1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Copyright 2003 PathScale, Inc. 4 * Licensed under the GPL 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/err.h> 9 #include <linux/hardirq.h> 10 #include <linux/mm.h> 11 #include <linux/module.h> 12 #include <linux/personality.h> 13 #include <linux/proc_fs.h> 14 #include <linux/ptrace.h> 15 #include <linux/random.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/seq_file.h> 19 #include <linux/tick.h> 20 #include <linux/threads.h> 21 #include <asm/current.h> 22 #include <asm/pgtable.h> 23 #include <asm/mmu_context.h> 24 #include <asm/uaccess.h> 25 #include "as-layout.h" 26 #include "kern_util.h" 27 #include "os.h" 28 #include "skas.h" 29 30 /* 31 * This is a per-cpu array. A processor only modifies its entry and it only 32 * cares about its entry, so it's OK if another processor is modifying its 33 * entry. 34 */ 35 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; 36 37 static inline int external_pid(void) 38 { 39 /* FIXME: Need to look up userspace_pid by cpu */ 40 return userspace_pid[0]; 41 } 42 43 int pid_to_processor_id(int pid) 44 { 45 int i; 46 47 for (i = 0; i < ncpus; i++) { 48 if (cpu_tasks[i].pid == pid) 49 return i; 50 } 51 return -1; 52 } 53 54 void free_stack(unsigned long stack, int order) 55 { 56 free_pages(stack, order); 57 } 58 59 unsigned long alloc_stack(int order, int atomic) 60 { 61 unsigned long page; 62 gfp_t flags = GFP_KERNEL; 63 64 if (atomic) 65 flags = GFP_ATOMIC; 66 page = __get_free_pages(flags, order); 67 68 return page; 69 } 70 71 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 72 { 73 int pid; 74 75 current->thread.request.u.thread.proc = fn; 76 current->thread.request.u.thread.arg = arg; 77 pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0, 78 ¤t->thread.regs, 0, NULL, NULL); 79 return pid; 80 } 81 EXPORT_SYMBOL(kernel_thread); 82 83 static inline void set_current(struct task_struct *task) 84 { 85 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) 86 { external_pid(), task }); 87 } 88 89 extern void arch_switch_to(struct task_struct *to); 90 91 void *_switch_to(void *prev, void *next, void *last) 92 { 93 struct task_struct *from = prev; 94 struct task_struct *to = next; 95 96 to->thread.prev_sched = from; 97 set_current(to); 98 99 do { 100 current->thread.saved_task = NULL; 101 102 switch_threads(&from->thread.switch_buf, 103 &to->thread.switch_buf); 104 105 arch_switch_to(current); 106 107 if (current->thread.saved_task) 108 show_regs(&(current->thread.regs)); 109 to = current->thread.saved_task; 110 from = current; 111 } while (current->thread.saved_task); 112 113 return current->thread.prev_sched; 114 115 } 116 117 void interrupt_end(void) 118 { 119 if (need_resched()) 120 schedule(); 121 if (test_tsk_thread_flag(current, TIF_SIGPENDING)) 122 do_signal(); 123 } 124 125 void exit_thread(void) 126 { 127 } 128 129 void *get_current(void) 130 { 131 return current; 132 } 133 134 /* 135 * This is called magically, by its address being stuffed in a jmp_buf 136 * and being longjmp-d to. 137 */ 138 void new_thread_handler(void) 139 { 140 int (*fn)(void *), n; 141 void *arg; 142 143 if (current->thread.prev_sched != NULL) 144 schedule_tail(current->thread.prev_sched); 145 current->thread.prev_sched = NULL; 146 147 fn = current->thread.request.u.thread.proc; 148 arg = current->thread.request.u.thread.arg; 149 150 /* 151 * The return value is 1 if the kernel thread execs a process, 152 * 0 if it just exits 153 */ 154 n = run_kernel_thread(fn, arg, ¤t->thread.exec_buf); 155 if (n == 1) { 156 /* Handle any immediate reschedules or signals */ 