xref: /linux/arch/um/kernel/process.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <asm/current.h>
22 #include <asm/pgtable.h>
23 #include <asm/mmu_context.h>
24 #include <asm/uaccess.h>
25 #include "as-layout.h"
26 #include "kern_util.h"
27 #include "os.h"
28 #include "skas.h"
29 
30 /*
31  * This is a per-cpu array.  A processor only modifies its entry and it only
32  * cares about its entry, so it's OK if another processor is modifying its
33  * entry.
34  */
35 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
36 
37 static inline int external_pid(void)
38 {
39 	/* FIXME: Need to look up userspace_pid by cpu */
40 	return userspace_pid[0];
41 }
42 
43 int pid_to_processor_id(int pid)
44 {
45 	int i;
46 
47 	for (i = 0; i < ncpus; i++) {
48 		if (cpu_tasks[i].pid == pid)
49 			return i;
50 	}
51 	return -1;
52 }
53 
54 void free_stack(unsigned long stack, int order)
55 {
56 	free_pages(stack, order);
57 }
58 
59 unsigned long alloc_stack(int order, int atomic)
60 {
61 	unsigned long page;
62 	gfp_t flags = GFP_KERNEL;
63 
64 	if (atomic)
65 		flags = GFP_ATOMIC;
66 	page = __get_free_pages(flags, order);
67 
68 	return page;
69 }
70 
71 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
72 {
73 	int pid;
74 
75 	current->thread.request.u.thread.proc = fn;
76 	current->thread.request.u.thread.arg = arg;
77 	pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
78 		      &current->thread.regs, 0, NULL, NULL);
79 	return pid;
80 }
81 EXPORT_SYMBOL(kernel_thread);
82 
83 static inline void set_current(struct task_struct *task)
84 {
85 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
86 		{ external_pid(), task });
87 }
88 
89 extern void arch_switch_to(struct task_struct *to);
90 
91 void *_switch_to(void *prev, void *next, void *last)
92 {
93 	struct task_struct *from = prev;
94 	struct task_struct *to = next;
95 
96 	to->thread.prev_sched = from;
97 	set_current(to);
98 
99 	do {
100 		current->thread.saved_task = NULL;
101 
102 		switch_threads(&from->thread.switch_buf,
103 			       &to->thread.switch_buf);
104 
105 		arch_switch_to(current);
106 
107 		if (current->thread.saved_task)
108 			show_regs(&(current->thread.regs));
109 		to = current->thread.saved_task;
110 		from = current;
111 	} while (current->thread.saved_task);
112 
113 	return current->thread.prev_sched;
114 
115 }
116 
117 void interrupt_end(void)
118 {
119 	if (need_resched())
120 		schedule();
121 	if (test_tsk_thread_flag(current, TIF_SIGPENDING))
122 		do_signal();
123 }
124 
125 void exit_thread(void)
126 {
127 }
128 
129 void *get_current(void)
130 {
131 	return current;
132 }
133 
134 /*
135  * This is called magically, by its address being stuffed in a jmp_buf
136  * and being longjmp-d to.
