1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk}) 4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de) 5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 6 * Copyright 2003 PathScale, Inc. 7 */ 8 9 #include <linux/stddef.h> 10 #include <linux/err.h> 11 #include <linux/hardirq.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/personality.h> 15 #include <linux/proc_fs.h> 16 #include <linux/ptrace.h> 17 #include <linux/random.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/sched/debug.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/task_stack.h> 23 #include <linux/seq_file.h> 24 #include <linux/tick.h> 25 #include <linux/threads.h> 26 #include <linux/tracehook.h> 27 #include <asm/current.h> 28 #include <asm/mmu_context.h> 29 #include <linux/uaccess.h> 30 #include <as-layout.h> 31 #include <kern_util.h> 32 #include <os.h> 33 #include <skas.h> 34 #include <linux/time-internal.h> 35 #include <asm/set_memory.h> 36 37 /* 38 * This is a per-cpu array. A processor only modifies its entry and it only 39 * cares about its entry, so it's OK if another processor is modifying its 40 * entry. 41 */ 42 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; 43 44 static inline int external_pid(void) 45 { 46 /* FIXME: Need to look up userspace_pid by cpu */ 47 return userspace_pid[0]; 48 } 49 50 int pid_to_processor_id(int pid) 51 { 52 int i; 53 54 for (i = 0; i < ncpus; i++) { 55 if (cpu_tasks[i].pid == pid) 56 return i; 57 } 58 return -1; 59 } 60 61 void free_stack(unsigned long stack, int order) 62 { 63 free_pages(stack, order); 64 } 65 66 unsigned long alloc_stack(int atomic) 67 { 68 unsigned long addr; 69 gfp_t flags = GFP_KERNEL; 70 71 if (atomic) 72 flags = GFP_ATOMIC; 73 addr = __get_free_pages(flags, 1); 74 75 set_memory_ro(addr, 1); 76 77 return addr + PAGE_SIZE; 78 } 79 80 static inline void set_current(struct task_struct *task) 81 { 82 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) 83 { external_pid(), task }); 84 } 85 86 extern void arch_switch_to(struct task_struct *to); 87 88 void *__switch_to(struct task_struct *from, struct task_struct *to) 89 { 90 to->thread.prev_sched = from; 91 set_current(to); 92 93 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf); 94 arch_switch_to(current); 95 96 return current->thread.prev_sched; 97 } 98 99 void interrupt_end(void) 100 { 101 struct pt_regs *regs = ¤t->thread.regs; 102 103 if (need_resched()) 104 schedule(); 105 if (test_thread_flag(TIF_SIGPENDING) || 106 test_thread_flag(TIF_NOTIFY_SIGNAL)) 107 do_signal(regs); 108 if (test_thread_flag(TIF_NOTIFY_RESUME)) 109 tracehook_notify_resume(regs); 110 } 111 112 int get_current_pid(void) 113 { 114 return task_pid_nr(current); 115 } 116 117 /* 118 * This is called magically, by its address being stuffed in a jmp_buf 119 * and being longjmp-d to. 120 */ 121 void new_thread_handler(void) 122 { 123 int (*fn)(void *), n; 124 void *arg; 125 126 if (current->thread.prev_sched != NULL) 127 schedule_tail(current->thread.prev_sched); 128 current->thread.prev_sched = NULL; 129 130 fn = current->thread.request.u.thread.proc; 131 arg = current->thread.request.u.thread.arg; 132 133 /* 134 * callback returns only if the kernel thread execs a process 135 */ 136 n = fn(arg); 137 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs); 138 } 139 140 /* Called magically, see new_thread_handler above */ 141 void fork_handler(void) 142 { 143 force_flush_all(); 144 145 schedule_tail(current->thread.prev_sched); 146 147 /* 148 * XXX: if interrupt_end() calls schedule, this call to 149 * arch_switch_to isn't needed. We could want to apply this to 150 * improve performance. -bb 151 */ 152 arch_switch_to(current); 153 154 current->thread.prev_sched = NULL; 155 156 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs); 157 } 158 159 int copy_thread(unsigned long clone_flags, unsigned long sp, 160 unsigned long arg, struct task_struct * p, unsigned long tls) 161 { 162 void (*handler)(void); 163 int kthread = current->flags & PF_KTHREAD; 164 int ret = 0; 165 166 p->thread = (struct thread_struct) INIT_THREAD; 167 168 if (!kthread) { 169 memcpy(&p->thread.regs.regs, current_pt_regs(), 170 sizeof(p->thread.regs.regs)); 171 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0); 172 if (sp != 0) 173 REGS_SP(p->thread.regs.regs.gp) = sp; 174 175 handler = fork_handler; 176 177 arch_copy_thread(¤t->thread.arch, &p->thread.arch); 178 } else { 179 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp); 180 p->thread.request.u.thread.proc = (int (*)(void *))sp; 181 p->thread.request.u.thread.arg = (void *)arg; 182 handler = new_thread_handler; 183 } 184 185 new_thread(task_stack_page(p), &p->thread.switch_buf, handler); 186 187 if (!kthread) { 188 clear_flushed_tls(p); 189 190 /* 191 * Set a new TLS for the child thread? 