1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Copyright 2003 PathScale, Inc. 4 * Licensed under the GPL 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/err.h> 9 #include <linux/hardirq.h> 10 #include <linux/mm.h> 11 #include <linux/module.h> 12 #include <linux/personality.h> 13 #include <linux/proc_fs.h> 14 #include <linux/ptrace.h> 15 #include <linux/random.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/seq_file.h> 19 #include <linux/tick.h> 20 #include <linux/threads.h> 21 #include <linux/tracehook.h> 22 #include <asm/current.h> 23 #include <asm/pgtable.h> 24 #include <asm/mmu_context.h> 25 #include <asm/uaccess.h> 26 #include "as-layout.h" 27 #include "kern_util.h" 28 #include "os.h" 29 #include "skas.h" 30 31 /* 32 * This is a per-cpu array. A processor only modifies its entry and it only 33 * cares about its entry, so it's OK if another processor is modifying its 34 * entry. 35 */ 36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; 37 38 static inline int external_pid(void) 39 { 40 /* FIXME: Need to look up userspace_pid by cpu */ 41 return userspace_pid[0]; 42 } 43 44 int pid_to_processor_id(int pid) 45 { 46 int i; 47 48 for (i = 0; i < ncpus; i++) { 49 if (cpu_tasks[i].pid == pid) 50 return i; 51 } 52 return -1; 53 } 54 55 void free_stack(unsigned long stack, int order) 56 { 57 free_pages(stack, order); 58 } 59 60 unsigned long alloc_stack(int order, int atomic) 61 { 62 unsigned long page; 63 gfp_t flags = GFP_KERNEL; 64 65 if (atomic) 66 flags = GFP_ATOMIC; 67 page = __get_free_pages(flags, order); 68 69 return page; 70 } 71 72 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 73 { 74 int pid; 75 76 current->thread.request.u.thread.proc = fn; 77 current->thread.request.u.thread.arg = arg; 78 pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0, 79 ¤t->thread.regs, 0, NULL, NULL); 80 return pid; 81 } 82 EXPORT_SYMBOL(kernel_thread); 83 84 static inline void set_current(struct task_struct *task) 85 { 86 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) 87 { external_pid(), task }); 88 } 89 90 extern void arch_switch_to(struct task_struct *to); 91 92 void *__switch_to(struct task_struct *from, struct task_struct *to) 93 { 94 to->thread.prev_sched = from; 95 set_current(to); 96 97 do { 98 current->thread.saved_task = NULL; 99 100 switch_threads(&from->thread.switch_buf, 101 &to->thread.switch_buf); 102 103 arch_switch_to(current); 104 105 if (current->thread.saved_task) 106 show_regs(&(current->thread.regs)); 107 to = current->thread.saved_task; 108 from = current; 109 } while (current->thread.saved_task); 110 111 return current->thread.prev_sched; 112 } 113 114 void interrupt_end(void) 115 { 116 if (need_resched()) 117 schedule(); 118 if (test_thread_flag(TIF_SIGPENDING)) 119 do_signal(); 120 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) { 121 tracehook_notify_resume(¤t->thread.regs); 122 if (current->replacement_session_keyring) 123 key_replace_session_keyring(); 124 } 125 } 126 127 void exit_thread(void) 128 { 129 } 130 131 int get_current_pid(void) 132 { 133 return task_pid_nr(current); 134 } 135 136 /* 137 * This is called magically, by its address being stuffed in a jmp_buf 138 * and being longjmp-d to. 139 */ 140 void new_thread_handler(void) 141 { 142 int (*fn)(void *), n; 143 void *arg; 144 145 if (current->thread.prev_sched != NULL) 146 schedule_tail(current->thread.prev_sched); 147 current->thread.prev_sched = NULL; 148 149 fn = current->thread.request.u.thread.proc; 150 arg = current->thread.request.u.thread.arg; 151 152 /* 153 * The return value is 1 if the kernel thread execs a process, 154 * 0 if it just exits 155 */ 156 n = run_kernel_thread(fn, arg, ¤t->thread.exec_buf); 157 if (n == 1) { 158 /* Handle any immediate reschedules or signals */ 159 interrupt_end(); 160 userspace(¤t->thread.regs.regs); 161 } 162 else do_exit(0); 163 } 164 165 /* Called magically, see new_thread_handler above */ 166 void fork_handler(void) 167 { 168 force_flush_all(); 169 170 schedule_tail(current->thread.prev_sched); 171 172 /* 173 * XXX: if interrupt_end() calls schedule, this call to 174 * arch_switch_to isn't needed. We could want to apply this to 175 * improve performance. -bb 176 */ 177 arch_switch_to(current); 178 179 current->thread.prev_sched = NULL; 180 181 /* Handle any immediate reschedules or signals */ 182 interrupt_end(); 183 184 userspace(¤t->thread.regs.regs); 185 } 186 187 int copy_thread(unsigned long clone_flags, unsigned long sp, 188 unsigned long stack_top, struct task_struct * p, 189 struct pt_regs *regs) 190 { 191 void (*handler)(void); 192 int ret = 0; 193 194 p->thread = (struct thread_struct) INIT_THREAD; 195 196 if (current->thread.forking) { 197 memcpy(&p->thread.regs.regs, ®s->regs, 198 sizeof(p->thread.regs.regs)); 199 UPT_SET_SYSCALL_RETURN(&p->thread.regs.regs, 0); 200 if (sp != 0) 201 REGS_SP(p->thread.regs.regs.gp) = sp; 202 203 handler = fork_handler; 204 205 arch_copy_thread(¤t->thread.arch, &p->thread.arch); 206 } 207 else { 208 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp); 209 p->thread.request.u.thread = current->thread.request.u.thread; 210 handler = new_thread_handler; 211 } 212 213 new_thread(task_stack_page(p), &p->thread.switch_buf, handler); 214 215 if (current->thread.forking) { 216 clear_flushed_tls(p); 217 218 /* 219 * Set a new TLS for the child thread? 220 */ 221 if (clone_flags & CLONE_SETTLS) 222 ret = arch_copy_tls(p); 223 } 224 225 return ret; 226 } 227 228 void initial_thread_cb(void (*proc)(void *), void *arg) 229 { 230 int save_kmalloc_ok = kmalloc_ok; 231 232 kmalloc_ok = 0; 233 initial_thread_cb_skas(proc, arg); 234 kmalloc_ok = save_kmalloc_ok; 235 } 236 237 void default_idle(void) 238 { 239 unsigned long long nsecs; 240 241 while (1) { 242 /* endless idle loop with no priority at all */ 243 244 /* 245 * although we are an idle CPU, we do not want to 246 * get into the scheduler unnecessarily. 247 */ 248 if (need_resched()) 249 schedule(); 250 251 tick_nohz_idle_enter(); 252 rcu_idle_enter(); 253 nsecs = disable_timer(); 254 idle_sleep(nsecs); 255 rcu_idle_exit(); 256 tick_nohz_idle_exit(); 257 } 258 } 259 260 void cpu_idle(void) 261 { 262 cpu_tasks[current_thread_info()->cpu].pid = os_getpid(); 263 default_idle(); 264 } 265 266 int __cant_sleep(void) { 267 return in_atomic() || irqs_disabled() || in_interrupt(); 268 /* Is in_interrupt() really needed? */ 269 } 270 271 int user_context(unsigned long sp) 272 { 273 unsigned long stack; 274 275 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); 276 return stack != (unsigned long) current_thread_info(); 277 } 278 279 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; 280 281 void do_uml_exitcalls(void) 282 { 283 exitcall_t *call; 284 285 call = &__uml_exitcall_end; 286 while (--call >= &__uml_exitcall_begin) 287 (*call)(); 288 } 289 290 char *uml_strdup(const char *string) 291 { 292 return kstrdup(string, GFP_KERNEL); 293 } 294 EXPORT_SYMBOL(uml_strdup); 295 296 int copy_to_user_proc(void __user *to, void *from, int size) 297 { 298 return copy_to_user(to, from, size); 299 } 300 301 int copy_from_user_proc(void *to, void __user *from, int size) 302 { 303 return copy_from_user(to, from, size); 304 } 305 306 int clear_user_proc(void __user *buf, int size) 307 { 308 return clear_user(buf, size); 309 } 310 311 int