1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Licensed under the GPL 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/sched/signal.h> 8 #include <linux/hardirq.h> 9 #include <linux/module.h> 10 #include <linux/uaccess.h> 11 #include <linux/sched/debug.h> 12 #include <asm/current.h> 13 #include <asm/pgtable.h> 14 #include <asm/tlbflush.h> 15 #include <arch.h> 16 #include <as-layout.h> 17 #include <kern_util.h> 18 #include <os.h> 19 #include <skas.h> 20 21 /* 22 * Note this is constrained to return 0, -EFAULT, -EACCESS, -ENOMEM by 23 * segv(). 24 */ 25 int handle_page_fault(unsigned long address, unsigned long ip, 26 int is_write, int is_user, int *code_out) 27 { 28 struct mm_struct *mm = current->mm; 29 struct vm_area_struct *vma; 30 pgd_t *pgd; 31 pud_t *pud; 32 pmd_t *pmd; 33 pte_t *pte; 34 int err = -EFAULT; 35 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 36 37 *code_out = SEGV_MAPERR; 38 39 /* 40 * If the fault was with pagefaults disabled, don't take the fault, just 41 * fail. 42 */ 43 if (faulthandler_disabled()) 44 goto out_nosemaphore; 45 46 if (is_user) 47 flags |= FAULT_FLAG_USER; 48 retry: 49 down_read(&mm->mmap_sem); 50 vma = find_vma(mm, address); 51 if (!vma) 52 goto out; 53 else if (vma->vm_start <= address) 54 goto good_area; 55 else if (!(vma->vm_flags & VM_GROWSDOWN)) 56 goto out; 57 else if (is_user && !ARCH_IS_STACKGROW(address)) 58 goto out; 59 else if (expand_stack(vma, address)) 60 goto out; 61 62 good_area: 63 *code_out = SEGV_ACCERR; 64 if (is_write) { 65 if (!(vma->vm_flags & VM_WRITE)) 66 goto out; 67 flags |= FAULT_FLAG_WRITE; 68 } else { 69 /* Don't require VM_READ|VM_EXEC for write faults! */ 70 if (!(vma->vm_flags & (VM_READ | VM_EXEC))) 71 goto out; 72 } 73 74 do { 75 int fault; 76 77 fault = handle_mm_fault(vma, address, flags); 78 79 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) 80 goto out_nosemaphore; 81 82 if (unlikely(fault & VM_FAULT_ERROR)) { 83 if (fault & VM_FAULT_OOM) { 84 goto out_of_memory; 85 } else if (fault & VM_FAULT_SIGSEGV) { 86 goto out; 87 } else if (fault & VM_FAULT_SIGBUS) { 88 err = -EACCES; 89 goto out; 90 } 91 BUG(); 92 } 93 if (flags & FAULT_FLAG_ALLOW_RETRY) { 94 if (fault & VM_FAULT_MAJOR) 95 current->maj_flt++; 96 else 97 current->min_flt++; 98 if (fault & VM_FAULT_RETRY) { 99 flags &= ~FAULT_FLAG_ALLOW_RETRY; 100 flags |= FAULT_FLAG_TRIED; 101 102 goto retry; 103 } 104 } 105 106 pgd = pgd_offset(mm, address); 107 pud = pud_offset(pgd, address); 108 pmd = pmd_offset(pud, address); 109 pte = pte_offset_kernel(pmd, address); 110 } while (!pte_present(*pte)); 111 err = 0; 112 /* 113 * The below warning was added in place of 114 * pte_mkyoung(); if (is_write) pte_mkdirty(); 115 * If it's triggered, we'd see normally a hang here (a clean pte is 116 * marked read-only to emulate the dirty bit). 117 * However, the generic code can mark a PTE writable but clean on a 118 * concurrent read fault, triggering this harmlessly. So comment it out. 119 */ 120 #if 0 121 WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte))); 122 #endif 123 flush_tlb_page(vma, address); 124 out: 125 up_read(&mm->mmap_sem); 126 out_nosemaphore: 127 return err; 128 129 out_of_memory: 130 /* 131 * We ran out of memory, call the OOM killer, and return the userspace 132 * (which will retry the fault, or kill us if we got oom-killed). 133 */ 134 up_read(&mm->mmap_sem); 135 if (!is_user) 136 goto out_nosemaphore; 137 pagefault_out_of_memory(); 138 return 0; 139 } 140 EXPORT_SYMBOL(handle_page_fault); 141 142 static void show_segv_info(struct uml_pt_regs *regs) 143 { 144 struct task_struct *tsk = current; 145 struct faultinfo *fi = UPT_FAULTINFO(regs); 146 147 if (!unhandled_signal(tsk, SIGSEGV)) 148 return; 149 150 if (!printk_ratelimit()) 151 return; 152 153 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %x", 154 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 155 tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi), 156 (void *)UPT_IP(regs), (void *)UPT_SP(regs), 157 fi->error_code); 158 159 print_vma_addr(KERN_CONT " in ", UPT_IP(regs)); 160 printk(KERN_CONT "\n"); 161 } 162 163 static void bad_segv(struct faultinfo fi, unsigned long ip) 164 { 165 struct siginfo si; 166 167 si.si_signo = SIGSEGV; 168 si.si_code = SEGV_ACCERR; 169 si.si_addr = (void __user *) FAULT_ADDRESS(fi); 170 current->thread.arch.faultinfo = fi; 171 force_sig_info(SIGSEGV, &si, current); 172 } 173 174 void fatal_sigsegv(void) 175 { 176 force_sigsegv(SIGSEGV, current); 177 do_signal(¤t->thread.regs); 178 /* 179 * This is to tell gcc that we're not returning - do_signal 180 * can, in general, return, but in this case, it's not, since 181 * we just got a fatal SIGSEGV queued. 