192 */ 193 if (clone_flags & CLONE_SETTLS) 194 ret = arch_set_tls(p, tls); 195 } 196 197 return ret; 198 } 199 200 void initial_thread_cb(void (*proc)(void *), void *arg) 201 { 202 int save_kmalloc_ok = kmalloc_ok; 203 204 kmalloc_ok = 0; 205 initial_thread_cb_skas(proc, arg); 206 kmalloc_ok = save_kmalloc_ok; 207 } 208 209 void um_idle_sleep(void) 210 { 211 if (time_travel_mode != TT_MODE_OFF) 212 time_travel_sleep(); 213 else 214 os_idle_sleep(); 215 } 216 217 void arch_cpu_idle(void) 218 { 219 cpu_tasks[current_thread_info()->cpu].pid = os_getpid(); 220 um_idle_sleep(); 221 raw_local_irq_enable(); 222 } 223 224 int __cant_sleep(void) { 225 return in_atomic() || irqs_disabled() || in_interrupt(); 226 /* Is in_interrupt() really needed? */ 227 } 228 229 int user_context(unsigned long sp) 230 { 231 unsigned long stack; 232 233 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); 234 return stack != (unsigned long) current_thread_info(); 235 } 236 237 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; 238 239 void do_uml_exitcalls(void) 240 { 241 exitcall_t *call; 242 243 call = &__uml_exitcall_end; 244 while (--call >= &__uml_exitcall_begin) 245 (*call)(); 246 } 247 248 char *uml_strdup(const char *string) 249 { 250 return kstrdup(string, GFP_KERNEL); 251 } 252 EXPORT_SYMBOL(uml_strdup); 253 254 int copy_to_user_proc(void __user *to, void *from, int size) 255 { 256 return copy_to_user(to, from, size); 257 } 258 259 int copy_from_user_proc(void *to, void __user *from, int size) 260 { 261 return copy_from_user(to, from, size); 262 } 263 264 int clear_user_proc(void __user *buf, int size) 265 { 266 return clear_user(buf, size); 267 } 268 269 int cpu(void) 270 { 271 return current_thread_info()->cpu; 272 } 273 274 static atomic_t using_sysemu = ATOMIC_INIT(0); 275 int sysemu_supported; 276 277 void set_using_sysemu(int value) 278 { 279 if (value > sysemu_supported) 280 return; 281 atomic_set(&using_sysemu, value); 282 } 283 284 int get_using_sysemu(void) 285 { 286 return atomic_read(&using_sysemu); 287 } 288 289 static int sysemu_proc_show(struct seq_file *m, void *v) 290 { 291 seq_printf(m, "%d\n", get_using_sysemu()); 292 return 0; 293 } 294 295 static int sysemu_proc_open(struct inode *inode, struct file *file) 296 { 297 return single_open(file, sysemu_proc_show, NULL); 298 } 299 300 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf, 301 size_t count, loff_t *pos) 302 { 303 char tmp[2]; 304 305 if (copy_from_user(tmp, buf, 1)) 306 return -EFAULT; 307 308 if (tmp[0] >= '0' && tmp[0] <= '2') 309 set_using_sysemu(tmp[0] - '0'); 310 /* We use the first char, but pretend to write everything */ 311 return count; 312 } 313 314 static const struct proc_ops sysemu_proc_ops = { 315 .proc_open = sysemu_proc_open, 316 .proc_read = seq_read, 317 .proc_lseek = seq_lseek, 318 .proc_release = single_release, 319 .proc_write = sysemu_proc_write, 320 }; 321 322 int __init make_proc_sysemu(void) 323 { 324 struct proc_dir_entry *ent; 325 if (!sysemu_supported) 326 return 0; 327 328 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops); 329 330 if (ent == NULL) 331 { 332 printk(KERN_WARNING "Failed to register /proc/sysemu\n"); 333 return 0; 334 } 335 336 return 0; 337 } 338 339 late_initcall(make_proc_sysemu); 340 341 int singlestepping(void * t) 342 { 343 struct task_struct *task = t ? t : current; 344 345 if (!(task->ptrace & PT_DTRACE)) 346 return 0; 347 348 if (task->thread.singlestep_syscall) 349 return 1; 350 351 return 2; 352 } 353 354 /* 355 * Only x86 and x86_64 have an arch_align_stack(). 356 * All other arches have "#define arch_align_stack(x) (x)" 357 * in their asm/exec.h 358 * As this is included in UML from asm-um/system-generic.h, 359 * we can use it to behave as the subarch does. 360 */ 361 #ifndef arch_align_stack 362 unsigned long arch_align_stack(unsigned long sp) 363 { 364 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 365 sp -= get_random_int() % 8192; 366 return sp & ~0xf; 367 } 368 #endif 369 370 unsigned long get_wchan(struct task_struct *p) 371 { 372 unsigned long stack_page, sp, ip; 373 bool seen_sched = 0; 374 375 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING)) 376 return 0; 377 378 stack_page = (unsigned long) task_stack_page(p); 379 /* Bail if the process has no kernel stack for some reason */ 380 if (stack_page == 0) 381 return 0; 382 383 sp = p->thread.switch_buf->JB_SP; 384 /* 385 * Bail if the stack pointer is below the bottom of the kernel 386 * stack for some reason 387 */ 388 if (sp < stack_page) 389 return 0; 390 391 while (sp < stack_page + THREAD_SIZE) { 392 ip = *((unsigned long *) sp); 393 if (in_sched_functions(ip)) 394 /* Ignore everything until we're above the scheduler */ 395 seen_sched = 1; 396 else if (kernel_text_address(ip) && seen_sched) 397 return ip; 398 399 sp += sizeof(unsigned long); 400 } 401 402 return 0; 403 } 404 405 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu) 406 { 407 int cpu = current_thread_info()->cpu; 408 409 return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu); 410 } 411 412