1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Copyright 2003 PathScale, Inc. 4 * Licensed under the GPL 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/err.h> 9 #include <linux/hardirq.h> 10 #include <linux/mm.h> 11 #include <linux/module.h> 12 #include <linux/personality.h> 13 #include <linux/proc_fs.h> 14 #include <linux/ptrace.h> 15 #include <linux/random.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/seq_file.h> 19 #include <linux/tick.h> 20 #include <linux/threads.h> 21 #include <linux/tracehook.h> 22 #include <asm/current.h> 23 #include <asm/pgtable.h> 24 #include <asm/mmu_context.h> 25 #include <asm/uaccess.h> 26 #include <as-layout.h> 27 #include <kern_util.h> 28 #include <os.h> 29 #include <skas.h> 30 31 /* 32 * This is a per-cpu array. A processor only modifies its entry and it only 33 * cares about its entry, so it's OK if another processor is modifying its 34 * entry. 35 */ 36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; 37 38 static inline int external_pid(void) 39 { 40 /* FIXME: Need to look up userspace_pid by cpu */ 41 return userspace_pid[0]; 42 } 43 44 int pid_to_processor_id(int pid) 45 { 46 int i; 47 48 for (i = 0; i < ncpus; i++) { 49 if (cpu_tasks[i].pid == pid) 50 return i; 51 } 52 return -1; 53 } 54 55 void free_stack(unsigned long stack, int order) 56 { 57 free_pages(stack, order); 58 } 59 60 unsigned long alloc_stack(int order, int atomic) 61 { 62 unsigned long page; 63 gfp_t flags = GFP_KERNEL; 64 65 if (atomic) 66 flags = GFP_ATOMIC; 67 page = __get_free_pages(flags, order); 68 69 return page; 70 } 71 72 static inline void set_current(struct task_struct *task) 73 { 74 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) 75 { external_pid(), task }); 76 } 77 78 extern void arch_switch_to(struct task_struct *to); 79 80 void *__switch_to(struct task_struct *from, struct task_struct *to) 81 { 82 to->thread.prev_sched = from; 83 set_current(to); 84 85 do { 86 current->thread.saved_task = NULL; 87 88 switch_threads(&from->thread.switch_buf, 89 &to->thread.switch_buf); 90 91 arch_switch_to(current); 92 93 if (current->thread.saved_task) 94 show_regs(&(current->thread.regs)); 95 to = current->thread.saved_task; 96 from = current; 97 } while (current->thread.saved_task); 98 99 return current->thread.prev_sched; 100 } 101 102 void interrupt_end(void) 103 { 104 if (need_resched()) 105 schedule(); 106 if (test_thread_flag(TIF_SIGPENDING)) 107 do_signal(); 108 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) 109 tracehook_notify_resume(¤t->thread.regs); 110 } 111 112 void exit_thread(void) 113 { 114 } 115 116 int get_current_pid(void) 117 { 118 return task_pid_nr(current); 119 } 120 121 /* 122 * This is called magically, by its address being stuffed in a jmp_buf 123 * and being longjmp-d to. 124 */ 125 void new_thread_handler(void) 126 { 127 int (*fn)(void *), n; 128 void *arg; 129 130 if (current->thread.prev_sched != NULL) 131 schedule_tail(current->thread.prev_sched); 132 current->thread.prev_sched = NULL; 133 134 fn = current->thread.request.u.thread.proc; 135 arg = current->thread.request.u.thread.arg; 136 137 /* 138 * callback returns only if the kernel thread execs a process 139 */ 140 n = fn(arg); 141 userspace(¤t->thread.regs.regs); 142 } 143 144 /* Called magically, see new_thread_handler above */ 145 void fork_handler(void) 146 { 147 force_flush_all(); 148 149 schedule_tail(current->thread.prev_sched); 150 151 /* 152 * XXX: if