xref: /linux/arch/um/kernel/trap.c (revision d27656d02d85078c63f060fca9c5d99794791a75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/sched/signal.h>
8 #include <linux/hardirq.h>
9 #include <linux/module.h>
10 #include <linux/uaccess.h>
11 #include <linux/sched/debug.h>
12 #include <asm/current.h>
13 #include <asm/tlbflush.h>
14 #include <arch.h>
15 #include <as-layout.h>
16 #include <kern_util.h>
17 #include <os.h>
18 #include <skas.h>
19 
20 /*
21  * Note this is constrained to return 0, -EFAULT, -EACCES, -ENOMEM by
22  * segv().
23  */
24 int handle_page_fault(unsigned long address, unsigned long ip,
25 		      int is_write, int is_user, int *code_out)
26 {
27 	struct mm_struct *mm = current->mm;
28 	struct vm_area_struct *vma;
29 	pmd_t *pmd;
30 	pte_t *pte;
31 	int err = -EFAULT;
32 	unsigned int flags = FAULT_FLAG_DEFAULT;
33 
34 	*code_out = SEGV_MAPERR;
35 
36 	/*
37 	 * If the fault was with pagefaults disabled, don't take the fault, just
38 	 * fail.
39 	 */
40 	if (faulthandler_disabled())
41 		goto out_nosemaphore;
42 
43 	if (is_user)
44 		flags |= FAULT_FLAG_USER;
45 retry:
46 	mmap_read_lock(mm);
47 	vma = find_vma(mm, address);
48 	if (!vma)
49 		goto out;
50 	else if (vma->vm_start <= address)
51 		goto good_area;
52 	else if (!(vma->vm_flags & VM_GROWSDOWN))
53 		goto out;
54 	else if (is_user && !ARCH_IS_STACKGROW(address))
55 		goto out;
56 	else if (expand_stack(vma, address))
57 		goto out;
58 
59 good_area:
60 	*code_out = SEGV_ACCERR;
61 	if (is_write) {
62 		if (!(vma->vm_flags & VM_WRITE))
63 			goto out;
64 		flags |= FAULT_FLAG_WRITE;
65 	} else {
66 		/* Don't require VM_READ|VM_EXEC for write faults! */
67 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
68 			goto out;
69 	}
70 
71 	do {
72 		vm_fault_t fault;
73 
74 		fault = handle_mm_fault(vma, address, flags, NULL);
75 
76 		if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
77 			goto out_nosemaphore;
78 
79 		if (unlikely(fault & VM_FAULT_ERROR)) {
80 			if (fault & VM_FAULT_OOM) {
81 				goto out_of_memory;
82 			} else if (fault & VM_FAULT_SIGSEGV) {
83 				goto out;
84 			} else if (fault & VM_FAULT_SIGBUS) {
85 				err = -EACCES;
86 				goto out;
87 			}
88 			BUG();
89 		}
90 		if (fault & VM_FAULT_RETRY) {
91 			flags |= FAULT_FLAG_TRIED;
92 
93 			goto retry;
94 		}
95 
96 		pmd = pmd_off(mm, address);
97 		pte = pte_offset_kernel(pmd, address);
98 	} while (!pte_present(*pte));
99 	err = 0;
100 	/*
101 	 * The below warning was added in place of
102 	 *	pte_mkyoung(); if (is_write) pte_mkdirty();
103 	 * If it's triggered, we'd see normally a hang here (a clean pte is
104 	 * marked read-only to emulate the dirty bit).
105 	 * However, the generic code can mark a PTE writable but clean on a
106 	 * concurrent read fault, triggering this harmlessly. So comment it out.
107 	 */
108 #if 0
109 	WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte)));
110 #endif
111 	flush_tlb_page(vma, address);
112 out:
113 	mmap_read_unlock(mm);
114 out_nosemaphore:
115 	return err;
116 
117 out_of_memory:
118 	/*
119 	 * We ran out of memory, call the OOM killer, and return the userspace
120 	 * (which will retry the fault, or kill us if we got oom-killed).
121 	 */
122 	mmap_read_unlock(mm);
123 	if (!is_user)
124 		goto out_nosemaphore;
125 	pagefault_out_of_memory();
126 	return 0;
127 }
128 
129 static void show_segv_info(struct uml_pt_regs *regs)
130 {
131 	struct task_struct *tsk = current;
132 	struct faultinfo *fi = UPT_FAULTINFO(regs);
133 
134 	if (!unhandled_signal(tsk, SIGSEGV))
135 		return;
136 
137 	if (!printk_ratelimit())
138 		return;
139 
140 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %x",
141 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
142 		tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi),
143 		(void *)UPT_IP(regs), (void *)UPT_SP(regs),
144 		fi->error_code);
145 
146 	print_vma_addr(KERN_CONT " in ", UPT_IP(regs));
147 	printk(KERN_CONT "\n");
148 }
149 
150 static void bad_segv(struct faultinfo fi, unsigned long ip)
151 {
152 	current->thread.arch.faultinfo = fi;
153 	force_sig_fault(SIGSEGV, SEGV_ACCERR, (void __user *) FAULT_ADDRESS(fi));
154 }
155 
156 void fatal_sigsegv(void)
157 {
158 	force_fatal_sig(SIGSEGV);
159 	do_signal(&current->thread.regs);
160 	/*
161 	 * This is to tell gcc that we're not returning - do_signal
162 	 * can, in general, return, but in this case, it's not, since
163 	 * we just got a fatal SIGSEGV queued.