137  */
138 void new_thread_handler(void)
139 {
140 	int (*fn)(void *), n;
141 	void *arg;
142 
143 	if (current->thread.prev_sched != NULL)
144 		schedule_tail(current->thread.prev_sched);
145 	current->thread.prev_sched = NULL;
146 
147 	fn = current->thread.request.u.thread.proc;
148 	arg = current->thread.request.u.thread.arg;
149 
150 	/*
151 	 * The return value is 1 if the kernel thread execs a process,
152 	 * 0 if it just exits
153 	 */
154 	n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
155 	if (n == 1) {
156 		/* Handle any immediate reschedules or signals */
157 		interrupt_end();
158 		userspace(&current->thread.regs.regs);
159 	}
160 	else do_exit(0);
161 }
162 
163 /* Called magically, see new_thread_handler above */
164 void fork_handler(void)
165 {
166 	force_flush_all();
167 
168 	schedule_tail(current->thread.prev_sched);
169 
170 	/*
171 	 * XXX: if interrupt_end() calls schedule, this call to
172 	 * arch_switch_to isn't needed. We could want to apply this to
173 	 * improve performance. -bb
174 	 */
175 	arch_switch_to(current);
176 
177 	current->thread.prev_sched = NULL;
178 
179 	/* Handle any immediate reschedules or signals */
180 	interrupt_end();
181 
182 	userspace(&current->thread.regs.regs);
183 }
184 
185 int copy_thread(unsigned long clone_flags, unsigned long sp,
186 		unsigned long stack_top, struct task_struct * p,
187 		struct pt_regs *regs)
188 {
189 	void (*handler)(void);
190 	int ret = 0;
191 
192 	p->thread = (struct thread_struct) INIT_THREAD;
193 
194 	if (current->thread.forking) {
195 	  	memcpy(&p->thread.regs.regs, &regs->regs,
196 		       sizeof(p->thread.regs.regs));
197 		REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
198 		if (sp != 0)
199 			REGS_SP(p->thread.regs.regs.gp) = sp;
200 
201 		handler = fork_handler;
202 
203 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
204 	}
205 	else {
206 		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
207 		p->thread.request.u.thread = current->thread.request.u.thread;
208 		handler = new_thread_handler;
209 	}
210 
211 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
212 
213 	if (current->thread.forking) {
214 		clear_flushed_tls(p);
215 
216 		/*
217 		 * Set a new TLS for the child thread?
218 		 */
219 		if (clone_flags & CLONE_SETTLS)
220 			ret = arch_copy_tls(p);
221 	}
222 
223 	return ret;
224 }
225 
226 void initial_thread_cb(void (*proc)(void *), void *arg)
227 {
228 	int save_kmalloc_ok = kmalloc_ok;
229 
230 	kmalloc_ok = 0;
231 	initial_thread_cb_skas(proc, arg);
232 	kmalloc_ok = save_kmalloc_ok;
233 }
234 
235 void default_idle(void)
236 {
237 	unsigned long long nsecs;
238 
239 	while (1) {
240 		/* endless idle loop with no priority at all */
241 
242 		/*
243 		 * although we are an idle CPU, we do not want to
244 		 * get into the scheduler unnecessarily.
245 		 */
246 		if (need_resched())
247 			schedule();
248 
249 		tick_nohz_idle_enter();
250 		rcu_idle_enter();
251 		nsecs = disable_timer();
252 		idle_sleep(nsecs);
253 		rcu_idle_exit();
254 		tick_nohz_idle_exit();
255 	}
256 }
257 
258 void cpu_idle(void)
259 {
260 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
261 	default_idle();
262 }
263 
264 int __cant_sleep(void) {
265 	return in_atomic() || irqs_disabled() || in_interrupt();
266 	/* Is in_interrupt() really needed? */
267 }
268 
269 int user_context(unsigned long sp)
270 {
271 	unsigned long stack;
272 
273 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
274 	return stack != (unsigned long) current_thread_info();
275 }
276 
277 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
278 
279 void do_uml_exitcalls(void)
280 {
281 	exitcall_t *call;
282 
283 	call = &__uml_exitcall_end;
284 	while (--call >= &__uml_exitcall_begin)
285 		(*call)();
286 }
287 
288 char *uml_strdup(const char *string)
289 {
290 	return kstrdup(string, GFP_KERNEL);
291 }
292 EXPORT_SYMBOL(uml_strdup);
293 
294 int copy_to_user_proc(void __user *to, void *from, int size)
295 {
296 	return copy_to_user(to, from, size);
297 }
