xref: /linux/arch/um/kernel/trap.c (revision a83c29e1d145cca5240952100acd1cd60f25fb5f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/sched/signal.h>
8 #include <linux/hardirq.h>
9 #include <linux/module.h>
10 #include <linux/uaccess.h>
11 #include <linux/sched/debug.h>
12 #include <asm/current.h>
13 #include <asm/tlbflush.h>
14 #include <arch.h>
15 #include <as-layout.h>
16 #include <kern_util.h>
17 #include <os.h>
18 #include <skas.h>
19 
20 /*
21  * Note this is constrained to return 0, -EFAULT, -EACCES, -ENOMEM by
22  * segv().
23  */
24 int handle_page_fault(unsigned long address, unsigned long ip,
25 		      int is_write, int is_user, int *code_out)
26 {
27 	struct mm_struct *mm = current->mm;
28 	struct vm_area_struct *vma;
29 	pmd_t *pmd;
30 	pte_t *pte;
31 	int err = -EFAULT;
32 	unsigned int flags = FAULT_FLAG_DEFAULT;
33 
34 	*code_out = SEGV_MAPERR;
35 
36 	/*
37 	 * If the fault was with pagefaults disabled, don't take the fault, just
38 	 * fail.
39 	 */
40 	if (faulthandler_disabled())
41 		goto out_nosemaphore;
42 
43 	if (is_user)
44 		flags |= FAULT_FLAG_USER;
45 retry:
46 	mmap_read_lock(mm);
47 	vma = find_vma(mm, address);
48 	if (!vma)
49 		goto out;
50 	if (vma->vm_start <= address)
51 		goto good_area;
52 	if (!(vma->vm_flags & VM_GROWSDOWN))
53 		goto out;
54 	if (is_user && !ARCH_IS_STACKGROW(address))
55 		goto out;
56 	vma = expand_stack(mm, address);
57 	if (!vma)
58 		goto out_nosemaphore;
59 
60 good_area:
61 	*code_out = SEGV_ACCERR;
62 	if (is_write) {
63 		if (!(vma->vm_flags & VM_WRITE))
64 			goto out;
65 		flags |= FAULT_FLAG_WRITE;
66 	} else {
67 		/* Don't require VM_READ|VM_EXEC for write faults! */
68 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
69 			goto out;
70 	}
71 
72 	do {
73 		vm_fault_t fault;
74 
75 		fault = handle_mm_fault(vma, address, flags, NULL);
76 
77 		if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
78 			goto out_nosemaphore;
79 
80 		/* The fault is fully completed (including releasing mmap lock) */
81 		if (fault & VM_FAULT_COMPLETED)
82 			return 0;
83 
84 		if (unlikely(fault & VM_FAULT_ERROR)) {
85 			if (fault & VM_FAULT_OOM) {
86 				goto out_of_memory;
87 			} else if (fault & VM_FAULT_SIGSEGV) {
88 				goto out;
89 			} else if (fault & VM_FAULT_SIGBUS) {
90 				err = -EACCES;
91 				goto out;
92 			}
93 			BUG();
94 		}
95 		if (fault & VM_FAULT_RETRY) {
96 			flags |= FAULT_FLAG_TRIED;
97 
98 			goto retry;
99 		}
100 
101 		pmd = pmd_off(mm, address);
102 		pte = pte_offset_kernel(pmd, address);
103 	} while (!pte_present(*pte));
104 	err = 0;
105 	/*
106 	 * The below warning was added in place of
107 	 *	pte_mkyoung(); if (is_write) pte_mkdirty();
108 	 * If it's triggered, we'd see normally a hang here (a clean pte is
109 	 * marked read-only to emulate the dirty bit).
110 	 * However, the generic code can mark a PTE writable but clean on a
111 	 * concurrent read fault, triggering this harmlessly. So comment it out.
112 	 */
113 #if 0
114 	WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte)));
115 #endif
116 
117 out:
118 	mmap_read_unlock(mm);
119 out_nosemaphore:
120 	return err;
121 
122 out_of_memory:
123 	/*
124 	 * We ran out of memory, call the OOM killer, and return the userspace
125 	 * (which will retry the fault, or kill us if we got oom-killed).
126 	 */
127 	mmap_read_unlock(mm);
128 	if (!is_user)
129 		goto out_nosemaphore;
130 	pagefault_out_of_memory();
131 	return 0;
132 }
133 
134 static void show_segv_info(struct uml_pt_regs *regs)
135 {
136 	struct task_struct *tsk = current;
137 	struct faultinfo *fi = UPT_FAULTINFO(regs);
138 
139 	if (!unhandled_signal(tsk, SIGSEGV))
140 		return;
141 
142 	if (!printk_ratelimit())
143 		return;
144 
145 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %x",
146 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
147 		tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi),
148 		(void *)UPT_IP(regs), (void *)UPT_SP(regs),
149 		fi->error_code);
150 
151 	print_vma_addr(KERN_CONT " in ", UPT_IP(regs));
152 	printk(KERN_CONT "\n");
153 }
154 
155 static void bad_segv(struct faultinfo fi, unsigned long ip)
156 {
157 	current->thread.arch.faultinfo = fi;
158 	force_sig_fault(SIGSEGV, SEGV_ACCERR, (void __user *) FAULT_ADDRESS(fi));
159 }
160 
161 void fatal_sigsegv(void)
162 {
163 	force_fatal_sig(SIGSEGV);
164 	do_signal(&current->thread.regs);
165 	/*
166 	 * This is to tell gcc that we're not returning - do_signal
167 	 * can, in general, return, but in this case, it's not, since
168 	 * we just got a fatal SIGSEGV queued.
