xref: /linux/arch/um/kernel/process.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/gfp.h>
11 #include <linux/mm.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/sched.h>
17 #include <linux/tick.h>
18 #include <linux/threads.h>
19 #include <asm/current.h>
20 #include <asm/pgtable.h>
21 #include <asm/uaccess.h>
22 #include "as-layout.h"
23 #include "kern_util.h"
24 #include "os.h"
25 #include "skas.h"
26 #include "tlb.h"
27 
28 /*
29  * This is a per-cpu array.  A processor only modifies its entry and it only
30  * cares about its entry, so it's OK if another processor is modifying its
31  * entry.
32  */
33 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
34 
35 static inline int external_pid(void)
36 {
37 	/* FIXME: Need to look up userspace_pid by cpu */
38 	return userspace_pid[0];
39 }
40 
41 int pid_to_processor_id(int pid)
42 {
43 	int i;
44 
45 	for (i = 0; i < ncpus; i++) {
46 		if (cpu_tasks[i].pid == pid)
47 			return i;
48 	}
49 	return -1;
50 }
51 
52 void free_stack(unsigned long stack, int order)
53 {
54 	free_pages(stack, order);
55 }
56 
57 unsigned long alloc_stack(int order, int atomic)
58 {
59 	unsigned long page;
60 	gfp_t flags = GFP_KERNEL;
61 
62 	if (atomic)
63 		flags = GFP_ATOMIC;
64 	page = __get_free_pages(flags, order);
65 
66 	return page;
67 }
68 
69 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
70 {
71 	int pid;
72 
73 	current->thread.request.u.thread.proc = fn;
74 	current->thread.request.u.thread.arg = arg;
75 	pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
76 		      &current->thread.regs, 0, NULL, NULL);
77 	return pid;
78 }
79 
80 static inline void set_current(struct task_struct *task)
81 {
82 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
83 		{ external_pid(), task });
84 }
85 
86 extern void arch_switch_to(struct task_struct *to);
87 
88 void *_switch_to(void *prev, void *next, void *last)
89 {
90 	struct task_struct *from = prev;
91 	struct task_struct *to = next;
92 
93 	to->thread.prev_sched = from;
94 	set_current(to);
95 
96 	do {
97 		current->thread.saved_task = NULL;
98 
99 		switch_threads(&from->thread.switch_buf,
100 			       &to->thread.switch_buf);
101 
102 		arch_switch_to(current);
103 
104 		if (current->thread.saved_task)
105 			show_regs(&(current->thread.regs));
106 		to = current->thread.saved_task;
107 		from = current;
108 	} while (current->thread.saved_task);
109 
110 	return current->thread.prev_sched;
111 
112 }
113 
114 void interrupt_end(void)
115 {
116 	if (need_resched())
117 		schedule();
118 	if (test_tsk_thread_flag(current, TIF_SIGPENDING))
119 		do_signal();
120 }
121 
122 void exit_thread(void)
123 {
124 }
125 
126 void *get_current(void)
127 {
128 	return current;
129 }
130 
131 extern void schedule_tail(struct task_struct *prev);
132 
133 /*
134  * This is called magically, by its address being stuffed in a jmp_buf
135  * and being longjmp-d to.
