xref: /linux/arch/um/kernel/process.c (revision 50069a5851323ba5def0e414a21e234345016870)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <linux/tracehook.h>
22 #include <asm/current.h>
23 #include <asm/pgtable.h>
24 #include <asm/mmu_context.h>
25 #include <asm/uaccess.h>
26 #include "as-layout.h"
27 #include "kern_util.h"
28 #include "os.h"
29 #include "skas.h"
30 
31 /*
32  * This is a per-cpu array.  A processor only modifies its entry and it only
33  * cares about its entry, so it's OK if another processor is modifying its
34  * entry.
35  */
36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
37 
38 static inline int external_pid(void)
39 {
40 	/* FIXME: Need to look up userspace_pid by cpu */
41 	return userspace_pid[0];
42 }
43 
44 int pid_to_processor_id(int pid)
45 {
46 	int i;
47 
48 	for (i = 0; i < ncpus; i++) {
49 		if (cpu_tasks[i].pid == pid)
50 			return i;
51 	}
52 	return -1;
53 }
54 
55 void free_stack(unsigned long stack, int order)
56 {
57 	free_pages(stack, order);
58 }
59 
60 unsigned long alloc_stack(int order, int atomic)
61 {
62 	unsigned long page;
63 	gfp_t flags = GFP_KERNEL;
64 
65 	if (atomic)
66 		flags = GFP_ATOMIC;
67 	page = __get_free_pages(flags, order);
68 
69 	return page;
70 }
71 
72 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
73 {
74 	int pid;
75 
76 	current->thread.request.u.thread.proc = fn;
77 	current->thread.request.u.thread.arg = arg;
78 	pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
79 		      &current->thread.regs, 0, NULL, NULL);
80 	return pid;
81 }
82 EXPORT_SYMBOL(kernel_thread);
83 
84 static inline void set_current(struct task_struct *task)
85 {
86 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
87 		{ external_pid(), task });
88 }
89 
90 extern void arch_switch_to(struct task_struct *to);
91 
92 void *__switch_to(struct task_struct *from, struct task_struct *to)
93 {
94 	to->thread.prev_sched = from;
95 	set_current(to);
96 
97 	do {
98 		current->thread.saved_task = NULL;
99 
100 		switch_threads(&from->thread.switch_buf,
101 			       &to->thread.switch_buf);
102 
103 		arch_switch_to(current);
104 
105 		if (current->thread.saved_task)
106 			show_regs(&(current->thread.regs));
107 		to = current->thread.saved_task;
108 		from = current;
109 	} while (current->thread.saved_task);
110 
111 	return current->thread.prev_sched;
112 }
113 
114 void interrupt_end(void)
115 {
116 	if (need_resched())
117 		schedule();
118 	if (test_thread_flag(TIF_SIGPENDING))
119 		do_signal();
120 	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) {
121 		tracehook_notify_resume(&current->thread.regs);
122 		if (current->replacement_session_keyring)
123 			key_replace_session_keyring();
124 	}
125 }
126 
127 void exit_thread(void)
128 {
129 }
130 
131 int get_current_pid(void)
132 {
133 	return task_pid_nr(current);
134 }
135 
136 /*
137  * This is called magically, by its address being stuffed in a jmp_buf
138  * and being longjmp-d to.