interrupt_end() calls schedule, this call to 153 * arch_switch_to isn't needed. We could want to apply this to 154 * improve performance. -bb 155 */ 156 arch_switch_to(current); 157 158 current->thread.prev_sched = NULL; 159 160 userspace(¤t->thread.regs.regs); 161 } 162 163 int copy_thread(unsigned long clone_flags, unsigned long sp, 164 unsigned long arg, struct task_struct * p, 165 struct pt_regs *regs) 166 { 167 void (*handler)(void); 168 int kthread = current->flags & PF_KTHREAD; 169 int ret = 0; 170 171 p->thread = (struct thread_struct) INIT_THREAD; 172 173 if (!kthread) { 174 memcpy(&p->thread.regs.regs, ®s->regs, 175 sizeof(p->thread.regs.regs)); 176 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0); 177 if (sp != 0) 178 REGS_SP(p->thread.regs.regs.gp) = sp; 179 180 handler = fork_handler; 181 182 arch_copy_thread(¤t->thread.arch, &p->thread.arch); 183 } else { 184 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp); 185 p->thread.request.u.thread.proc = (int (*)(void *))sp; 186 p->thread.request.u.thread.arg = (void *)arg; 187 handler = new_thread_handler; 188 } 189 190 new_thread(task_stack_page(p), &p->thread.switch_buf, handler); 191 192 if (!kthread) { 193 clear_flushed_tls(p); 194 195 /* 196 * Set a new TLS for the child thread? 197 */ 198 if (clone_flags & CLONE_SETTLS) 199 ret = arch_copy_tls(p); 200 } 201 202 return ret; 203 } 204 205 void initial_thread_cb(void (*proc)(void *), void *arg) 206 { 207 int save_kmalloc_ok = kmalloc_ok; 208 209 kmalloc_ok = 0; 210 initial_thread_cb_skas(proc, arg); 211 kmalloc_ok = save_kmalloc_ok; 212 } 213 214 void default_idle(void) 215 { 216 unsigned long long nsecs; 217 218 while (1) { 219 /* endless idle loop with no priority at all */ 220 221 /* 222 * although we are an idle CPU, we do not want to 223 * get into the scheduler unnecessarily. 224 */ 225 if (need_resched()) 226 schedule(); 227 228 tick_nohz_idle_enter(); 229 rcu_idle_enter(); 230 nsecs = disable_timer(); 231 idle_sleep(nsecs); 232 rcu_idle_exit(); 233 tick_nohz_idle_exit(); 234 } 235 } 236 237 void cpu_idle(void) 238 { 239 cpu_tasks[current_thread_info()->cpu].pid = os_getpid(); 240 default_idle(); 241 } 242 243 int __cant_sleep(void) { 244 return in_atomic() || irqs_disabled() || in_interrupt(); 245 /* Is in_interrupt() really needed? */ 246 } 247 248 int user_context(unsigned long sp) 249 { 250 unsigned long stack; 251 252 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); 253 return stack != (unsigned long) current_thread_info(); 254 } 255 256 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; 257 258 void do_uml_exitcalls(void) 259 { 260 exitcall_t *call; 261 262 call = &__uml_exitcall_end; 263 while (--call >= &__uml_exitcall_begin) 264 (*call)(); 265 } 266 267 char *uml_strdup(const char *string) 268 { 269 return kstrdup(string, GFP_KERNEL); 270 } 271 EXPORT_SYMBOL(uml_strdup); 272 273 int copy_to_user_proc(void __user *to, void *from, int size) 274 { 275 return copy_to_user(to, from, size); 276 } 277 278 int copy_from_user_proc(void *to, void __user *from, int size) 279 { 280 return copy_from_user(to, from, size); 281 } 282 283 int clear_user_proc(void __user *buf, int size) 284 { 285 return clear_user(buf, size); 286 } 287 288 int strlen_user_proc(char __user *str) 289 { 290 return strlen_user(str); 291 } 292 293 int smp_sigio_handler(void) 294 { 295 #ifdef CONFIG_SMP 296 int cpu = current_thread_info()->cpu; 297 IPI_handler(cpu); 298 if (cpu != 0) 