending;
205 
206 	if (signals_enabled == 1)
207 		return;
208 
209 	/*
210 	 * We loop because the IRQ handler returns with interrupts off.  So,
211 	 * interrupts may have arrived and we need to re-enable them and
212 	 * recheck pending.
213 	 */
214 	while(1) {
215 		/*
216 		 * Save and reset save_pending after enabling signals.  This
217 		 * way, pending won't be changed while we're reading it.
218 		 */
219 		signals_enabled = 1;
220 
221 		/*
222 		 * Setting signals_enabled and reading pending must
223 		 * happen in this order.
224 		 */
225 		mb();
226 
227 		save_pending = pending;
228 		if (save_pending == 0) {
229 			/*
230 			 * This must return with signals enabled, so
231 			 * this barrier ensures that writes are
232 			 * flushed out before the return.  This might
233 			 * matter if gcc figures out how to inline
234 			 * this (unlikely, given its size) and decides
235 			 * to shuffle this code into the caller.
236 			 */
237 			mb();
238 			return;
239 		}
240 
241 		pending = 0;
242 
243 		/*
244 		 * We have pending interrupts, so disable signals, as the
245 		 * handlers expect them off when they are called.  They will
246 		 * be enabled again above.
247 		 */
248 
249 		signals_enabled = 0;
250 
251 		/*
252 		 * Deal with SIGIO first because the alarm handler might
253 		 * schedule, leaving the pending SIGIO stranded until we come
254 		 * back here.
255 		 */
256 		if (save_pending & SIGIO_MASK)
257 			sig_handler_common_skas(SIGIO, NULL);
258 
259 		if (save_pending & SIGVTALRM_MASK)
260 			real_alarm_handler(NULL);
261 	}
262 }
263 
264 int get_signals(void)
265 {
266 	return signals_enabled;
267 }
268 
269 int set_signals(int enable)
270 {
271 	int ret;
272 	if (signals_enabled == enable)
273 		return enable;
274 
275 	ret = signals_enabled;
276 	if (enable)
277 		unblock_signals();
278 	else block_signals();
279 
280 	return ret;
281 }
282