298 
299 int copy_from_user_proc(void *to, void __user *from, int size)
300 {
301 	return copy_from_user(to, from, size);
302 }
303 
304 int clear_user_proc(void __user *buf, int size)
305 {
306 	return clear_user(buf, size);
307 }
308 
309 int strlen_user_proc(char __user *str)
310 {
311 	return strlen_user(str);
312 }
313 
314 int smp_sigio_handler(void)
315 {
316 #ifdef CONFIG_SMP
317 	int cpu = current_thread_info()->cpu;
318 	IPI_handler(cpu);
319 	if (cpu != 0)
320 		return 1;
321 #endif
322 	return 0;
323 }
324 
325 int cpu(void)
326 {
327 	return current_thread_info()->cpu;
328 }
329 
330 static atomic_t using_sysemu = ATOMIC_INIT(0);
331 int sysemu_supported;
332 
333 void set_using_sysemu(int value)
334 {
335 	if (value > sysemu_supported)
336 		return;
337 	atomic_set(&using_sysemu, value);
338 }
339 
340 int get_using_sysemu(void)
341 {
342 	return atomic_read(&using_sysemu);
343 }
344 
345 static int sysemu_proc_show(struct seq_file *m, void *v)
346 {
347 	seq_printf(m, "%d\n", get_using_sysemu());
348 	return 0;
349 }
350 
351 static int sysemu_proc_open(struct inode *inode, struct file *file)
352 {
353 	return single_open(file, sysemu_proc_show, NULL);
354 }
355 
356 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
357 				 size_t count, loff_t *pos)
358 {
359 	char tmp[2];
360 
361 	if (copy_from_user(tmp, buf, 1))
362 		return -EFAULT;
363 
364 	if (tmp[0] >= '0' && tmp[0] <= '2')
365 		set_using_sysemu(tmp[0] - '0');
366 	/* We use the first char, but pretend to write everything */
367 	return count;
368 }
369 
370 static const struct file_operations sysemu_proc_fops = {
371 	.owner		= THIS_MODULE,
372 	.open		= sysemu_proc_open,
373 	.read		= seq_read,
374 	.llseek		= seq_lseek,
375 	.release	= single_release,
376 	.write		= sysemu_proc_write,
377 };
378 
379 int __init make_proc_sysemu(void)
380 {
381 	struct proc_dir_entry *ent;
382 	if (!sysemu_supported)
383 		return 0;
384 
385 	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
386 
387 	if (ent == NULL)
388 	{
389 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
390 		return 0;
391 	}
392 
393 	return 0;
394 }
395 
396 late_initcall(make_proc_sysemu);
397 
398 int singlestepping(void * t)
399 {
400 	struct task_struct *task = t ? t : current;
401 
402 	if (!(task->ptrace & PT_DTRACE))
403 		return 0;
404 
405 	if (task->thread.singlestep_syscall)
406 		return 1;
407 
408 	return 2;
409 }
410 
411 /*
412  * Only x86 and x86_64 have an arch_align_stack().
413  * All other arches have "#define arch_align_stack(x) (x)"
414  * in their asm/system.h
415  * As this is included in UML from asm-um/system-generic.h,
416  * we can use it to behave as the subarch does.
417  */
418 #ifndef arch_align_stack
419 unsigned long arch_align_stack(unsigned long sp)
420 {
421 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
422 		sp -= get_random_int() % 8192;
423 	return sp & ~0xf;
424 }
425 #endif
426 
427 unsigned long get_wchan(struct task_struct *p)
428 {
429 	unsigned long stack_page, sp, ip;
430 	bool seen_sched = 0;
431 
432 	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
433 		return 0;
434 
435 	stack_page = (unsigned long) task_stack_page(p);
436 	/* Bail if the process has no kernel stack for some reason */
437 	if (stack_page == 0)
438 		return 0;
439 
440 	sp = p->thread.switch_buf->JB_SP;
441 	/*
442 	 * Bail if the stack pointer is below the bottom of the kernel
443 	 * stack for some reason
444 	 */
445 	if (sp < stack_page)
446 		return 0;
447 
448 	while (sp < stack_page + THREAD_SIZE) {
449 		ip = *((unsigned long *) sp);
450 		if (in_sched_functions(ip))
451 			/* Ignore everything until we're above the scheduler */
452 			seen_sched = 1;
453 		else if (kernel_text_address(ip) && seen_sched)
454 			return ip;
455 
456 		sp += sizeof(unsigned long);
457 	}
458 
459 	return 0;
460 }
461 
462 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
463 {
464 	int cpu = current_thread_info()->cpu;
465 
466 	return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
467 }
468 
469