299 return 1; 300 #endif 301 return 0; 302 } 303 304 int cpu(void) 305 { 306 return current_thread_info()->cpu; 307 } 308 309 static atomic_t using_sysemu = ATOMIC_INIT(0); 310 int sysemu_supported; 311 312 void set_using_sysemu(int value) 313 { 314 if (value > sysemu_supported) 315 return; 316 atomic_set(&using_sysemu, value); 317 } 318 319 int get_using_sysemu(void) 320 { 321 return atomic_read(&using_sysemu); 322 } 323 324 static int sysemu_proc_show(struct seq_file *m, void *v) 325 { 326 seq_printf(m, "%d\n", get_using_sysemu()); 327 return 0; 328 } 329 330 static int sysemu_proc_open(struct inode *inode, struct file *file) 331 { 332 return single_open(file, sysemu_proc_show, NULL); 333 } 334 335 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf, 336 size_t count, loff_t *pos) 337 { 338 char tmp[2]; 339 340 if (copy_from_user(tmp, buf, 1)) 341 return -EFAULT; 342 343 if (tmp[0] >= '0' && tmp[0] <= '2') 344 set_using_sysemu(tmp[0] - '0'); 345 /* We use the first char, but pretend to write everything */ 346 return count; 347 } 348 349 static const struct file_operations sysemu_proc_fops = { 350 .owner = THIS_MODULE, 351 .open = sysemu_proc_open, 352 .read = seq_read, 353 .llseek = seq_lseek, 354 .release = single_release, 355 .write = sysemu_proc_write, 356 }; 357 358 int __init make_proc_sysemu(void) 359 { 360 struct proc_dir_entry *ent; 361 if (!sysemu_supported) 362 return 0; 363 364 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops); 365 366 if (ent == NULL) 367 { 368 printk(KERN_WARNING "Failed to register /proc/sysemu\n"); 369 return 0; 370 } 371 372 return 0; 373 } 374 375 late_initcall(make_proc_sysemu); 376 377 int singlestepping(void * t) 378 { 379 struct task_struct *task = t ? t : current; 380 381 if (!(task->ptrace & PT_DTRACE)) 382 return 0; 383 384 if (task->thread.singlestep_syscall) 385 return 1; 386 387 return 2; 388 } 389 390 /* 391 * Only x86 and x86_64 have an arch_align_stack(). 392 * All other arches have "#define arch_align_stack(x) (x)" 393 * in their asm/system.h 394 * As this is included in UML from asm-um/system-generic.h, 395 * we can use it to behave as the subarch does. 396 */ 397 #ifndef arch_align_stack 398 unsigned long arch_align_stack(unsigned long sp) 399 { 400 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 401 sp -= get_random_int() % 8192; 402 return sp & ~0xf; 403 } 404 #endif 405 406 unsigned long get_wchan(struct task_struct *p) 407 { 408 unsigned long stack_page, sp, ip; 409 bool seen_sched = 0; 410 411 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING)) 412 return 0; 413 414 stack_page = (unsigned long) task_stack_page(p); 415 /* Bail if the process has no kernel stack for some reason */ 416 if (stack_page == 0) 417 return 0; 418 419 sp = p->thread.switch_buf->JB_SP; 420 /* 421 * Bail if the stack pointer is below the bottom of the kernel 422 * stack for some reason 423 */ 424 if (sp < stack_page) 425 return 0; 426 427 while (sp < stack_page + THREAD_SIZE) { 428 ip = *((unsigned long *) sp); 429 if (in_sched_functions(ip)) 430 /* Ignore everything until we're above the scheduler */ 431 seen_sched = 1; 432 else if (kernel_text_address(ip) && seen_sched) 433 return ip; 434 435 sp += sizeof(unsigned long); 436 } 437 438 return 0; 439 } 440 441 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu) 442 { 443 int cpu = current_thread_info()->cpu; 444 445 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu); 446 } 447 448