1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk}) 4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de) 5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 6 * Copyright 2003 PathScale, Inc. 7 */ 8 9 #include <linux/stddef.h> 10 #include <linux/err.h> 11 #include <linux/hardirq.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/personality.h> 15 #include <linux/proc_fs.h> 16 #include <linux/ptrace.h> 17 #include <linux/random.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/sched/debug.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/task_stack.h> 23 #include <linux/seq_file.h> 24 #include <linux/tick.h> 25 #include <linux/threads.h> 26 #include <linux/resume_user_mode.h> 27 #include <asm/current.h> 28 #include <asm/mmu_context.h> 29 #include <linux/uaccess.h> 30 #include <as-layout.h> 31 #include <kern_util.h> 32 #include <os.h> 33 #include <skas.h> 34 #include <registers.h> 35 #include <linux/time-internal.h> 36 37 /* 38 * This is a per-cpu array. A processor only modifies its entry and it only 39 * cares about its entry, so it's OK if another processor is modifying its 40 * entry. 41 */ 42 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; 43 44 static inline int external_pid(void) 45 { 46 /* FIXME: Need to look up userspace_pid by cpu */ 47 return userspace_pid[0]; 48 } 49 50 int pid_to_processor_id(int pid) 51 { 52 int i; 53 54 for (i = 0; i < ncpus; i++) { 55 if (cpu_tasks[i].pid == pid) 56 return i; 57 } 58 return -1; 59 } 60 61 void free_stack(unsigned long stack, int order) 62 { 63 free_pages(stack, order); 64 } 65 66 unsigned long alloc_stack(int order, int atomic) 67 { 68 unsigned long page; 69 gfp_t flags = GFP_KERNEL; 70 71 if (atomic) 72 flags = GFP_ATOMIC; 73 page = __get_free_pages(flags, order); 74 75 return page; 76 } 77 78 static inline void set_current(struct task_struct *task) 79 { 80 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) 81 { external_pid(), task }); 82 } 83 84 extern void arch_switch_to(struct task_struct *to); 85 86 void *__switch_to(struct task_struct *from, struct task_struct *to) 87 { 88 to->thread.prev_sched = from; 89 set_current(to); 90 91 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf); 92 arch_switch_to(current); 93 94 return current->thread.prev_sched; 95 } 96 97 void interrupt_end(void) 98 { 99 struct pt_regs *regs = ¤t->thread.regs; 100 101 if (need_resched()) 102 schedule(); 103 if (test_thread_flag(TIF_SIGPENDING) || 104 test_thread_flag(TIF_NOTIFY_SIGNAL)) 105 do_signal(regs); 106 if (test_thread_flag(TIF_NOTIFY_RESUME)) 107 resume_user_mode_work(regs); 108 } 109 110 int get_current_pid(void) 111 { 112 return task_pid_nr(current); 113 } 114 115 /* 116 * This is called magically, by its address being stuffed in a jmp_buf 117 * and being longjmp-d to. 118 */ 119 void new_thread_handler(void) 120 { 121 int (*fn)(void *), n; 122 void *arg; 123 124 if (current->thread.prev_sched != NULL) 125 schedule_tail(current->thread.prev_sched); 126 current->thread.prev_sched = NULL; 127 128 fn = current->thread.request.u.thread.proc; 129 arg = current->thread.request.u.thread.arg; 130 131 /* 132 * callback returns only if the kernel thread execs a process 133 */ 134 n = fn(arg); 135 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs); 136 } 137 138 /* Called magically, see new_thread_handler above */ 139 void fork_handler(void) 140 { 141 force_flush_all(); 142 143 schedule_tail(current->thread.prev_sched); 144 145 /* 146 * XXX: if interrupt_end() calls schedule, this call to 147 * arch_switch_to isn't needed. We could want to apply this to 148 * improve performance. -bb 149 */ 150 arch_switch_to(current); 151 152 current->thread.prev_sched = NULL; 153 154 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs); 155 } 156 157 int copy_thread(unsigned long clone_flags, unsigned long sp, 158 unsigned long arg, struct task_struct * p, unsigned long tls) 159 { 160 void (*handler)(void); 161 int kthread = current->flags & (PF_KTHREAD | PF_IO_WORKER); 162 int ret = 0; 163 164 p->thread = (struct thread_struct) INIT_THREAD; 165 166 if (!kthread) { 167 memcpy(&p->thread.regs.regs, current_pt_regs(), 168 sizeof(p->thread.regs.regs)); 169 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0); 170 if (sp != 0) 171 REGS_SP(p->thread.regs.regs.gp) = sp; 172 173 handler = fork_handler; 174 175 arch_copy_thread(¤t->thread.arch, &p->thread.arch); 176 } else { 177 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp); 178 p->thread.request.u.thread.proc = (int (*)(void *))sp; 179 p->thread.request.u.thread.arg = (void *)arg; 180 handler = new_thread_handler; 181 } 182 183 new_thread(task_stack_page(p), &p->thread.switch_buf, handler); 184 185 if (!kthread) { 186 clear_flushed_tls(p); 187 188 /* 189 * Set a new TLS for the child thread? 