136  */
137 void new_thread_handler(void)
138 {
139 	int (*fn)(void *), n;
140 	void *arg;
141 
142 	if (current->thread.prev_sched != NULL)
143 		schedule_tail(current->thread.prev_sched);
144 	current->thread.prev_sched = NULL;
145 
146 	fn = current->thread.request.u.thread.proc;
147 	arg = current->thread.request.u.thread.arg;
148 
149 	/*
150 	 * The return value is 1 if the kernel thread execs a process,
151 	 * 0 if it just exits
152 	 */
153 	n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
154 	if (n == 1) {
155 		/* Handle any immediate reschedules or signals */
156 		interrupt_end();
157 		userspace(&current->thread.regs.regs);
158 	}
159 	else do_exit(0);
160 }
161 
162 /* Called magically, see new_thread_handler above */
163 void fork_handler(void)
164 {
165 	force_flush_all();
166 
167 	schedule_tail(current->thread.prev_sched);
168 
169 	/*
170 	 * XXX: if interrupt_end() calls schedule, this call to
171 	 * arch_switch_to isn't needed. We could want to apply this to
172 	 * improve performance. -bb
173 	 */
174 	arch_switch_to(current);
175 
176 	current->thread.prev_sched = NULL;
177 
178 	/* Handle any immediate reschedules or signals */
179 	interrupt_end();
180 
181 	userspace(&current->thread.regs.regs);
182 }
183 
184 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
185 		unsigned long stack_top, struct task_struct * p,
186 		struct pt_regs *regs)
187 {
188 	void (*handler)(void);
189 	int ret = 0;
190 
191 	p->thread = (struct thread_struct) INIT_THREAD;
192 
193 	if (current->thread.forking) {
194 	  	memcpy(&p->thread.regs.regs, &regs->regs,
195 		       sizeof(p->thread.regs.regs));
196 		REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
197 		if (sp != 0)
198 			REGS_SP(p->thread.regs.regs.gp) = sp;
199 
200 		handler = fork_handler;
201 
202 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
203 	}
204 	else {
205 		get_safe_registers(p->thread.regs.regs.gp);
206 		p->thread.request.u.thread = current->thread.request.u.thread;
207 		handler = new_thread_handler;
208 	}
209 
210 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
211 
212 	if (current->thread.forking) {
213 		clear_flushed_tls(p);
214 
215 		/*
216 		 * Set a new TLS for the child thread?
217 		 */
218 		if (clone_flags & CLONE_SETTLS)
219 			ret = arch_copy_tls(p);
220 	}
221 
222 	return ret;
223 }
224 
225 void initial_thread_cb(void (*proc)(void *), void *arg)
226 {
227 	int save_kmalloc_ok = kmalloc_ok;
228 
229 	kmalloc_ok = 0;
230 	initial_thread_cb_skas(proc, arg);
231 	kmalloc_ok = save_kmalloc_ok;
232 }
233 
234 void default_idle(void)
235 {
236 	unsigned long long nsecs;
237 
238 	while (1) {
239 		/* endless idle loop with no priority at all */
240 
241 		/*
242 		 * although we are an idle CPU, we do not want to
243 		 * get into the scheduler unnecessarily.
244 		 */
245 		if (need_resched())
246 			schedule();
247 
248 		tick_nohz_stop_sched_tick();
249 		nsecs = disable_timer();
250 		idle_sleep(nsecs);
251 		tick_nohz_restart_sched_tick();
252 	}
253 }
254 
255 void cpu_idle(void)
256 {
257 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
258 	default_idle();
259 }
260 
261 int __cant_sleep(void) {
262 	return in_atomic() || irqs_disabled() || in_interrupt();
263 	/* Is in_interrupt() really needed? */
264 }
265 
266 int user_context(unsigned long sp)
267 {
268 	unsigned long stack;
269 
270 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
271 	return stack != (unsigned long) current_thread_info();
272 }
273 
274 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
275 
276 void do_uml_exitcalls(void)
277 {
278 	exitcall_t *call;
279 
280 	call = &__uml_exitcall_end;
281 	while (--call >= &__uml_exitcall_begin)
282 		(*call)();
283 }
284 
285 char *uml_strdup(const char *string)
286 {
287 	return kstrdup(string, GFP_KERNEL);
288 }
289 
