xref: /linux/arch/um/kernel/process.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <linux/tracehook.h>
22 #include <asm/current.h>
23 #include <asm/pgtable.h>
24 #include <asm/mmu_context.h>
25 #include <asm/uaccess.h>
26 #include <as-layout.h>
27 #include <kern_util.h>
28 #include <os.h>
29 #include <skas.h>
30 
31 /*
32  * This is a per-cpu array.  A processor only modifies its entry and it only
33  * cares about its entry, so it's OK if another processor is modifying its
34  * entry.
35  */
36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
37 
38 static inline int external_pid(void)
39 {
40 	/* FIXME: Need to look up userspace_pid by cpu */
41 	return userspace_pid[0];
42 }
43 
44 int pid_to_processor_id(int pid)
45 {
46 	int i;
47 
48 	for (i = 0; i < ncpus; i++) {
49 		if (cpu_tasks[i].pid == pid)
50 			return i;
51 	}
52 	return -1;
53 }
54 
55 void free_stack(unsigned long stack, int order)
56 {
57 	free_pages(stack, order);
58 }
59 
60 unsigned long alloc_stack(int order, int atomic)
61 {
62 	unsigned long page;
63 	gfp_t flags = GFP_KERNEL;
64 
65 	if (atomic)
66 		flags = GFP_ATOMIC;
67 	page = __get_free_pages(flags, order);
68 
69 	return page;
70 }
71 
72 static inline void set_current(struct task_struct *task)
73 {
74 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
75 		{ external_pid(), task });
76 }
77 
78 extern void arch_switch_to(struct task_struct *to);
79 
80 void *__switch_to(struct task_struct *from, struct task_struct *to)
81 {
82 	to->thread.prev_sched = from;
83 	set_current(to);
84 
85 	do {
86 		current->thread.saved_task = NULL;
87 
88 		switch_threads(&from->thread.switch_buf,
89 			       &to->thread.switch_buf);
90 
91 		arch_switch_to(current);
92 
93 		if (current->thread.saved_task)
94 			show_regs(&(current->thread.regs));
95 		to = current->thread.saved_task;
96 		from = current;
97 	} while (current->thread.saved_task);
98 
99 	return current->thread.prev_sched;
100 }
101 
102 void interrupt_end(void)
103 {
104 	if (need_resched())
105 		schedule();
106 	if (test_thread_flag(TIF_SIGPENDING))
107 		do_signal();
108 	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
109 		tracehook_notify_resume(&current->thread.regs);
110 }
111 
112 void exit_thread(void)
113 {
114 }
115 
116 int get_current_pid(void)
117 {
118 	return task_pid_nr(current);
119 }
120 
121 /*
122  * This is called magically, by its address being stuffed in a jmp_buf
123  * and being longjmp-d to.
124  */
125 void new_thread_handler(void)
126 {
127 	int (*fn)(void *), n;
128 	void *arg;
129 
130 	if (current->thread.prev_sched != NULL)
131 		schedule_tail(current->thread.prev_sched);
132 	current->thread.prev_sched = NULL;
133 
134 	fn = current->thread.request.u.thread.proc;
135 	arg = current->thread.request.u.thread.arg;
136 
137 	/*
138 	 * callback returns only if the kernel thread execs a process
139 	 */
140 	n = fn(arg);
141 	userspace(&current->thread.regs.regs);
142 }
143 
144 /* Called magically, see new_thread_handler above */
145 void fork_handler(void)
146 {
147 	force_flush_all();
148 
149 	schedule_tail(current->thread.prev_sched);
150 
151 	/*
152 	 * XXX: if interrupt_end() calls schedule, this call to
153 	 * arch_switch_to isn't needed. We could want to apply this to
154 	 * improve performance. -bb
155 	 */
156 	arch_switch_to(current);
157 
158 	current->thread.prev_sched = NULL;
159 
160 	userspace(&current->thread.regs.regs);
161 }
162 
163 int copy_thread(unsigned long clone_flags, unsigned long sp,
164 		unsigned long arg, struct task_struct * p,
165 		struct pt_regs *regs)
166 {
167 	void (*handler)(void);
168 	int kthread = current->flags & PF_KTHREAD;
169 	int ret = 0;
170 
171 	p->thread = (struct thread_struct) INIT_THREAD;
172 
173 	if (!kthread) {
174 	  	memcpy(&p->thread.regs.regs, &regs->regs,
175 		       sizeof(p->thread.regs.regs));
176 		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
177 		if (sp != 0)
178 			REGS_SP(p->thread.regs.regs.gp) = sp;
179 
180 		handler = fork_handler;
181 
182 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
183 	} else {
184 		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
185 		p->thread.request.u.thread.proc = (int (*)(void *))sp;
186 		p->thread.request.u.thread.arg = (void *)arg;
187 		handler = new_thread_handler;
188 	}
189 
190 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
191 
192 	if (!kthread) {
193 		clear_flushed_tls(p);
194 
195 		/*
196 		 * Set a new TLS for the child thread?