139  */
140 void new_thread_handler(void)
141 {
142 	int (*fn)(void *), n;
143 	void *arg;
144 
145 	if (current->thread.prev_sched != NULL)
146 		schedule_tail(current->thread.prev_sched);
147 	current->thread.prev_sched = NULL;
148 
149 	fn = current->thread.request.u.thread.proc;
150 	arg = current->thread.request.u.thread.arg;
151 
152 	/*
153 	 * The return value is 1 if the kernel thread execs a process,
154 	 * 0 if it just exits
155 	 */
156 	n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
157 	if (n == 1) {
158 		/* Handle any immediate reschedules or signals */
159 		interrupt_end();
160 		userspace(&current->thread.regs.regs);
161 	}
162 	else do_exit(0);
163 }
164 
165 /* Called magically, see new_thread_handler above */
166 void fork_handler(void)
167 {
168 	force_flush_all();
169 
170 	schedule_tail(current->thread.prev_sched);
171 
172 	/*
173 	 * XXX: if interrupt_end() calls schedule, this call to
174 	 * arch_switch_to isn't needed. We could want to apply this to
175 	 * improve performance. -bb
176 	 */
177 	arch_switch_to(current);
178 
179 	current->thread.prev_sched = NULL;
180 
181 	/* Handle any immediate reschedules or signals */
182 	interrupt_end();
183 
184 	userspace(&current->thread.regs.regs);
185 }
186 
187 int copy_thread(unsigned long clone_flags, unsigned long sp,
188 		unsigned long stack_top, struct task_struct * p,
189 		struct pt_regs *regs)
190 {
191 	void (*handler)(void);
192 	int ret = 0;
193 
194 	p->thread = (struct thread_struct) INIT_THREAD;
195 
196 	if (current->thread.forking) {
197 	  	memcpy(&p->thread.regs.regs, &regs->regs,
198 		       sizeof(p->thread.regs.regs));
199 		UPT_SET_SYSCALL_RETURN(&p->thread.regs.regs, 0);
200 		if (sp != 0)
201 			REGS_SP(p->thread.regs.regs.gp) = sp;
202 
203 		handler = fork_handler;
204 
205 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
206 	}
207 	else {
208 		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
209 		p->thread.request.u.thread = current->thread.request.u.thread;
210 		handler = new_thread_handler;
211 	}
212 
213 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
214 
215 	if (current->thread.forking) {
216 		clear_flushed_tls(p);
217 
218 		/*
219 		 * Set a new TLS for the child thread?
220 		 */
221 		if (clone_flags & CLONE_SETTLS)
222 			ret = arch_copy_tls(p);
223 	}
224 
225 	return ret;
226 }
227 
228 void initial_thread_cb(void (*proc)(void *), void *arg)
229 {
230 	int save_kmalloc_ok = kmalloc_ok;
231 
232 	kmalloc_ok = 0;
233 	initial_thread_cb_skas(proc, arg);
234 	kmalloc_ok = save_kmalloc_ok;
235 }
236 
237 void default_idle(void)
238 {
239 	unsigned long long nsecs;
240 
241 	while (1) {
242 		/* endless idle loop with no priority at all */
243 
244 		/*
245 		 * although we are an idle CPU, we do not want to
246 		 * get into the scheduler unnecessarily.
247 		 */
248 		if (need_resched())
249 			schedule();
250 
251 		tick_nohz_idle_enter();
252 		rcu_idle_enter();
253 		nsecs = disable_timer();
254 		idle_sleep(nsecs);
255 		rcu_idle_exit();
256 		tick_nohz_idle_exit();
257 	}
258 }
259 
260 void cpu_idle(void)
261 {
262 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
263 	default_idle();
264 }
265 
266 int __cant_sleep(void) {
267 	return in_atomic() || irqs_disabled() || in_interrupt();
268 	/* Is in_interrupt() really needed? */
269 }
270 
271 int user_context(unsigned long sp)
272 {
273 	unsigned long stack;
274 
275 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
276 	return stack != (unsigned long) current_thread_info();
277 }
278 
279 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
280 
281 void do_uml_exitcalls(void)
282 {
283 	exitcall_t *call;
284 
285 	call = &__uml_exitcall_end;
286 	while (--call >= &__uml_exitcall_begin)
287 		(*call)();
288 }
289 
290 char *uml_strdup(const char *string)
291 {
292 	return kstrdup(string, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(uml_strdup);
295 
296 int copy_to_user_proc(void __user *to, void *from, int size)
297 {
298 	return copy_to_user(to, from, size);
