xref: /linux/arch/um/kernel/trap.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Licensed under the GPL
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/sched.h>
8 #include <linux/hardirq.h>
9 #include <linux/module.h>
10 #include <asm/current.h>
11 #include <asm/pgtable.h>
12 #include <asm/tlbflush.h>
13 #include <arch.h>
14 #include <as-layout.h>
15 #include <kern_util.h>
16 #include <os.h>
17 #include <skas.h>
18 
19 /*
20  * Note this is constrained to return 0, -EFAULT, -EACCESS, -ENOMEM by
21  * segv().
22  */
23 int handle_page_fault(unsigned long address, unsigned long ip,
24 		      int is_write, int is_user, int *code_out)
25 {
26 	struct mm_struct *mm = current->mm;
27 	struct vm_area_struct *vma;
28 	pgd_t *pgd;
29 	pud_t *pud;
30 	pmd_t *pmd;
31 	pte_t *pte;
32 	int err = -EFAULT;
33 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
34 
35 	*code_out = SEGV_MAPERR;
36 
37 	/*
38 	 * If the fault was during atomic operation, don't take the fault, just
39 	 * fail.
40 	 */
41 	if (in_atomic())
42 		goto out_nosemaphore;
43 
44 	if (is_user)
45 		flags |= FAULT_FLAG_USER;
46 retry:
47 	down_read(&mm->mmap_sem);
48 	vma = find_vma(mm, address);
49 	if (!vma)
50 		goto out;
51 	else if (vma->vm_start <= address)
52 		goto good_area;
53 	else if (!(vma->vm_flags & VM_GROWSDOWN))
54 		goto out;
55 	else if (is_user && !ARCH_IS_STACKGROW(address))
56 		goto out;
57 	else if (expand_stack(vma, address))
58 		goto out;
59 
60 good_area:
61 	*code_out = SEGV_ACCERR;
62 	if (is_write) {
63 		if (!(vma->vm_flags & VM_WRITE))
64 			goto out;
65 		flags |= FAULT_FLAG_WRITE;
66 	} else {
67 		/* Don't require VM_READ|VM_EXEC for write faults! */
68 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
69 			goto out;
70 	}
71 
72 	do {
73 		int fault;
74 
75 		fault = handle_mm_fault(mm, vma, address, flags);
76 
77 		if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
78 			goto out_nosemaphore;
79 
80 		if (unlikely(fault & VM_FAULT_ERROR)) {
81 			if (fault & VM_FAULT_OOM) {
82 				goto out_of_memory;
83 			} else if (fault & VM_FAULT_SIGSEGV) {
84 				goto out;
85 			} else if (fault & VM_FAULT_SIGBUS) {
86 				err = -EACCES;
87 				goto out;
88 			}
89 			BUG();
90 		}
91 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
92 			if (fault & VM_FAULT_MAJOR)
93 				current->maj_flt++;
94 			else
95 				current->min_flt++;
96 			if (fault & VM_FAULT_RETRY) {
97 				flags &= ~FAULT_FLAG_ALLOW_RETRY;
98 				flags |= FAULT_FLAG_TRIED;
99 
100 				goto retry;
101 			}
102 		}
103 
104 		pgd = pgd_offset(mm, address);
105 		pud = pud_offset(pgd, address);
106 		pmd = pmd_offset(pud, address);
107 		pte = pte_offset_kernel(pmd, address);
108 	} while (!pte_present(*pte));
109 	err = 0;
110 	/*
111 	 * The below warning was added in place of
112 	 *	pte_mkyoung(); if (is_write) pte_mkdirty();
113 	 * If it's triggered, we'd see normally a hang here (a clean pte is
114 	 * marked read-only to emulate the dirty bit).
115 	 * However, the generic code can mark a PTE writable but clean on a
116 	 * concurrent read fault, triggering this harmlessly. So comment it out.
117 	 */
118 #if 0
119 	WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte)));
120 #endif
121 	flush_tlb_page(vma, address);
122 out:
123 	up_read(&mm->mmap_sem);
124 out_nosemaphore:
125 	return err;
126 
127 out_of_memory:
128 	/*
129 	 * We ran out of memory, call the OOM killer, and return the userspace
130 	 * (which will retry the fault, or kill us if we got oom-killed).
131 	 */
132 	up_read(&mm->mmap_sem);
133 	if (!is_user)
134 		goto out_nosemaphore;
135 	pagefault_out_of_memory();
136 	return 0;
137 }
138 EXPORT_SYMBOL(handle_page_fault);
139 
140 static void show_segv_info(struct uml_pt_regs *regs)
141 {
142 	struct task_struct *tsk = current;
143 	struct faultinfo *fi = UPT_FAULTINFO(regs);
144 
145 	if (!unhandled_signal(tsk, SIGSEGV))
146 		return;
147 
148 	if (!printk_ratelimit())
149 		return;
150 
151 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %x",
152 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
153 		tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi),
154 		(void *)UPT_IP(regs), (void *)UPT_SP(regs),
155 		fi->error_code);
156 
157 	print_vma_addr(KERN_CONT " in ", UPT_IP(regs));
158 	printk(KERN_CONT "\n");
159 }
160 
161 static void bad_segv(struct faultinfo fi, unsigned long ip)
162 {
163 	struct siginfo si;
164 
165 	si.si_signo = SIGSEGV;
166 	si.si_code = SEGV_ACCERR;
167 	si.si_addr = (void __user *) FAULT_ADDRESS(fi);
168 	current->thread.arch.faultinfo = fi;
169 	force_sig_info(SIGSEGV, &si, current);
170 }
171 
172 void fatal_sigsegv(void)
173 {
174 	force_sigsegv(SIGSEGV, current);
175 	do_signal();
176 	/*
177 	 * This is to tell gcc that we're not returning - do_signal
178 	 * can, in general, return, but in this case, it's not, since
179 	 * we just got a fatal SIGSEGV queued.