290 int copy_to_user_proc(void __user *to, void *from, int size)
291 {
292 	return copy_to_user(to, from, size);
293 }
294 
295 int copy_from_user_proc(void *to, void __user *from, int size)
296 {
297 	return copy_from_user(to, from, size);
298 }
299 
300 int clear_user_proc(void __user *buf, int size)
301 {
302 	return clear_user(buf, size);
303 }
304 
305 int strlen_user_proc(char __user *str)
306 {
307 	return strlen_user(str);
308 }
309 
310 int smp_sigio_handler(void)
311 {
312 #ifdef CONFIG_SMP
313 	int cpu = current_thread_info()->cpu;
314 	IPI_handler(cpu);
315 	if (cpu != 0)
316 		return 1;
317 #endif
318 	return 0;
319 }
320 
321 int cpu(void)
322 {
323 	return current_thread_info()->cpu;
324 }
325 
326 static atomic_t using_sysemu = ATOMIC_INIT(0);
327 int sysemu_supported;
328 
329 void set_using_sysemu(int value)
330 {
331 	if (value > sysemu_supported)
332 		return;
333 	atomic_set(&using_sysemu, value);
334 }
335 
336 int get_using_sysemu(void)
337 {
338 	return atomic_read(&using_sysemu);
339 }
340 
341 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
342 {
343 	if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size)
344 		/* No overflow */
345 		*eof = 1;
346 
347 	return strlen(buf);
348 }
349 
350 static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
351 {
352 	char tmp[2];
353 
354 	if (copy_from_user(tmp, buf, 1))
355 		return -EFAULT;
356 
357 	if (tmp[0] >= '0' && tmp[0] <= '2')
358 		set_using_sysemu(tmp[0] - '0');
359 	/* We use the first char, but pretend to write everything */
360 	return count;
361 }
362 
363 int __init make_proc_sysemu(void)
364 {
365 	struct proc_dir_entry *ent;
366 	if (!sysemu_supported)
367 		return 0;
368 
369 	ent = create_proc_entry("sysemu", 0600, &proc_root);
370 
371 	if (ent == NULL)
372 	{
373 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
374 		return 0;
375 	}
376 
377 	ent->read_proc  = proc_read_sysemu;
378 	ent->write_proc = proc_write_sysemu;
379 
380 	return 0;
381 }
382 
383 late_initcall(make_proc_sysemu);
384 
385 int singlestepping(void * t)
386 {
387 	struct task_struct *task = t ? t : current;
388 
389 	if (!(task->ptrace & PT_DTRACE))
390 		return 0;
391 
392 	if (task->thread.singlestep_syscall)
393 		return 1;
394 
395 	return 2;
396 }
397 
398 /*
399  * Only x86 and x86_64 have an arch_align_stack().
400  * All other arches have "#define arch_align_stack(x) (x)"
401  * in their asm/system.h
402  * As this is included in UML from asm-um/system-generic.h,
403  * we can use it to behave as the subarch does.
404  */
405 #ifndef arch_align_stack
406 unsigned long arch_align_stack(unsigned long sp)
407 {
408 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
409 		sp -= get_random_int() % 8192;
410 	return sp & ~0xf;
411 }
412 #endif
413 
414 unsigned long get_wchan(struct task_struct *p)
415 {
416 	unsigned long stack_page, sp, ip;
417 	bool seen_sched = 0;
418 
419 	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
420 		return 0;
421 
422 	stack_page = (unsigned long) task_stack_page(p);
423 	/* Bail if the process has no kernel stack for some reason */
424 	if (stack_page == 0)
425 		return 0;
426 
427 	sp = p->thread.switch_buf->JB_SP;
428 	/*
429 	 * Bail if the stack pointer is below the bottom of the kernel
430 	 * stack for some reason
431 	 */
432 	if (sp < stack_page)
433 		return 0;
434 
435 	while (sp < stack_page + THREAD_SIZE) {
436 		ip = *((unsigned long *) sp);
437 		if (in_sched_functions(ip))
438 			/* Ignore everything until we're above the scheduler */
439 			seen_sched = 1;
440 		else if (kernel_text_address(ip) && seen_sched)
441 			return ip;
442 
443 		sp += sizeof(unsigned long);
444 	}
445 
446 	return 0;
447 }
448 
449 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
450 {
451 	int cpu = current_thread_info()->cpu;
452 
453 	return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
454 }
455 
456