164 	 */
165 	os_dump_core();
166 }
167 
168 /**
169  * segv_handler() - the SIGSEGV handler
170  * @sig:	the signal number
171  * @unused_si:	the signal info struct; unused in this handler
172  * @regs:	the ptrace register information
173  *
174  * The handler first extracts the faultinfo from the UML ptrace regs struct.
175  * If the userfault did not happen in an UML userspace process, bad_segv is called.
176  * Otherwise the signal did happen in a cloned userspace process, handle it.
177  */
178 void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
179 {
180 	struct faultinfo * fi = UPT_FAULTINFO(regs);
181 
182 	if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) {
183 		show_segv_info(regs);
184 		bad_segv(*fi, UPT_IP(regs));
185 		return;
186 	}
187 	segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs);
188 }
189 
190 /*
191  * We give a *copy* of the faultinfo in the regs to segv.
192  * This must be done, since nesting SEGVs could overwrite
193  * the info in the regs. A pointer to the info then would
194  * give us bad data!
195  */
196 unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user,
197 		   struct uml_pt_regs *regs)
198 {
199 	jmp_buf *catcher;
200 	int si_code;
201 	int err;
202 	int is_write = FAULT_WRITE(fi);
203 	unsigned long address = FAULT_ADDRESS(fi);
204 
205 	if (!is_user && regs)
206 		current->thread.segv_regs = container_of(regs, struct pt_regs, regs);
207 
208 	if (!is_user && (address >= start_vm) && (address < end_vm)) {
209 		flush_tlb_kernel_vm();
210 		goto out;
211 	}
212 	else if (current->mm == NULL) {
213 		show_regs(container_of(regs, struct pt_regs, regs));
214 		panic("Segfault with no mm");
215 	}
216 	else if (!is_user && address > PAGE_SIZE && address < TASK_SIZE) {
217 		show_regs(container_of(regs, struct pt_regs, regs));
218 		panic("Kernel tried to access user memory at addr 0x%lx, ip 0x%lx",
219 		       address, ip);
220 	}
221 
222 	if (SEGV_IS_FIXABLE(&fi))
223 		err = handle_page_fault(address, ip, is_write, is_user,
224 					&si_code);
225 	else {
226 		err = -EFAULT;
227 		/*
228 		 * A thread accessed NULL, we get a fault, but CR2 is invalid.
229 		 * This code is used in __do_copy_from_user() of TT mode.
230 		 * XXX tt mode is gone, so maybe this isn't needed any more
231 		 */
232 		address = 0;
233 	}
234 
235 	catcher = current->thread.fault_catcher;
236 	if (!err)
237 		goto out;
238 	else if (catcher != NULL) {
239 		current->thread.fault_addr = (void *) address;
240 		UML_LONGJMP(catcher, 1);
241 	}
242 	else if (current->thread.fault_addr != NULL)
243 		panic("fault_addr set but no fault catcher");
244 	else if (!is_user && arch_fixup(ip, regs))
245 		goto out;
246 
247 	if (!is_user) {
248 		show_regs(container_of(regs, struct pt_regs, regs));
249 		panic("Kernel mode fault at addr 0x%lx, ip 0x%lx",
250 		      address, ip);
251 	}
252 
253 	show_segv_info(regs);
254 
255 	if (err == -EACCES) {
256 		current->thread.arch.faultinfo = fi;
257 		force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
258 	} else {
259 		BUG_ON(err != -EFAULT);
260 		current->thread.arch.faultinfo = fi;
261 		force_sig_fault(SIGSEGV, si_code, (void __user *) address);
262 	}
263 
264 out:
265 	if (regs)
266 		current->thread.segv_regs = NULL;
267 
268 	return 0;
269 }
270 
271 void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs)
272 {
273 	int code, err;
274 	if (!UPT_IS_USER(regs)) {
275 		if (sig == SIGBUS)
276 			printk(KERN_ERR "Bus error - the host /dev/shm or /tmp "
277 			       "mount likely just ran out of space\n");
278 		panic("Kernel mode signal %d", sig);
279 	}
280 
281 	arch_examine_signal(sig, regs);
282 
283 	/* Is the signal layout for the signal known?
284 	 * Signal data must be scrubbed to prevent information leaks.
285 	 */
286 	code = si->si_code;
287 	err = si->si_errno;
288 	if ((err == 0) && (siginfo_layout(sig, code) == SIL_FAULT)) {
289 		struct faultinfo *fi = UPT_FAULTINFO(regs);
290 		current->thread.arch.faultinfo = *fi;
291 		force_sig_fault(sig, code, (void __user *)FAULT_ADDRESS(*fi));
292 	} else {
293 		printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d) with errno %d\n",
294 		       sig, code, err);
295 		force_sig(sig);
296 	}
297 }
298 
299 void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs)
300 {
301 	if (current->thread.fault_catcher != NULL)
302 		UML_LONGJMP(current->thread.fault_catcher, 1);
303 	else
304 		relay_signal(sig, si, regs);
305 }
306 
307 void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
308 {
309 	do_IRQ(WINCH_IRQ, regs);
310 }
311