180 	 */
181 	os_dump_core();
182 }
183 
184 void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
185 {
186 	struct faultinfo * fi = UPT_FAULTINFO(regs);
187 
188 	if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) {
189 		show_segv_info(regs);
190 		bad_segv(*fi, UPT_IP(regs));
191 		return;
192 	}
193 	segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs);
194 }
195 
196 /*
197  * We give a *copy* of the faultinfo in the regs to segv.
198  * This must be done, since nesting SEGVs could overwrite
199  * the info in the regs. A pointer to the info then would
200  * give us bad data!
201  */
202 unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user,
203 		   struct uml_pt_regs *regs)
204 {
205 	struct siginfo si;
206 	jmp_buf *catcher;
207 	int err;
208 	int is_write = FAULT_WRITE(fi);
209 	unsigned long address = FAULT_ADDRESS(fi);
210 
211 	if (!is_user && regs)
212 		current->thread.segv_regs = container_of(regs, struct pt_regs, regs);
213 
214 	if (!is_user && (address >= start_vm) && (address < end_vm)) {
215 		flush_tlb_kernel_vm();
216 		goto out;
217 	}
218 	else if (current->mm == NULL) {
219 		show_regs(container_of(regs, struct pt_regs, regs));
220 		panic("Segfault with no mm");
221 	}
222 
223 	if (SEGV_IS_FIXABLE(&fi) || SEGV_MAYBE_FIXABLE(&fi))
224 		err = handle_page_fault(address, ip, is_write, is_user,
225 					&si.si_code);
226 	else {
227 		err = -EFAULT;
228 		/*
229 		 * A thread accessed NULL, we get a fault, but CR2 is invalid.
230 		 * This code is used in __do_copy_from_user() of TT mode.
231 		 * XXX tt mode is gone, so maybe this isn't needed any more
232 		 */
233 		address = 0;
234 	}
235 
236 	catcher = current->thread.fault_catcher;
237 	if (!err)
238 		goto out;
239 	else if (catcher != NULL) {
240 		current->thread.fault_addr = (void *) address;
241 		UML_LONGJMP(catcher, 1);
242 	}
243 	else if (current->thread.fault_addr != NULL)
244 		panic("fault_addr set but no fault catcher");
245 	else if (!is_user && arch_fixup(ip, regs))
246 		goto out;
247 
248 	if (!is_user) {
249 		show_regs(container_of(regs, struct pt_regs, regs));
250 		panic("Kernel mode fault at addr 0x%lx, ip 0x%lx",
251 		      address, ip);
252 	}
253 
254 	show_segv_info(regs);
255 
256 	if (err == -EACCES) {
257 		si.si_signo = SIGBUS;
258 		si.si_errno = 0;
259 		si.si_code = BUS_ADRERR;
260 		si.si_addr = (void __user *)address;
261 		current->thread.arch.faultinfo = fi;
262 		force_sig_info(SIGBUS, &si, current);
263 	} else {
264 		BUG_ON(err != -EFAULT);
265 		si.si_signo = SIGSEGV;
266 		si.si_addr = (void __user *) address;
267 		current->thread.arch.faultinfo = fi;
268 		force_sig_info(SIGSEGV, &si, current);
269 	}
270 
271 out:
272 	if (regs)
273 		current->thread.segv_regs = NULL;
274 
275 	return 0;
276 }
277 
278 void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs)
279 {
280 	struct faultinfo *fi;
281 	struct siginfo clean_si;
282 
283 	if (!UPT_IS_USER(regs)) {
284 		if (sig == SIGBUS)
285 			printk(KERN_ERR "Bus error - the host /dev/shm or /tmp "
286 			       "mount likely just ran out of space\n");
287 		panic("Kernel mode signal %d", sig);
288 	}
289 
290 	arch_examine_signal(sig, regs);
291 
292 	memset(&clean_si, 0, sizeof(clean_si));
293 	clean_si.si_signo = si->si_signo;
294 	clean_si.si_errno = si->si_errno;
295 	clean_si.si_code = si->si_code;
296 	switch (sig) {
297 	case SIGILL:
298 	case SIGFPE:
299 	case SIGSEGV:
300 	case SIGBUS:
301 	case SIGTRAP:
302 		fi = UPT_FAULTINFO(regs);
303 		clean_si.si_addr = (void __user *) FAULT_ADDRESS(*fi);
304 		current->thread.arch.faultinfo = *fi;
305 #ifdef __ARCH_SI_TRAPNO
306 		clean_si.si_trapno = si->si_trapno;
307 #endif
308 		break;
309 	default:
310 		printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d)\n",
311 			sig, si->si_code);
312 	}
313 
314 	force_sig_info(sig, &clean_si, current);
315 }
316 
317 void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs)
318 {
319 	if (current->thread.fault_catcher != NULL)
320 		UML_LONGJMP(current->thread.fault_catcher, 1);
321 	else
322 		relay_signal(sig, si, regs);
323 }
324 
325 void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
326 {
327 	do_IRQ(WINCH_IRQ, regs);
328 }
329 
330 void trap_init(void)
331 {
332 }
333