1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Copyright 2003 PathScale, Inc. 4 * Licensed under the GPL 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/err.h> 9 #include <linux/hardirq.h> 10 #include <linux/mm.h> 11 #include <linux/module.h> 12 #include <linux/personality.h> 13 #include <linux/proc_fs.h> 14 #include <linux/ptrace.h> 15 #include <linux/random.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/seq_file.h> 19 #include <linux/tick.h> 20 #include <linux/threads.h> 21 #include <linux/tracehook.h> 22 #include <asm/current.h> 23 #include <asm/pgtable.h> 24 #include <asm/mmu_context.h> 25 #include <asm/uaccess.h> 26 #include "as-layout.h" 27 #include "kern_util.h" 28 #include "os.h" 29 #include "skas.h" 30 31 /* 32 * This is a per-cpu array. A processor only modifies its entry and it only 33 * cares about its entry, so it's OK if another processor is modifying its 34 * entry. 35 */ 36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; 37 38 static inline int external_pid(void) 39 { 40 /* FIXME: Need to look up userspace_pid by cpu */ 41 return userspace_pid[0]; 42 } 43 44 int pid_to_processor_id(int pid) 45 { 46 int i; 47 48 for (i = 0; i < ncpus; i++) { 49 if (cpu_tasks[i].pid == pid) 50 return i; 51 } 52 return -1; 53 } 54 55 void free_stack(unsigned long stack, int order) 56 { 57 free_pages(stack, order); 58 } 59 60 unsigned long alloc_stack(int order, int atomic) 61 { 62 unsigned long page; 63 gfp_t flags = GFP_KERNEL; 64 65 if (atomic) 66 flags = GFP_ATOMIC; 67 page = __get_free_pages(flags, order); 68 69 return page; 70 } 71 72 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 73 { 74 int pid; 75 76 current->thread.request.u.thread.proc = fn; 77 current->thread.request.u.thread.arg = arg; 78 pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0, 79 ¤t->thread.regs, 0, NULL, NULL); 80 return pid; 81 } 82 EXPORT_SYMBOL(kernel_thread); 83 84 static inline void set_current(struct task_struct *task) 85 { 86 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) 87 { external_pid(), task }); 88 } 89 90 extern void arch_switch_to(struct task_struct *to); 91 92 void *__switch_to(struct task_struct *from, struct task_struct *to) 93 { 94 to->thread.prev_sched = from; 95 set_current(to); 96 97 do { 98 current->thread.saved_task = NULL; 99 100 switch_threads(&from->thread.switch_buf, 101 &to->thread.switch_buf); 102 103 arch_switch_to(current); 104 105 if (current->thread.saved_task) 106 show_regs(&(current->thread.regs)); 107 to = current->thread.saved_task; 108 from = current; 109 } while (current->thread.saved_task); 110 111 return current->thread.prev_sched; 112 } 113 114 void interrupt_end(void) 115 { 116 if (need_resched()) 117 schedule(); 118 if (test_thread_flag(TIF_SIGPENDING)) 119 do_signal(); 120 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) 121 tracehook_notify_resume(¤t->thread.regs); 122 } 123 124 void exit_thread(void) 125 { 126 } 127 128 int get_current_pid(void) 129 { 130 return task_pid_nr(current); 131 } 132 133 /* 134 * This is called magically, by its address being stuffed in a jmp_buf 135 * and being longjmp-d to. 136 */ 137 void new_thread_handler(void) 138 { 139 int (*fn)(void *), n; 140 void *arg; 141 142 if (current->thread.prev_sched != NULL) 143 schedule_tail(current->thread.prev_sched); 144 current->thread.prev_sched = NULL; 145 146 fn = current->thread.request.u.thread.proc; 147 arg = current->thread.request.u.thread.arg; 148 149 /* 150 * The return value is 1 if the kernel thread execs a process, 151 * 0 if it just exits 152 */ 153 n = run_kernel_thread(fn, arg, ¤t->thread.exec_buf); 154 if (n == 1) 155 userspace(¤t->thread.regs.regs); 156 else 157 do_exit(0); 158 } 159 160 /* Called magically, see new_thread_handler above */ 161 void fork_handler(void) 162 { 163 force_flush_all(); 164 165 schedule_tail(current->thread.prev_sched); 166 167 /* 168 * XXX: if interrupt_end() calls schedule, this call to 169 * arch_switch_to isn't needed. We could want to apply this to 170 * improve performance. -bb 171 */ 172 arch_switch_to(current); 173 174 current->thread.prev_sched = NULL; 175 176 userspace(¤t->thread.regs.regs); 177 } 178 179 int copy_thread(unsigned long clone_flags, unsigned long sp, 180 unsigned long stack_top, struct task_struct * p, 181 struct pt_regs *regs) 182 { 183 void (*handler)(void); 184 int ret = 0; 185 186 p->thread = (struct thread_struct) INIT_THREAD; 187 188 if (current->thread.forking) { 189 memcpy(&p->thread.regs.regs, ®s->regs, 190 sizeof(p->thread.regs.regs)); 191 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0); 192 if (sp != 0) 193 REGS_SP(p->thread.regs.regs.gp) = sp; 194 195 handler = fork_handler; 196 197 arch_copy_thread(¤t->thread.arch, &p->thread.arch); 198 } 199 else { 200 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp); 201 p->thread.request.u.thread = current->thread.request.u.thread; 202 handler = new_thread_handler; 203 } 204 205 new_thread(task_stack_page(p), &p->thread.switch_buf, handler); 206 207 if (current->thread.forking) { 208 clear_flushed_tls(p); 209 210 /* 211 * Set a new TLS for the child thread? 212 */ 213 if (clone_flags & CLONE_SETTLS) 214 ret = arch_copy_tls(p); 215 } 216 217 return ret; 218 } 219 220 void initial_thread_cb(void (*proc)(void *), void *arg) 221 { 222 int save_kmalloc_ok = kmalloc_ok; 223 224 kmalloc_ok = 0; 225 initial_thread_cb_skas(proc, arg); 226 kmalloc_ok = save_kmalloc_ok; 227 } 228 229 void default_idle(void) 230 { 231 unsigned long long nsecs; 232 233 while (1) { 234 /* endless idle loop with no priority at all */ 235 236 /* 237 * although we are an idle CPU, we do not want to 238 * get into the scheduler unnecessarily. 239 */ 240 if (need_resched()) 241 schedule(); 242 243 tick_nohz_idle_enter(); 244 rcu_idle_enter(); 245 nsecs = disable_timer(); 246 idle_sleep(nsecs); 247 rcu_idle_exit(); 248 tick_nohz_idle_exit(); 249 } 250 } 251 252 void cpu_idle(void) 253 { 254 cpu_tasks[current_thread_info()->cpu].pid = os_getpid(); 255 default_idle(); 256 } 257 258 int __cant_sleep(void) { 259 return in_atomic() || irqs_disabled() || in_interrupt(); 260 /* Is in_interrupt() really needed? */ 261 } 262 263 int user_context(unsigned long sp) 264 { 265 unsigned long stack; 266 267 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); 268 return stack != (unsigned long) current_thread_info(); 269 } 270 271 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; 272 273 void do_uml_exitcalls(void) 274 { 275 exitcall_t *call; 276 277 call = &__uml_exitcall_end; 278 while (--call >= &__uml_exitcall_begin) 279 (*call)(); 280 } 281 282 char *uml_strdup(const char *string) 283 { 284 return kstrdup(string, GFP_KERNEL); 285 } 286 EXPORT_SYMBOL(uml_strdup); 287 288 int copy_to_user_proc(void __user *to, void *from, int size) 289 { 290 return copy_to_user(to, from, size); 291 } 292 293 int copy_from_user_proc(void *to, void __user *from, int size) 294 { 295 return copy_from_user(to, from, size); 296 } 297 298 int clear_user_proc(void __user *buf, int size) 299 { 300 return clear_user(buf, size); 301 } 302 303 int strlen_user_proc(char __user *str) 304 { 305 return strlen_user(str); 306 } 307 308 int