182 */ 183 os_dump_core(); 184 } 185 186 /** 187 * segv_handler() - the SIGSEGV handler 188 * @sig: the signal number 189 * @unused_si: the signal info struct; unused in this handler 190 * @regs: the ptrace register information 191 * 192 * The handler first extracts the faultinfo from the UML ptrace regs struct. 193 * If the userfault did not happen in an UML userspace process, bad_segv is called. 194 * Otherwise the signal did happen in a cloned userspace process, handle it. 195 */ 196 void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs) 197 { 198 struct faultinfo * fi = UPT_FAULTINFO(regs); 199 200 if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) { 201 show_segv_info(regs); 202 bad_segv(*fi, UPT_IP(regs)); 203 return; 204 } 205 segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs); 206 } 207 208 /* 209 * We give a *copy* of the faultinfo in the regs to segv. 210 * This must be done, since nesting SEGVs could overwrite 211 * the info in the regs. A pointer to the info then would 212 * give us bad data! 213 */ 214 unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user, 215 struct uml_pt_regs *regs) 216 { 217 struct siginfo si; 218 jmp_buf *catcher; 219 int err; 220 int is_write = FAULT_WRITE(fi); 221 unsigned long address = FAULT_ADDRESS(fi); 222 223 if (!is_user && regs) 224 current->thread.segv_regs = container_of(regs, struct pt_regs, regs); 225 226 if (!is_user && (address >= start_vm) && (address < end_vm)) { 227 flush_tlb_kernel_vm(); 228 goto out; 229 } 230 else if (current->mm == NULL) { 231 show_regs(container_of(regs, struct pt_regs, regs)); 232 panic("Segfault with no mm"); 233 } 234 else if (!is_user && address > PAGE_SIZE && address < TASK_SIZE) { 235 show_regs(container_of(regs, struct pt_regs, regs)); 236 panic("Kernel tried to access user memory at addr 0x%lx, ip 0x%lx", 237 address, ip); 238 } 239 240 if (SEGV_IS_FIXABLE(&fi)) 241 err = handle_page_fault(address, ip, is_write, is_user, 242 &si.si_code); 243 else { 244 err = -EFAULT; 245 /* 246 * A thread accessed NULL, we get a fault, but CR2 is invalid. 247 * This code is used in __do_copy_from_user() of TT mode. 248 * XXX tt mode is gone, so maybe this isn't needed any more 249 */ 250 address = 0; 251 } 252 253 catcher = current->thread.fault_catcher; 254 if (!err) 255 goto out; 256 else if (catcher != NULL) { 257 current->thread.fault_addr = (void *) address; 258 UML_LONGJMP(catcher, 1); 259 } 260 else if (current->thread.fault_addr != NULL) 261 panic("fault_addr set but no fault catcher"); 262 else if (!is_user && arch_fixup(ip, regs)) 263 goto out; 264 265 if (!is_user) { 266 show_regs(container_of(regs, struct pt_regs, regs)); 267 panic("Kernel mode fault at addr 0x%lx, ip 0x%lx", 268 address, ip); 269 } 270 271 show_segv_info(regs); 272 273 if (err == -EACCES) { 274 si.si_signo = SIGBUS; 275 si.si_errno = 0; 276 si.si_code = BUS_ADRERR; 277 si.si_addr = (void __user *)address; 278 current->thread.arch.faultinfo = fi; 279 force_sig_info(SIGBUS, &si, current); 280 } else { 281 BUG_ON(err != -EFAULT); 282 si.si_signo = SIGSEGV; 283 si.si_addr = (void __user *) address; 284 current->thread.arch.faultinfo = fi; 285 force_sig_info(SIGSEGV, &si, current); 286 } 287 288 out: 289 if (regs) 290 current->thread.segv_regs = NULL; 291 292 return 0; 293 } 294 295 void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs) 296 { 297 struct faultinfo *fi; 298 struct siginfo clean_si; 299 300 if (!UPT_IS_USER(regs)) { 301 if (sig == SIGBUS) 302 printk(KERN_ERR "Bus error - the host /dev/shm or /tmp " 303 "mount likely just ran out of space\n"); 304 panic("Kernel mode signal %d", sig); 305 } 306 307 arch_examine_signal(sig, regs); 308 309 memset(&clean_si, 0, sizeof(clean_si)); 310 clean_si.si_signo = si->si_signo; 311 clean_si.si_errno = si->si_errno; 312 clean_si.si_code = si->si_code; 313 switch (sig) { 314 case SIGILL: 315 case SIGFPE: 316 case SIGSEGV: 317 case SIGBUS: 318 case SIGTRAP: 319 fi = UPT_FAULTINFO(regs); 320 clean_si.si_addr = (void __user *) FAULT_ADDRESS(*fi); 321 current->thread.arch.faultinfo = *fi; 322 #ifdef __ARCH_SI_TRAPNO 323 clean_si.si_trapno = si->si_trapno; 324 #endif 325 break; 326 default: 327 printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d)\n", 328 sig, si->si_code); 329 } 330 331 force_sig_info(sig, &clean_si, current); 332 } 333 334 void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs) 335 { 336 if (current->thread.fault_catcher != NULL) 337 UML_LONGJMP(current->thread.fault_catcher, 1); 338 else 339 relay_signal(sig, si, regs); 340 } 341 342 void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs) 343 { 344 do_IRQ(WINCH_IRQ, regs); 345 } 346 347 void trap_init(void) 348 { 349 } 350