xref: /linux/arch/um/kernel/process.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <linux/tracehook.h>
22 #include <asm/current.h>
23 #include <asm/pgtable.h>
24 #include <asm/mmu_context.h>
25 #include <asm/uaccess.h>
26 #include <as-layout.h>
27 #include <kern_util.h>
28 #include <os.h>
29 #include <skas.h>
30 
31 /*
32  * This is a per-cpu array.  A processor only modifies its entry and it only
33  * cares about its entry, so it's OK if another processor is modifying its
34  * entry.
35  */
36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
37 
38 static inline int external_pid(void)
39 {
40 	/* FIXME: Need to look up userspace_pid by cpu */
41 	return userspace_pid[0];
42 }
43 
44 int pid_to_processor_id(int pid)
45 {
46 	int i;
47 
48 	for (i = 0; i < ncpus; i++) {
49 		if (cpu_tasks[i].pid == pid)
50 			return i;
51 	}
52 	return -1;
53 }
54 
55 void free_stack(unsigned long stack, int order)
56 {
57 	free_pages(stack, order);
58 }
59 
60 unsigned long alloc_stack(int order, int atomic)
61 {
62 	unsigned long page;
63 	gfp_t flags = GFP_KERNEL;
64 
65 	if (atomic)
66 		flags = GFP_ATOMIC;
67 	page = __get_free_pages(flags, order);
68 
69 	return page;
70 }
71 
72 static inline void set_current(struct task_struct *task)
73 {
74 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
75 		{ external_pid(), task });
76 }
77 
78 extern void arch_switch_to(struct task_struct *to);
79 
80 void *__switch_to(struct task_struct *from, struct task_struct *to)
81 {
82 	to->thread.prev_sched = from;
83 	set_current(to);
84 
85 	switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
86 	arch_switch_to(current);
87 
88 	return current->thread.prev_sched;
89 }
90 
91 void interrupt_end(void)
92 {
93 	struct pt_regs *regs = &current->thread.regs;
94 
95 	if (need_resched())
96 		schedule();
97 	if (test_thread_flag(TIF_SIGPENDING))
98 		do_signal(regs);
99 	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
100 		tracehook_notify_resume(regs);
101 }
102 
103 void exit_thread(void)
104 {
105 }
106 
107 int get_current_pid(void)
108 {
109 	return task_pid_nr(current);
110 }
111 
112 /*
113  * This is called magically, by its address being stuffed in a jmp_buf
114  * and being longjmp-d to.
115  */
116 void new_thread_handler(void)
117 {
118 	int (*fn)(void *), n;
119 	void *arg;
120 
121 	if (current->thread.prev_sched != NULL)
122 		schedule_tail(current->thread.prev_sched);
123 	current->thread.prev_sched = NULL;
124 
125 	fn = current->thread.request.u.thread.proc;
126 	arg = current->thread.request.u.thread.arg;
127 
128 	/*
129 	 * callback returns only if the kernel thread execs a process
130 	 */
131 	n = fn(arg);
132 	userspace(&current->thread.regs.regs);
133 }
134 
135 /* Called magically, see new_thread_handler above */
136 void fork_handler(void)
137 {
138 	force_flush_all();
139 
140 	schedule_tail(current->thread.prev_sched);
141 
142 	/*
143 	 * XXX: if interrupt_end() calls schedule, this call to
144 	 * arch_switch_to isn't needed. We could want to apply this to
145 	 * improve performance. -bb
146 	 */
147 	arch_switch_to(current);
148 
149 	current->thread.prev_sched = NULL;
150 
151 	userspace(&current->thread.regs.regs);
152 }
153 
154 int copy_thread(unsigned long clone_flags, unsigned long sp,
155 		unsigned long arg, struct task_struct * p)
156 {
157 	void (*handler)(void);
158 	int kthread = current->flags & PF_KTHREAD;
159 	int ret = 0;
160 
161 	p->thread = (struct thread_struct) INIT_THREAD;
162 
163 	if (!kthread) {
164 	  	memcpy(&p->thread.regs.regs, current_pt_regs(),
165 		       sizeof(p->thread.regs.regs));
166 		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
167 		if (sp != 0)
168 			REGS_SP(p->thread.regs.regs.gp) = sp;
169 
170 		handler = fork_handler;
171 
172 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
173 	} else {
174 		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
175 		p->thread.request.u.thread.proc = (int (*)(void *))sp;
176 		p->thread.request.u.thread.arg = (void *)arg;
177 		handler = new_thread_handler;
178 	}
179 
180 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
181 
182 	if (!kthread) {
183 		clear_flushed_tls(p);
184 
185 		/*
186 		 * Set a new TLS for the child thread?