strlen_user_proc(char __user *str) 312 { 313 return strlen_user(str); 314 } 315 316 int smp_sigio_handler(void) 317 { 318 #ifdef CONFIG_SMP 319 int cpu = current_thread_info()->cpu; 320 IPI_handler(cpu); 321 if (cpu != 0) 322 return 1; 323 #endif 324 return 0; 325 } 326 327 int cpu(void) 328 { 329 return current_thread_info()->cpu; 330 } 331 332 static atomic_t using_sysemu = ATOMIC_INIT(0); 333 int sysemu_supported; 334 335 void set_using_sysemu(int value) 336 { 337 if (value > sysemu_supported) 338 return; 339 atomic_set(&using_sysemu, value); 340 } 341 342 int get_using_sysemu(void) 343 { 344 return atomic_read(&using_sysemu); 345 } 346 347 static int sysemu_proc_show(struct seq_file *m, void *v) 348 { 349 seq_printf(m, "%d\n", get_using_sysemu()); 350 return 0; 351 } 352 353 static int sysemu_proc_open(struct inode *inode, struct file *file) 354 { 355 return single_open(file, sysemu_proc_show, NULL); 356 } 357 358 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf, 359 size_t count, loff_t *pos) 360 { 361 char tmp[2]; 362 363 if (copy_from_user(tmp, buf, 1)) 364 return -EFAULT; 365 366 if (tmp[0] >= '0' && tmp[0] <= '2') 367 set_using_sysemu(tmp[0] - '0'); 368 /* We use the first char, but pretend to write everything */ 369 return count; 370 } 371 372 static const struct file_operations sysemu_proc_fops = { 373 .owner = THIS_MODULE, 374 .open = sysemu_proc_open, 375 .read = seq_read, 376 .llseek = seq_lseek, 377 .release = single_release, 378 .write = sysemu_proc_write, 379 }; 380 381 int __init make_proc_sysemu(void) 382 { 383 struct proc_dir_entry *ent; 384 if (!sysemu_supported) 385 return 0; 386 387 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops); 388 389 if (ent == NULL) 390 { 391 printk(KERN_WARNING "Failed to register /proc/sysemu\n"); 392 return 0; 393 } 394 395 return 0; 396 } 397 398 late_initcall(make_proc_sysemu); 399 400 int singlestepping(void * t) 401 { 402 struct task_struct *task = t ? t : current; 403 404 if (!(task->ptrace & PT_DTRACE)) 405 return 0; 406 407 if (task->thread.singlestep_syscall) 408 return 1; 409 410 return 2; 411 } 412 413 /* 414 * Only x86 and x86_64 have an arch_align_stack(). 415 * All other arches have "#define arch_align_stack(x) (x)" 416 * in their asm/system.h 417 * As this is included in UML from asm-um/system-generic.h, 418 * we can use it to behave as the subarch does. 419 */ 420 #ifndef arch_align_stack 421 unsigned long arch_align_stack(unsigned long sp) 422 { 423 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 424 sp -= get_random_int() % 8192; 425 return sp & ~0xf; 426 } 427 #endif 428 429 unsigned long get_wchan(struct task_struct *p) 430 { 431 unsigned long stack_page, sp, ip; 432 bool seen_sched = 0; 433 434 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING)) 435 return 0; 436 437 stack_page = (unsigned long) task_stack_page(p); 438 /* Bail if the process has no kernel stack for some reason */ 439 if (stack_page == 0) 440 return 0; 441 442 sp = p->thread.switch_buf->JB_SP; 443 /* 444 * Bail if the stack pointer is below the bottom of the kernel 445 * stack for some reason 446 */ 447 if (sp < stack_page) 448 return 0; 449 450 while (sp < stack_page + THREAD_SIZE) { 451 ip = *((unsigned long *) sp); 452 if (in_sched_functions(ip)) 453 /* Ignore everything until we're above the scheduler */ 454 seen_sched = 1; 455 else if (kernel_text_address(ip) && seen_sched) 456 return ip; 457 458 sp += sizeof(unsigned long); 459 } 460 461 return 0; 462 } 463 464 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu) 465 { 466 int cpu = current_thread_info()->cpu; 467 468 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu); 469 } 470 471