1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Copyright 2003 PathScale, Inc. 4 * Licensed under the GPL 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/err.h> 9 #include <linux/hardirq.h> 10 #include <linux/gfp.h> 11 #include <linux/mm.h> 12 #include <linux/personality.h> 13 #include <linux/proc_fs.h> 14 #include <linux/ptrace.h> 15 #include <linux/random.h> 16 #include <linux/sched.h> 17 #include <linux/tick.h> 18 #include <linux/threads.h> 19 #include <asm/current.h> 20 #include <asm/pgtable.h> 21 #include <asm/uaccess.h> 22 #include "as-layout.h" 23 #include "kern_util.h" 24 #include "os.h" 25 #include "skas.h" 26 #include "tlb.h" 27 28 /* 29 * This is a per-cpu array. A processor only modifies its entry and it only 30 * cares about its entry, so it's OK if another processor is modifying its 31 * entry. 32 */ 33 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; 34 35 static inline int external_pid(void) 36 { 37 /* FIXME: Need to look up userspace_pid by cpu */ 38 return userspace_pid[0]; 39 } 40 41 int pid_to_processor_id(int pid) 42 { 43 int i; 44 45 for (i = 0; i < ncpus; i++) { 46 if (cpu_tasks[i].pid == pid) 47 return i; 48 } 49 return -1; 50 } 51 52 void free_stack(unsigned long stack, int order) 53 { 54 free_pages(stack, order); 55 } 56 57 unsigned long alloc_stack(int order, int atomic) 58 { 59 unsigned long page; 60 gfp_t flags = GFP_KERNEL; 61 62 if (atomic) 63 flags = GFP_ATOMIC; 64 page = __get_free_pages(flags, order); 65 66 return page; 67 } 68 69 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 70 { 71 int pid; 72 73 current->thread.request.u.thread.proc = fn; 74 current->thread.request.u.thread.arg = arg; 75 pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0, 76 ¤t->thread.regs, 0, NULL, NULL); 77 return pid; 78 } 79 80 static inline void set_current(struct task_struct *task) 81 { 82 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) 83 { external_pid(), task }); 84 } 85 86 extern void arch_switch_to(struct task_struct *to); 87 88 void *_switch_to(void *prev, void *next, void *last) 89 { 90 struct task_struct *from = prev; 91 struct task_struct *to = next; 92 93 to->thread.prev_sched = from; 94 set_current(to); 95 96 do { 97 current->thread.saved_task = NULL; 98 99 switch_threads(&from->thread.switch_buf, 100 &to->thread.switch_buf); 101 102 arch_switch_to(current); 103 104 if (current->thread.saved_task) 105 show_regs(&(current->thread.regs)); 106 to = current->thread.saved_task; 107 from = current; 108 } while (current->thread.saved_task); 109 110 return current->thread.prev_sched; 111 112 } 113 114 void interrupt_end(void) 115 { 116 if (need_resched()) 117 schedule(); 118 if (test_tsk_thread_flag(current, TIF_SIGPENDING)) 119 do_signal(); 120 } 121 122 void exit_thread(void) 123 { 124 } 125 126 void *get_current(void) 127 { 128 return current; 129 } 130 131 extern void schedule_tail(struct task_struct *prev); 132 133 /* 134 * This is called magically, by its address being stuffed in a jmp_buf 135 * and being longjmp-d to. 136 */ 137 void new_thread_handler(void) 138 { 139 int (*fn)(void *), n; 140 void *arg; 141 142 if (current->thread.prev_sched != NULL) 143 schedule_tail(current->thread.prev_sched); 144 current->thread.prev_sched = NULL; 145 146 fn = current->thread.request.u.thread.proc; 147 arg = current->thread.request.u.thread.arg; 148 149 /* 150 * The return value is 1 if the kernel thread execs a process, 151 * 0 if it just exits 152 */ 153 n = run_kernel_thread(fn, arg, ¤t->thread.exec_buf); 