smp_sigio_handler(void) 309 { 310 #ifdef CONFIG_SMP 311 int cpu = current_thread_info()->cpu; 312 IPI_handler(cpu); 313 if (cpu != 0) 314 return 1; 315 #endif 316 return 0; 317 } 318 319 int cpu(void) 320 { 321 return current_thread_info()->cpu; 322 } 323 324 static atomic_t using_sysemu = ATOMIC_INIT(0); 325 int sysemu_supported; 326 327 void set_using_sysemu(int value) 328 { 329 if (value > sysemu_supported) 330 return; 331 atomic_set(&using_sysemu, value); 332 } 333 334 int get_using_sysemu(void) 335 { 336 return atomic_read(&using_sysemu); 337 } 338 339 static int sysemu_proc_show(struct seq_file *m, void *v) 340 { 341 seq_printf(m, "%d\n", get_using_sysemu()); 342 return 0; 343 } 344 345 static int sysemu_proc_open(struct inode *inode, struct file *file) 346 { 347 return single_open(file, sysemu_proc_show, NULL); 348 } 349 350 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf, 351 size_t count, loff_t *pos) 352 { 353 char tmp[2]; 354 355 if (copy_from_user(tmp, buf, 1)) 356 return -EFAULT; 357 358 if (tmp[0] >= '0' && tmp[0] <= '2') 359 set_using_sysemu(tmp[0] - '0'); 360 /* We use the first char, but pretend to write everything */ 361 return count; 362 } 363 364 static const struct file_operations sysemu_proc_fops = { 365 .owner = THIS_MODULE, 366 .open = sysemu_proc_open, 367 .read = seq_read, 368 .llseek = seq_lseek, 369 .release = single_release, 370 .write = sysemu_proc_write, 371 }; 372 373 int __init make_proc_sysemu(void) 374 { 375 struct proc_dir_entry *ent; 376 if (!sysemu_supported) 377 return 0; 378 379 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops); 380 381 if (ent == NULL) 382 { 383 printk(KERN_WARNING "Failed to register /proc/sysemu\n"); 384 return 0; 385 } 386 387 return 0; 388 } 389 390 late_initcall(make_proc_sysemu); 391 392 int singlestepping(void * t) 393 { 394 struct task_struct *task = t ? t : current; 395 396 if (!(task->ptrace & PT_DTRACE)) 397 return 0; 398 399 if (task->thread.singlestep_syscall) 400 return 1; 401 402 return 2; 403 } 404 405 /* 406 * Only x86 and x86_64 have an arch_align_stack(). 407 * All other arches have "#define arch_align_stack(x) (x)" 408 * in their asm/system.h 409 * As this is included in UML from asm-um/system-generic.h, 410 * we can use it to behave as the subarch does. 411 */ 412 #ifndef arch_align_stack 413 unsigned long arch_align_stack(unsigned long sp) 414 { 415 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 416 sp -= get_random_int() % 8192; 417 return sp & ~0xf; 418 } 419 #endif 420 421 unsigned long get_wchan(struct task_struct *p) 422 { 423 unsigned long stack_page, sp, ip; 424 bool seen_sched = 0; 425 426 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING)) 427 return 0; 428 429 stack_page = (unsigned long) task_stack_page(p); 430 /* Bail if the process has no kernel stack for some reason */ 431 if (stack_page == 0) 432 return 0; 433 434 sp = p->thread.switch_buf->JB_SP; 435 /* 436 * Bail if the stack pointer is below the bottom of the kernel 437 * stack for some reason 438 */ 439 if (sp < stack_page) 440 return 0; 441 442 while (sp < stack_page + THREAD_SIZE) { 443 ip = *((unsigned long *) sp); 444 if (in_sched_functions(ip)) 445 /* Ignore everything until we're above the scheduler */ 446 seen_sched = 1; 447 else if (kernel_text_address(ip) && seen_sched) 448 return ip; 449 450 sp += sizeof(unsigned long); 451 } 452 453 return 0; 454 } 455 456 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu) 457 { 458 int cpu = current_thread_info()->cpu; 459 460 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu); 461 } 462 463