157 interrupt_end(); 158 userspace(¤t->thread.regs.regs); 159 } 160 else do_exit(0); 161 } 162 163 /* Called magically, see new_thread_handler above */ 164 void fork_handler(void) 165 { 166 force_flush_all(); 167 168 schedule_tail(current->thread.prev_sched); 169 170 /* 171 * XXX: if interrupt_end() calls schedule, this call to 172 * arch_switch_to isn't needed. We could want to apply this to 173 * improve performance. -bb 174 */ 175 arch_switch_to(current); 176 177 current->thread.prev_sched = NULL; 178 179 /* Handle any immediate reschedules or signals */ 180 interrupt_end(); 181 182 userspace(¤t->thread.regs.regs); 183 } 184 185 int copy_thread(unsigned long clone_flags, unsigned long sp, 186 unsigned long stack_top, struct task_struct * p, 187 struct pt_regs *regs) 188 { 189 void (*handler)(void); 190 int ret = 0; 191 192 p->thread = (struct thread_struct) INIT_THREAD; 193 194 if (current->thread.forking) { 195 memcpy(&p->thread.regs.regs, ®s->regs, 196 sizeof(p->thread.regs.regs)); 197 REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0); 198 if (sp != 0) 199 REGS_SP(p->thread.regs.regs.gp) = sp; 200 201 handler = fork_handler; 202 203 arch_copy_thread(¤t->thread.arch, &p->thread.arch); 204 } 205 else { 206 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp); 207 p->thread.request.u.thread = current->thread.request.u.thread; 208 handler = new_thread_handler; 209 } 210 211 new_thread(task_stack_page(p), &p->thread.switch_buf, handler); 212 213 if (current->thread.forking) { 214 clear_flushed_tls(p); 215 216 /* 217 * Set a new TLS for the child thread? 218 */ 219 if (clone_flags & CLONE_SETTLS) 220 ret = arch_copy_tls(p); 221 } 222 223 return ret; 224 } 225 226 void initial_thread_cb(void (*proc)(void *), void *arg) 227 { 228 int save_kmalloc_ok = kmalloc_ok; 229 230 kmalloc_ok = 0; 231 initial_thread_cb_skas(proc, arg); 232 kmalloc_ok = save_kmalloc_ok; 233 } 234 235 void default_idle(void) 236 { 237 unsigned long long nsecs; 238 239 while (1) { 240 /* endless idle loop with no priority at all */ 241 242 /* 243 * although we are an idle CPU, we do not want to 244 * get into the scheduler unnecessarily. 245 */ 246 if (need_resched()) 247 schedule(); 248 249 tick_nohz_idle_enter(); 250 rcu_idle_enter(); 251 nsecs = disable_timer(); 252 idle_sleep(nsecs); 253 rcu_idle_exit(); 254 tick_nohz_idle_exit(); 255 } 256 } 257 258 void cpu_idle(void) 259 { 260 cpu_tasks[current_thread_info()->cpu].pid = os_getpid(); 261 default_idle(); 262 } 263 264 int __cant_sleep(void) { 265 return in_atomic() || irqs_disabled() || in_interrupt(); 266 /* Is in_interrupt() really needed? */ 267 } 268 269 int user_context(unsigned long sp) 270 { 271 unsigned long stack; 272 273 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); 274 return stack != (unsigned long) current_thread_info(); 275 } 276 277 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; 278 279 void do_uml_exitcalls(void) 280 { 281 exitcall_t *call; 282 283 call = &__uml_exitcall_end; 284 while (--call >= &__uml_exitcall_begin) 285 (*call)(); 286 } 287 288 char *uml_strdup(const char *string) 289 { 290 return kstrdup(string, GFP_KERNEL); 291 } 292 EXPORT_SYMBOL(uml_strdup); 293 294 int copy_to_user_proc(void __user *to, void *from, int size) 295 { 296 return copy_to_user(to, from, size); 297 } 298 299 int copy_from_user_proc(void *to, void __user *from, int size) 300 { 301 return copy_from_user(to, from, size); 302 } 303 304 int clear_user_proc(void __user *buf, int size) 305 { 306 return clear_user(buf, size); 307 } 308 309 int strlen_user_proc(char __user *str) 310 { 311 return strlen_user(str); 