154 if (n == 1) { 155 /* Handle any immediate reschedules or signals */ 156 interrupt_end(); 157 userspace(¤t->thread.regs.regs); 158 } 159 else do_exit(0); 160 } 161 162 /* Called magically, see new_thread_handler above */ 163 void fork_handler(void) 164 { 165 force_flush_all(); 166 167 schedule_tail(current->thread.prev_sched); 168 169 /* 170 * XXX: if interrupt_end() calls schedule, this call to 171 * arch_switch_to isn't needed. We could want to apply this to 172 * improve performance. -bb 173 */ 174 arch_switch_to(current); 175 176 current->thread.prev_sched = NULL; 177 178 /* Handle any immediate reschedules or signals */ 179 interrupt_end(); 180 181 userspace(¤t->thread.regs.regs); 182 } 183 184 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, 185 unsigned long stack_top, struct task_struct * p, 186 struct pt_regs *regs) 187 { 188 void (*handler)(void); 189 int ret = 0; 190 191 p->thread = (struct thread_struct) INIT_THREAD; 192 193 if (current->thread.forking) { 194 memcpy(&p->thread.regs.regs, ®s->regs, 195 sizeof(p->thread.regs.regs)); 196 REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0); 197 if (sp != 0) 198 REGS_SP(p->thread.regs.regs.gp) = sp; 199 200 handler = fork_handler; 201 202 arch_copy_thread(¤t->thread.arch, &p->thread.arch); 203 } 204 else { 205 get_safe_registers(p->thread.regs.regs.gp); 206 p->thread.request.u.thread = current->thread.request.u.thread; 207 handler = new_thread_handler; 208 } 209 210 new_thread(task_stack_page(p), &p->thread.switch_buf, handler); 211 212 if (current->thread.forking) { 213 clear_flushed_tls(p); 214 215 /* 216 * Set a new TLS for the child thread? 217 */ 218 if (clone_flags & CLONE_SETTLS) 219 ret = arch_copy_tls(p); 220 } 221 222 return ret; 223 } 224 225 void initial_thread_cb(void (*proc)(void *), void *arg) 226 { 227 int save_kmalloc_ok = kmalloc_ok; 228 229 kmalloc_ok = 0; 230 initial_thread_cb_skas(proc, arg); 231 kmalloc_ok = save_kmalloc_ok; 232 } 233 234 void default_idle(void) 235 { 236 unsigned long long nsecs; 237 238 while (1) { 239 /* endless idle loop with no priority at all */ 240 241 /* 242 * although we are an idle CPU, we do not want to 243 * get into the scheduler unnecessarily. 244 */ 245 if (need_resched()) 246 schedule(); 247 248 tick_nohz_stop_sched_tick(); 249 nsecs = disable_timer(); 250 idle_sleep(nsecs); 251 tick_nohz_restart_sched_tick(); 252 } 253 } 254 255 void cpu_idle(void) 256 { 257 cpu_tasks[current_thread_info()->cpu].pid = os_getpid(); 258 default_idle(); 259 } 260 261 int __cant_sleep(void) { 262 return in_atomic() || irqs_disabled() || in_interrupt(); 263 /* Is in_interrupt() really needed? */ 264 } 265 266 int user_context(unsigned long sp) 267 { 268 unsigned long stack; 269 270 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); 271 return stack != (unsigned long) current_thread_info(); 272 } 273 274 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; 275 276 void do_uml_exitcalls(void) 277 { 278 exitcall_t *call; 279 280 call = &__uml_exitcall_end; 281 while (--call >= &__uml_exitcall_begin) 282 (*call)(); 283 } 284 285 char *uml_strdup(const char *string) 286 { 287 return kstrdup(string, GFP_KERNEL); 288 } 289 290 int copy_to_user_proc(void __user *to, void *from, int size) 291 { 292 return copy_to_user(to, from, size); 293 } 294 295 int copy_from_user_proc(void *to, void __user *from, int size) 296 { 297 return copy_from_user(to, from, size); 298 } 299 300 int clear_user_proc(void __user *buf, int size) 301 { 302 return clear_user(buf, size); 303 } 304 305 int strlen_user_proc(char __user *str) 306 { 307 return strlen_user(str); 308 } 309 310 int smp_sigio_handler(void) 311 { 312 #ifdef CONFIG_SMP 313 int cpu = current_thread_info()->cpu; 314 IPI_handler(cpu); 315 if (cpu != 0) 316 return 1; 317 #endif 318 return 0; 319 } 320 321 int cpu(void) 322 { 323 return current_thread_info()->cpu; 324 } 325 326 static atomic_t using_sysemu = ATOMIC_INIT(0); 327 int sysemu_supported; 328 329 void set_using_sysemu(int value) 330 { 331 if (value > sysemu_supported) 332 return; 333 atomic_set(&using_sysemu, value); 334 } 335 336 int get_using_sysemu(void) 337 { 338 return atomic_read(&using_sysemu); 339 } 340 341 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data) 342 { 343 if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) 344 /* No overflow */ 345 *eof = 1; 346 347 return strlen(buf); 348 } 349 350 static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data) 351 { 352 char tmp[2]; 353 354 if (copy_from_user(tmp, buf, 1)) 355 return -EFAULT; 356 357 if (tmp[0] >= '0' && tmp[0] <= '2') 358 set_using_sysemu(tmp[0] - '0'); 359 /* We use the first char, but pretend to write everything */ 360 return count; 361 } 362 363 int __init make_proc_sysemu(void) 364 { 365 struct proc_dir_entry *ent; 366 if (!sysemu_supported) 367 return 0; 368 369 ent = create_proc_entry("sysemu", 0600, &proc_root); 370 371 if (ent == NULL) 372 { 373 printk(KERN_WARNING "Failed to register /proc/sysemu\n"); 374 return 0; 375 } 376 377 ent->read_proc = proc_read_sysemu; 378 ent->write_proc = proc_write_sysemu; 379 380 return 0; 381 } 382 383 late_initcall(make_proc_sysemu); 384 385 int singlestepping(void * t) 386 { 387 struct task_struct *task = t ? t : current; 388 389 if (!(task->ptrace & PT_DTRACE)) 390 return 0; 391 392 if (task->thread.singlestep_syscall) 393 return 1; 394 395 return 2; 396 } 397 398 /* 399 * Only x86 and x86_64 have an arch_align_stack(). 400 * All other arches have "#define arch_align_stack(x) (x)" 401 * in their asm/system.h 402 * As this is included in UML from asm-um/system-generic.h, 403 * we can use it to behave as the subarch does. 404 */ 405 #ifndef arch_align_stack 406 unsigned long arch_align_stack(unsigned long sp) 407 { 408 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 409 sp -= get_random_int() % 8192; 410 return sp & ~0xf; 411 } 412 #endif 413 414 unsigned long get_wchan(struct task_struct *p) 415 { 416 unsigned long stack_page, sp, ip; 417 bool seen_sched = 0; 418 419 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING)) 420 return 0; 421 422 stack_page = (unsigned long) task_stack_page(p); 423 /* Bail if the process has no kernel stack for some reason */ 424 if (stack_page == 0) 425 return 0; 426 427 sp = p->thread.switch_buf->JB_SP; 428 /* 429 * Bail if the stack pointer is below the bottom of the kernel 430 * stack for some reason 431 */ 432 if (sp < stack_page) 433 return 0; 434 435 while (sp < stack_page + THREAD_SIZE) { 436 ip = *((unsigned long *) sp); 437 if (in_sched_functions(ip)) 438 /* Ignore everything until we're above the scheduler */ 439 seen_sched = 1; 440 else if (kernel_text_address(ip) && seen_sched) 441 return ip; 442 443 sp += sizeof(unsigned long); 444 } 445 446 return 0; 447 } 448 449 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu) 450 { 451 int cpu = current_thread_info()->cpu; 452 453 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu); 454 } 455 456