197 		 */
198 		if (clone_flags & CLONE_SETTLS)
199 			ret = arch_copy_tls(p);
200 	}
201 
202 	return ret;
203 }
204 
205 void initial_thread_cb(void (*proc)(void *), void *arg)
206 {
207 	int save_kmalloc_ok = kmalloc_ok;
208 
209 	kmalloc_ok = 0;
210 	initial_thread_cb_skas(proc, arg);
211 	kmalloc_ok = save_kmalloc_ok;
212 }
213 
214 void default_idle(void)
215 {
216 	unsigned long long nsecs;
217 
218 	while (1) {
219 		/* endless idle loop with no priority at all */
220 
221 		/*
222 		 * although we are an idle CPU, we do not want to
223 		 * get into the scheduler unnecessarily.
224 		 */
225 		if (need_resched())
226 			schedule();
227 
228 		tick_nohz_idle_enter();
229 		rcu_idle_enter();
230 		nsecs = disable_timer();
231 		idle_sleep(nsecs);
232 		rcu_idle_exit();
233 		tick_nohz_idle_exit();
234 	}
235 }
236 
237 void cpu_idle(void)
238 {
239 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
240 	default_idle();
241 }
242 
243 int __cant_sleep(void) {
244 	return in_atomic() || irqs_disabled() || in_interrupt();
245 	/* Is in_interrupt() really needed? */
246 }
247 
248 int user_context(unsigned long sp)
249 {
250 	unsigned long stack;
251 
252 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
253 	return stack != (unsigned long) current_thread_info();
254 }
255 
256 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
257 
258 void do_uml_exitcalls(void)
259 {
260 	exitcall_t *call;
261 
262 	call = &__uml_exitcall_end;
263 	while (--call >= &__uml_exitcall_begin)
264 		(*call)();
265 }
266 
267 char *uml_strdup(const char *string)
268 {
269 	return kstrdup(string, GFP_KERNEL);
270 }
271 EXPORT_SYMBOL(uml_strdup);
272 
273 int copy_to_user_proc(void __user *to, void *from, int size)
274 {
275 	return copy_to_user(to, from, size);
276 }
277 
278 int copy_from_user_proc(void *to, void __user *from, int size)
279 {
280 	return copy_from_user(to, from, size);
281 }
282 
283 int clear_user_proc(void __user *buf, int size)
284 {
285 	return clear_user(buf, size);
286 }
287 
288 int strlen_user_proc(char __user *str)
289 {
290 	return strlen_user(str);
291 }
292 
293 int smp_sigio_handler(void)
294 {
295 #ifdef CONFIG_SMP
296 	int cpu = current_thread_info()->cpu;
297 	IPI_handler(cpu);
298 	if (cpu != 0)
299 		return 1;
300 #endif
301 	return 0;
302 }
303 
304 int cpu(void)
305 {
306 	return current_thread_info()->cpu;
307 }
308 
309 static atomic_t using_sysemu = ATOMIC_INIT(0);
310 int sysemu_supported;
311 
312 void set_using_sysemu(int value)
313 {
314 	if (value > sysemu_supported)
315 		return;
316 	atomic_set(&using_sysemu, value);
317 }
318 
319 int get_using_sysemu(void)
320 {
321 	return atomic_read(&using_sysemu);
322 }
323 
324 static int sysemu_proc_show(struct seq_file *m, void *v)
325 {
326 	seq_printf(m, "%d\n", get_using_sysemu());
327 	return 0;
328 }
329 
330 static int sysemu_proc_open(struct inode *inode, struct file *file)
331 {