299 }
300 
301 int copy_from_user_proc(void *to, void __user *from, int size)
302 {
303 	return copy_from_user(to, from, size);
304 }
305 
306 int clear_user_proc(void __user *buf, int size)
307 {
308 	return clear_user(buf, size);
309 }
310 
311 int strlen_user_proc(char __user *str)
312 {
313 	return strlen_user(str);
314 }
315 
316 int smp_sigio_handler(void)
317 {
318 #ifdef CONFIG_SMP
319 	int cpu = current_thread_info()->cpu;
320 	IPI_handler(cpu);
321 	if (cpu != 0)
322 		return 1;
323 #endif
324 	return 0;
325 }
326 
327 int cpu(void)
328 {
329 	return current_thread_info()->cpu;
330 }
331 
332 static atomic_t using_sysemu = ATOMIC_INIT(0);
333 int sysemu_supported;
334 
335 void set_using_sysemu(int value)
336 {
337 	if (value > sysemu_supported)
338 		return;
339 	atomic_set(&using_sysemu, value);
340 }
341 
342 int get_using_sysemu(void)
343 {
344 	return atomic_read(&using_sysemu);
345 }
346 
347 static int sysemu_proc_show(struct seq_file *m, void *v)
348 {
349 	seq_printf(m, "%d\n", get_using_sysemu());
350 	return 0;
351 }
352 
353 static int sysemu_proc_open(struct inode *inode, struct file *file)
354 {
355 	return single_open(file, sysemu_proc_show, NULL);
356 }
357 
358 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
359 				 size_t count, loff_t *pos)
360 {
361 	char tmp[2];
362 
363 	if (copy_from_user(tmp, buf, 1))
364 		return -EFAULT;
365 
366 	if (tmp[0] >= '0' && tmp[0] <= '2')
367 		set_using_sysemu(tmp[0] - '0');
368 	/* We use the first char, but pretend to write everything */
369 	return count;
370 }
371 
372 static const struct file_operations sysemu_proc_fops = {
373 	.owner		= THIS_MODULE,
374 	.open		= sysemu_proc_open,
375 	.read		= seq_read,
376 	.llseek		= seq_lseek,
377 	.release	= single_release,
378 	.write		= sysemu_proc_write,
379 };
380 
381 int __init make_proc_sysemu(void)
382 {
383 	struct proc_dir_entry *ent;
384 	if (!sysemu_supported)
385 		return 0;
386 
387 	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
388 
389 	if (ent == NULL)
390 	{
391 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
392 		return 0;
393 	}
394 
395 	return 0;
396 }
397 
398 late_initcall(make_proc_sysemu);
399 
400 int singlestepping(void * t)
401 {
402 	struct task_struct *task = t ? t : current;
403 
404 	if (!(task->ptrace & PT_DTRACE))
405 		return 0;
406 
407 	if (task->thread.singlestep_syscall)
408 		return 1;
409 
410 	return 2;
411 }
412 
413 /*
414  * Only x86 and x86_64 have an arch_align_stack().
415  * All other arches have "#define arch_align_stack(x) (x)"
416  * in their asm/system.h
417  * As this is included in UML from asm-um/system-generic.h,
418  * we can use it to behave as the subarch does.
419  */
420 #ifndef arch_align_stack
421 unsigned long arch_align_stack(unsigned long sp)
422 {
423 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
424 		sp -= get_random_int() % 8192;
425 	return sp & ~0xf;
426 }
427 #endif
428 
429 unsigned long get_wchan(struct task_struct *p)
430 {
431 	unsigned long stack_page, sp, ip;
432 	bool seen_sched = 0;
433 
434 	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
435 		return 0;
436 
437 	stack_page = (unsigned long) task_stack_page(p);
438 	/* Bail if the process has no kernel stack for some reason */
439 	if (stack_page == 0)
440 		return 0;
441 
442 	sp = p->thread.switch_buf->JB_SP;
443 	/*
444 	 * Bail if the stack pointer is below the bottom of the kernel
445 	 * stack for some reason
446 	 */
447 	if (sp < stack_page)
448 		return 0;
449 
450 	while (sp < stack_page + THREAD_SIZE) {
451 		ip = *((unsigned long *) sp);
452 		if (in_sched_functions(ip))
453 			/* Ignore everything until we're above the scheduler */
454 			seen_sched = 1;
455 		else if (kernel_text_address(ip) && seen_sched)
456 			return ip;
457 
458 		sp += sizeof(unsigned long);
459 	}
460 
461 	return 0;
462 }
463 
464 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
465 {
466 	int cpu = current_thread_info()->cpu;
467 
468 	return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
469 }
470 
471