187 		 */
188 		if (clone_flags & CLONE_SETTLS)
189 			ret = arch_copy_tls(p);
190 	}
191 
192 	return ret;
193 }
194 
195 void initial_thread_cb(void (*proc)(void *), void *arg)
196 {
197 	int save_kmalloc_ok = kmalloc_ok;
198 
199 	kmalloc_ok = 0;
200 	initial_thread_cb_skas(proc, arg);
201 	kmalloc_ok = save_kmalloc_ok;
202 }
203 
204 void arch_cpu_idle(void)
205 {
206 	unsigned long long nsecs;
207 
208 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
209 	nsecs = disable_timer();
210 	idle_sleep(nsecs);
211 	local_irq_enable();
212 }
213 
214 int __cant_sleep(void) {
215 	return in_atomic() || irqs_disabled() || in_interrupt();
216 	/* Is in_interrupt() really needed? */
217 }
218 
219 int user_context(unsigned long sp)
220 {
221 	unsigned long stack;
222 
223 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
224 	return stack != (unsigned long) current_thread_info();
225 }
226 
227 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
228 
229 void do_uml_exitcalls(void)
230 {
231 	exitcall_t *call;
232 
233 	call = &__uml_exitcall_end;
234 	while (--call >= &__uml_exitcall_begin)
235 		(*call)();
236 }
237 
238 char *uml_strdup(const char *string)
239 {
240 	return kstrdup(string, GFP_KERNEL);
241 }
242 EXPORT_SYMBOL(uml_strdup);
243 
244 int copy_to_user_proc(void __user *to, void *from, int size)
245 {
246 	return copy_to_user(to, from, size);
247 }
248 
249 int copy_from_user_proc(void *to, void __user *from, int size)
250 {
251 	return copy_from_user(to, from, size);
252 }
253 
254 int clear_user_proc(void __user *buf, int size)
255 {
256 	return clear_user(buf, size);
257 }
258 
259 int strlen_user_proc(char __user *str)
260 {
261 	return strlen_user(str);
262 }
263 
264 int cpu(void)
265 {
266 	return current_thread_info()->cpu;
267 }
268 
269 static atomic_t using_sysemu = ATOMIC_INIT(0);
270 int sysemu_supported;
271 
272 void set_using_sysemu(int value)
273 {
274 	if (value > sysemu_supported)
275 		return;
276 	atomic_set(&using_sysemu, value);
277 }
278 
279 int get_using_sysemu(void)
280 {
281 	return atomic_read(&using_sysemu);
282 }
283 
284 static int sysemu_proc_show(struct seq_file *m, void *v)
285 {
286 	seq_printf(m, "%d\n", get_using_sysemu());
287 	return 0;
288 }
289 
290 static int sysemu_proc_open(struct inode *inode, struct file *file)
291 {
292 	return single_open(file, sysemu_proc_show, NULL);
293 }
294 
295 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
296 				 size_t count, loff_t *pos)
297 {
298 	char tmp[2];
299 
300 	if (copy_from_user(tmp, buf, 1))
301 		return -EFAULT;
302 
303 	if (tmp[0] >= '0' && tmp[0] <= '2')
304 		set_using_sysemu(tmp[0] - '0');
305 	/* We use the first char, but pretend to write everything */
306 	return count;
307 }
308 
309 static const struct file_operations sysemu_proc_fops = {
310 	.owner		= THIS_MODULE,
311 	.open		= sysemu_proc_open,
312 	.read		= seq_read,
313 	.llseek		= seq_lseek,
314 	.release	= single_release,
315 	.write		= sysemu_proc_write,
316 };
317 
318 int __init make_proc_sysemu(void)
319 {
320 	struct proc_dir_entry *ent;
321 	if (!sysemu_supported)
322 		return 0;
323 
324 	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
325 
326 	if (ent == NULL)
327 	{
328 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
329 		return 0;
330 	}
331 
332 	return 0;
333 }
334 
335 late_initcall(make_proc_sysemu);
336 
337 int singlestepping(void * t)
338 {
339 	struct task_struct *task = t ? t : current;
340 
341 	if (!(task->ptrace & PT_DTRACE))
342 		return 0;
343 
344 	if (task->thread.singlestep_syscall)
345 		return 1;
346 
347 	return 2;
348 }
349 
350 /*
351  * Only x86 and x86_64 have an arch_align_stack().
352  * All other arches have "#define arch_align_stack(x) (x)"
353  * in their asm/exec.h
354  * As this is included in UML from asm-um/system-generic.h,
355  * we can use it to behave as the subarch does.
356  */
357 #ifndef arch_align_stack
358 unsigned long arch_align_stack(unsigned long sp)
359 {
360 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
361 		sp -= get_random_int() % 8192;
362 	return sp & ~0xf;
363 }
364 #endif
365 
366 unsigned long get_wchan(struct task_struct *p)
367 {
368 	unsigned long stack_page, sp, ip;
369 	bool seen_sched = 0;
370 
371 	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
372 		return 0;
373 
374 	stack_page = (unsigned long) task_stack_page(p);
375 	/* Bail if the process has no kernel stack for some reason */
376 	if (stack_page == 0)
377 		return 0;
378 
379 	sp = p->thread.switch_buf->JB_SP;
380 	/*
381 	 * Bail if the stack pointer is below the bottom of the kernel
382 	 * stack for some reason
383 	 */
384 	if (sp < stack_page)
385 		return 0;
386 
387 	while (sp < stack_page + THREAD_SIZE) {
388 		ip = *((unsigned long *) sp);
389 		if (in_sched_functions(ip))
390 			/* Ignore everything until we're above the scheduler */
391 			seen_sched = 1;
392 		else if (kernel_text_address(ip) && seen_sched)
393 			return ip;
394 
395 		sp += sizeof(unsigned long);
396 	}
397 
398 	return 0;
399 }
400 
401 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
402 {
403 	int cpu = current_thread_info()->cpu;
404 
405 	return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
406 }
407 
408