332 	return single_open(file, sysemu_proc_show, NULL);
333 }
334 
335 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
336 				 size_t count, loff_t *pos)
337 {
338 	char tmp[2];
339 
340 	if (copy_from_user(tmp, buf, 1))
341 		return -EFAULT;
342 
343 	if (tmp[0] >= '0' && tmp[0] <= '2')
344 		set_using_sysemu(tmp[0] - '0');
345 	/* We use the first char, but pretend to write everything */
346 	return count;
347 }
348 
349 static const struct file_operations sysemu_proc_fops = {
350 	.owner		= THIS_MODULE,
351 	.open		= sysemu_proc_open,
352 	.read		= seq_read,
353 	.llseek		= seq_lseek,
354 	.release	= single_release,
355 	.write		= sysemu_proc_write,
356 };
357 
358 int __init make_proc_sysemu(void)
359 {
360 	struct proc_dir_entry *ent;
361 	if (!sysemu_supported)
362 		return 0;
363 
364 	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
365 
366 	if (ent == NULL)
367 	{
368 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
369 		return 0;
370 	}
371 
372 	return 0;
373 }
374 
375 late_initcall(make_proc_sysemu);
376 
377 int singlestepping(void * t)
378 {
379 	struct task_struct *task = t ? t : current;
380 
381 	if (!(task->ptrace & PT_DTRACE))
382 		return 0;
383 
384 	if (task->thread.singlestep_syscall)
385 		return 1;
386 
387 	return 2;
388 }
389 
390 /*
391  * Only x86 and x86_64 have an arch_align_stack().
392  * All other arches have "#define arch_align_stack(x) (x)"
393  * in their asm/system.h
394  * As this is included in UML from asm-um/system-generic.h,
395  * we can use it to behave as the subarch does.
396  */
397 #ifndef arch_align_stack
398 unsigned long arch_align_stack(unsigned long sp)
399 {
400 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
401 		sp -= get_random_int() % 8192;
402 	return sp & ~0xf;
403 }
404 #endif
405 
406 unsigned long get_wchan(struct task_struct *p)
407 {
408 	unsigned long stack_page, sp, ip;
409 	bool seen_sched = 0;
410 
411 	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
412 		return 0;
413 
414 	stack_page = (unsigned long) task_stack_page(p);
415 	/* Bail if the process has no kernel stack for some reason */
416 	if (stack_page == 0)
417 		return 0;
418 
419 	sp = p->thread.switch_buf->JB_SP;
420 	/*
421 	 * Bail if the stack pointer is below the bottom of the kernel
422 	 * stack for some reason
423 	 */
424 	if (sp < stack_page)
425 		return 0;
426 
427 	while (sp < stack_page + THREAD_SIZE) {
428 		ip = *((unsigned long *) sp);
429 		if (in_sched_functions(ip))
430 			/* Ignore everything until we're above the scheduler */
431 			seen_sched = 1;
432 		else if (kernel_text_address(ip) && seen_sched)
433 			return ip;
434 
435 		sp += sizeof(unsigned long);
436 	}
437 
438 	return 0;
439 }
440 
441 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
442 {
443 	int cpu = current_thread_info()->cpu;
444 
445 	return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
446 }
447 
448