190 */ 191 if (clone_flags & CLONE_SETTLS) 192 ret = arch_set_tls(p, tls); 193 } 194 195 return ret; 196 } 197 198 void initial_thread_cb(void (*proc)(void *), void *arg) 199 { 200 int save_kmalloc_ok = kmalloc_ok; 201 202 kmalloc_ok = 0; 203 initial_thread_cb_skas(proc, arg); 204 kmalloc_ok = save_kmalloc_ok; 205 } 206 207 void um_idle_sleep(void) 208 { 209 if (time_travel_mode != TT_MODE_OFF) 210 time_travel_sleep(); 211 else 212 os_idle_sleep(); 213 } 214 215 void arch_cpu_idle(void) 216 { 217 cpu_tasks[current_thread_info()->cpu].pid = os_getpid(); 218 um_idle_sleep(); 219 raw_local_irq_enable(); 220 } 221 222 int __cant_sleep(void) { 223 return in_atomic() || irqs_disabled() || in_interrupt(); 224 /* Is in_interrupt() really needed? */ 225 } 226 227 int user_context(unsigned long sp) 228 { 229 unsigned long stack; 230 231 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); 232 return stack != (unsigned long) current_thread_info(); 233 } 234 235 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; 236 237 void do_uml_exitcalls(void) 238 { 239 exitcall_t *call; 240 241 call = &__uml_exitcall_end; 242 while (--call >= &__uml_exitcall_begin) 243 (*call)(); 244 } 245 246 char *uml_strdup(const char *string) 247 { 248 return kstrdup(string, GFP_KERNEL); 249 } 250 EXPORT_SYMBOL(uml_strdup); 251 252 int copy_to_user_proc(void __user *to, void *from, int size) 253 { 254 return copy_to_user(to, from, size); 255 } 256 257 int copy_from_user_proc(void *to, void __user *from, int size) 258 { 259 return copy_from_user(to, from, size); 260 } 261 262 int clear_user_proc(void __user *buf, int size) 263 { 264 return clear_user(buf, size); 265 } 266 267 static atomic_t using_sysemu = ATOMIC_INIT(0); 268 int sysemu_supported; 269 270 void set_using_sysemu(int value) 271 { 272 if (value > sysemu_supported) 273 return; 274 atomic_set(&using_sysemu, value); 275 } 276 277 int get_using_sysemu(void) 278 { 279 return atomic_read(&using_sysemu); 280 } 281 282 static int sysemu_proc_show(struct seq_file *m, void *v) 283 { 284 seq_printf(m, "%d\n", get_using_sysemu()); 285 return 0; 286 } 287 288 static int sysemu_proc_open(struct inode *inode, struct file *file) 289 { 290 return single_open(file, sysemu_proc_show, NULL); 291 } 292 293 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf, 294 size_t count, loff_t *pos) 295 { 296 char tmp[2]; 297 298 if (copy_from_user(tmp, buf, 1)) 299 return -EFAULT; 300 301 if (tmp[0] >= '0' && tmp[0] <= '2') 302 set_using_sysemu(tmp[0] - '0'); 303 /* We use the first char, but pretend to write everything */ 304 return count; 305 } 306 307 static const struct proc_ops sysemu_proc_ops = { 308 .proc_open = sysemu_proc_open, 309 .proc_read = seq_read, 310 .proc_lseek = seq_lseek, 311 .proc_release = single_release, 312 .proc_write = sysemu_proc_write, 313 }; 314 315 int __init make_proc_sysemu(void) 316 { 317 struct proc_dir_entry *ent; 318 if (!sysemu_supported) 319 return 0; 320 321 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops); 322 323 if (ent == NULL) 324 { 325 printk(KERN_WARNING "Failed to register /proc/sysemu\n"); 326 return 0; 327 } 328 329 return 0; 330 } 331 332 late_initcall(make_proc_sysemu); 333 334 int singlestepping(void * t) 335 { 336 struct task_struct *task = t ? t : current; 337 338 if (!(task->ptrace & PT_DTRACE)) 339 return 0; 340 341 if (task->thread.singlestep_syscall) 342 return 1; 343 344 return 2; 345 } 346 347 /* 348 * Only x86 and x86_64 have an arch_align_stack(). 349 * All other arches have "#define arch_align_stack(x) (x)" 350 * in their asm/exec.h 351 * As this is included in UML from asm-um/system-generic.h, 352 * we can use it to behave as the subarch does. 353 */ 354 #ifndef arch_align_stack 355 unsigned long arch_align_stack(unsigned long sp) 356 { 357 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 358 sp -= get_random_int() % 8192; 359 return sp & ~0xf; 360 } 361 #endif 362 363 unsigned long __get_wchan(struct task_struct *p) 364 { 365 unsigned long stack_page, sp, ip; 366 bool seen_sched = 0; 367 368 stack_page = (unsigned long) task_stack_page(p); 369 /* Bail if the process has no kernel stack for some reason */ 370 if (stack_page == 0) 371 return 0; 372 373 sp = p->thread.switch_buf->JB_SP; 374 /* 375 * Bail if the stack pointer is below the bottom of the kernel 376 * stack for some reason 377 */ 378 if (sp < stack_page) 379 return 0; 380 381 while (sp < stack_page + THREAD_SIZE) { 382 ip = *((unsigned long *) sp); 383 if (in_sched_functions(ip)) 384 /* Ignore everything until we're above the scheduler */ 385 seen_sched = 1; 386 else if (kernel_text_address(ip) && seen_sched) 387 return ip; 388 389 sp += sizeof(unsigned long); 390 } 391 392 return 0; 393 } 394 395 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu) 396 { 397 int cpu = current_thread_info()->cpu; 398 399 return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu); 400 } 401 402