312 } 313 314 int smp_sigio_handler(void) 315 { 316 #ifdef CONFIG_SMP 317 int cpu = current_thread_info()->cpu; 318 IPI_handler(cpu); 319 if (cpu != 0) 320 return 1; 321 #endif 322 return 0; 323 } 324 325 int cpu(void) 326 { 327 return current_thread_info()->cpu; 328 } 329 330 static atomic_t using_sysemu = ATOMIC_INIT(0); 331 int sysemu_supported; 332 333 void set_using_sysemu(int value) 334 { 335 if (value > sysemu_supported) 336 return; 337 atomic_set(&using_sysemu, value); 338 } 339 340 int get_using_sysemu(void) 341 { 342 return atomic_read(&using_sysemu); 343 } 344 345 static int sysemu_proc_show(struct seq_file *m, void *v) 346 { 347 seq_printf(m, "%d\n", get_using_sysemu()); 348 return 0; 349 } 350 351 static int sysemu_proc_open(struct inode *inode, struct file *file) 352 { 353 return single_open(file, sysemu_proc_show, NULL); 354 } 355 356 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf, 357 size_t count, loff_t *pos) 358 { 359 char tmp[2]; 360 361 if (copy_from_user(tmp, buf, 1)) 362 return -EFAULT; 363 364 if (tmp[0] >= '0' && tmp[0] <= '2') 365 set_using_sysemu(tmp[0] - '0'); 366 /* We use the first char, but pretend to write everything */ 367 return count; 368 } 369 370 static const struct file_operations sysemu_proc_fops = { 371 .owner = THIS_MODULE, 372 .open = sysemu_proc_open, 373 .read = seq_read, 374 .llseek = seq_lseek, 375 .release = single_release, 376 .write = sysemu_proc_write, 377 }; 378 379 int __init make_proc_sysemu(void) 380 { 381 struct proc_dir_entry *ent; 382 if (!sysemu_supported) 383 return 0; 384 385 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops); 386 387 if (ent == NULL) 388 { 389 printk(KERN_WARNING "Failed to register /proc/sysemu\n"); 390 return 0; 391 } 392 393 return 0; 394 } 395 396 late_initcall(make_proc_sysemu); 397 398 int singlestepping(void * t) 399 { 400 struct task_struct *task = t ? t : current; 401 402 if (!(task->ptrace & PT_DTRACE)) 403 return 0; 404 405 if (task->thread.singlestep_syscall) 406 return 1; 407 408 return 2; 409 } 410 411 /* 412 * Only x86 and x86_64 have an arch_align_stack(). 413 * All other arches have "#define arch_align_stack(x) (x)" 414 * in their asm/system.h 415 * As this is included in UML from asm-um/system-generic.h, 416 * we can use it to behave as the subarch does. 417 */ 418 #ifndef arch_align_stack 419 unsigned long arch_align_stack(unsigned long sp) 420 { 421 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 422 sp -= get_random_int() % 8192; 423 return sp & ~0xf; 424 } 425 #endif 426 427 unsigned long get_wchan(struct task_struct *p) 428 { 429 unsigned long stack_page, sp, ip; 430 bool seen_sched = 0; 431 432 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING)) 433 return 0; 434 435 stack_page = (unsigned long) task_stack_page(p); 436 /* Bail if the process has no kernel stack for some reason */ 437 if (stack_page == 0) 438 return 0; 439 440 sp = p->thread.switch_buf->JB_SP; 441 /* 442 * Bail if the stack pointer is below the bottom of the kernel 443 * stack for some reason 444 */ 445 if (sp < stack_page) 446 return 0; 447 448 while (sp < stack_page + THREAD_SIZE) { 449 ip = *((unsigned long *) sp); 450 if (in_sched_functions(ip)) 451 /* Ignore everything until we're above the scheduler */ 452 seen_sched = 1; 453 else if (kernel_text_address(ip) && seen_sched) 454 return ip; 455 456 sp += sizeof(unsigned long); 457 } 458 459 return 0; 460 } 461 462 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu) 463 { 464 int cpu = current_thread_info()->cpu; 465 466 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu); 467 } 468 469