169 	 */
170 	os_dump_core();
171 }
172 
173 /**
174  * segv_handler() - the SIGSEGV handler
175  * @sig:	the signal number
176  * @unused_si:	the signal info struct; unused in this handler
177  * @regs:	the ptrace register information
178  *
179  * The handler first extracts the faultinfo from the UML ptrace regs struct.
180  * If the userfault did not happen in an UML userspace process, bad_segv is called.
181  * Otherwise the signal did happen in a cloned userspace process, handle it.
182  */
183 void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
184 {
185 	struct faultinfo * fi = UPT_FAULTINFO(regs);
186 
187 	if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) {
188 		show_segv_info(regs);
189 		bad_segv(*fi, UPT_IP(regs));
190 		return;
191 	}
192 	segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs);
193 }
194 
195 /*
196  * We give a *copy* of the faultinfo in the regs to segv.
197  * This must be done, since nesting SEGVs could overwrite
198  * the info in the regs. A pointer to the info then would
199  * give us bad data!
200  */
201 unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user,
202 		   struct uml_pt_regs *regs)
203 {
204 	jmp_buf *catcher;
205 	int si_code;
206 	int err;
207 	int is_write = FAULT_WRITE(fi);
208 	unsigned long address = FAULT_ADDRESS(fi);
209 
210 	if (!is_user && regs)
211 		current->thread.segv_regs = container_of(regs, struct pt_regs, regs);
212 
213 	if (!is_user && init_mm.context.sync_tlb_range_to) {
214 		/*
215 		 * Kernel has pending updates from set_ptes that were not
216 		 * flushed yet. Syncing them should fix the pagefault (if not
217 		 * we'll get here again and panic).
218 		 */
219 		err = um_tlb_sync(&init_mm);
220 		if (err == -ENOMEM)
221 			report_enomem();
222 		if (err)
223 			panic("Failed to sync kernel TLBs: %d", err);
224 		goto out;
225 	}
226 	else if (current->mm == NULL) {
227 		show_regs(container_of(regs, struct pt_regs, regs));
228 		panic("Segfault with no mm");
229 	}
230 	else if (!is_user && address > PAGE_SIZE && address < TASK_SIZE) {
231 		show_regs(container_of(regs, struct pt_regs, regs));
232 		panic("Kernel tried to access user memory at addr 0x%lx, ip 0x%lx",
233 		       address, ip);
234 	}
235 
236 	if (SEGV_IS_FIXABLE(&fi))
237 		err = handle_page_fault(address, ip, is_write, is_user,
238 					&si_code);
239 	else {
240 		err = -EFAULT;
241 		/*
242 		 * A thread accessed NULL, we get a fault, but CR2 is invalid.
243 		 * This code is used in __do_copy_from_user() of TT mode.
244 		 * XXX tt mode is gone, so maybe this isn't needed any more
245 		 */
246 		address = 0;
247 	}
248 
249 	catcher = current->thread.fault_catcher;
250 	if (!err)
251 		goto out;
252 	else if (catcher != NULL) {
253 		current->thread.fault_addr = (void *) address;
254 		UML_LONGJMP(catcher, 1);
255 	}
256 	else if (current->thread.fault_addr != NULL)
257 		panic("fault_addr set but no fault catcher");
258 	else if (!is_user && arch_fixup(ip, regs))
259 		goto out;
260 
261 	if (!is_user) {
262 		show_regs(container_of(regs, struct pt_regs, regs));
263 		panic("Kernel mode fault at addr 0x%lx, ip 0x%lx",
264 		      address, ip);
265 	}
266 
267 	show_segv_info(regs);
268 
269 	if (err == -EACCES) {
270 		current->thread.arch.faultinfo = fi;
271 		force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
272 	} else {
273 		BUG_ON(err != -EFAULT);
274 		current->thread.arch.faultinfo = fi;
275 		force_sig_fault(SIGSEGV, si_code, (void __user *) address);
276 	}
277 
278 out:
279 	if (regs)
280 		current->thread.segv_regs = NULL;
281 
282 	return 0;
283 }
284 
285 void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs)
286 {
287 	int code, err;
288 	if (!UPT_IS_USER(regs)) {
289 		if (sig == SIGBUS)
290 			printk(KERN_ERR "Bus error - the host /dev/shm or /tmp "
291 			       "mount likely just ran out of space\n");
292 		panic("Kernel mode signal %d", sig);
293 	}
294 
295 	arch_examine_signal(sig, regs);
296 
297 	/* Is the signal layout for the signal known?
298 	 * Signal data must be scrubbed to prevent information leaks.
299 	 */
300 	code = si->si_code;
301 	err = si->si_errno;
302 	if ((err == 0) && (siginfo_layout(sig, code) == SIL_FAULT)) {
303 		struct faultinfo *fi = UPT_FAULTINFO(regs);
304 		current->thread.arch.faultinfo = *fi;
305 		force_sig_fault(sig, code, (void __user *)FAULT_ADDRESS(*fi));
306 	} else {
307 		printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d) with errno %d\n",
308 		       sig, code, err);
309 		force_sig(sig);
310 	}
311 }
312 
313 void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs)
314 {
315 	if (current->thread.fault_catcher != NULL)
316 		UML_LONGJMP(current->thread.fault_catcher, 1);
317 	else
318 		relay_signal(sig, si, regs);
319 }
320 
321 void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
322 {
323 	do_IRQ(WINCH_IRQ, regs);
324 }
325