xref: /linux/arch/um/kernel/process.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6 
7 #include "linux/kernel.h"
8 #include "linux/sched.h"
9 #include "linux/interrupt.h"
10 #include "linux/string.h"
11 #include "linux/mm.h"
12 #include "linux/slab.h"
13 #include "linux/utsname.h"
14 #include "linux/fs.h"
15 #include "linux/utime.h"
16 #include "linux/smp_lock.h"
17 #include "linux/module.h"
18 #include "linux/init.h"
19 #include "linux/capability.h"
20 #include "linux/vmalloc.h"
21 #include "linux/spinlock.h"
22 #include "linux/proc_fs.h"
23 #include "linux/ptrace.h"
24 #include "linux/random.h"
25 #include "linux/personality.h"
26 #include "asm/unistd.h"
27 #include "asm/mman.h"
28 #include "asm/segment.h"
29 #include "asm/stat.h"
30 #include "asm/pgtable.h"
31 #include "asm/processor.h"
32 #include "asm/tlbflush.h"
33 #include "asm/uaccess.h"
34 #include "asm/user.h"
35 #include "kern_util.h"
36 #include "as-layout.h"
37 #include "kern.h"
38 #include "signal_kern.h"
39 #include "init.h"
40 #include "irq_user.h"
41 #include "mem_user.h"
42 #include "tlb.h"
43 #include "frame_kern.h"
44 #include "sigcontext.h"
45 #include "os.h"
46 #include "mode.h"
47 #include "mode_kern.h"
48 #include "choose-mode.h"
49 
50 /* This is a per-cpu array.  A processor only modifies its entry and it only
51  * cares about its entry, so it's OK if another processor is modifying its
52  * entry.
53  */
54 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
55 
56 static inline int external_pid(struct task_struct *task)
57 {
58 	return CHOOSE_MODE_PROC(external_pid_tt, external_pid_skas, task);
59 }
60 
61 int pid_to_processor_id(int pid)
62 {
63 	int i;
64 
65 	for(i = 0; i < ncpus; i++){
66 		if(cpu_tasks[i].pid == pid)
67 			return i;
68 	}
69 	return -1;
70 }
71 
72 void free_stack(unsigned long stack, int order)
73 {
74 	free_pages(stack, order);
75 }
76 
77 unsigned long alloc_stack(int order, int atomic)
78 {
79 	unsigned long page;
80 	gfp_t flags = GFP_KERNEL;
81 
82 	if (atomic)
83 		flags = GFP_ATOMIC;
84 	page = __get_free_pages(flags, order);
85 	if(page == 0)
86 		return 0;
87 	stack_protections(page);
88 	return page;
89 }
90 
91 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
92 {
93 	int pid;
94 
95 	current->thread.request.u.thread.proc = fn;
96 	current->thread.request.u.thread.arg = arg;
97 	pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
98 		      &current->thread.regs, 0, NULL, NULL);
99 	return pid;
100 }
101 
102 static inline void set_current(struct task_struct *task)
103 {
104 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
105 		{ external_pid(task), task });
106 }
107 
108 void *_switch_to(void *prev, void *next, void *last)
109 {
110 	struct task_struct *from = prev;
111 	struct task_struct *to= next;
112 
113 	to->thread.prev_sched = from;
114 	set_current(to);
115 
116 	do {
117 		current->thread.saved_task = NULL ;
118 		CHOOSE_MODE_PROC(switch_to_tt, switch_to_skas, prev, next);
119 		if(current->thread.saved_task)
120 			show_regs(&(current->thread.regs));
121 		next= current->thread.saved_task;
122 		prev= current;
123 	} while(current->thread.saved_task);
124 
125 	return current->thread.prev_sched;
126 
127 }
128 
129 void interrupt_end(void)
130 {
131 	if(need_resched())
132 		schedule();
133 	if(test_tsk_thread_flag(current, TIF_SIGPENDING))
134 		do_signal();
135 }
136 
137 void release_thread(struct task_struct *task)
138 {
139 	CHOOSE_MODE(release_thread_tt(task), release_thread_skas(task));
140 }
141 
142 void exit_thread(void)
143 {
144 	unprotect_stack((unsigned long) current_thread);
145 }
146 
147 void *get_current(void)
148 {
149 	return current;
150 }
151 
152 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
153 		unsigned long stack_top, struct task_struct * p,
154 		struct pt_regs *regs)
155 {
156 	int ret;
157 
158 	p->thread = (struct thread_struct) INIT_THREAD;
159 	ret = CHOOSE_MODE_PROC(copy_thread_tt, copy_thread_skas, nr,
160 				clone_flags, sp, stack_top, p, regs);
161 
162 	if (ret || !current->thread.forking)
163 		goto out;
164 
165 	clear_flushed_tls(p);
166 
167 	/*
168 	 * Set a new TLS for the child thread?
169 	 */
170 	if (clone_flags & CLONE_SETTLS)
171 		ret = arch_copy_tls(p);
172 
173 out:
174 	return ret;
175 }
176 
177 void initial_thread_cb(void (*proc)(void *), void *arg)
178 {
179 	int save_kmalloc_ok = kmalloc_ok;
180 
181 	kmalloc_ok = 0;
182 	CHOOSE_MODE_PROC(initial_thread_cb_tt, initial_thread_cb_skas, proc,
183 			 arg);
184 	kmalloc_ok = save_kmalloc_ok;
185 }
186 
187 #ifdef CONFIG_MODE_TT
188 unsigned long stack_sp(unsigned long page)
189 {
190 	return page + PAGE_SIZE - sizeof(void *);
191 }
192 #endif
193 
194 void default_idle(void)
195 {
196 	CHOOSE_MODE(uml_idle_timer(), (void) 0);
197 
198 	while(1){
199 		/* endless idle loop with no priority at all */
200 
201 		/*
202 		 * although we are an idle CPU, we do not want to
203 		 * get into the scheduler unnecessarily.
204 		 */
205 		if(need_resched())
206 			schedule();
207 
208 		idle_sleep(10);
209 	}
210 }
211 
212 void cpu_idle(void)
213 {
214 	CHOOSE_MODE(init_idle_tt(), init_idle_skas());
215 }
216 
217 void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
218 		      pte_t *pte_out)
219 {
220 	pgd_t *pgd;
221 	pud_t *pud;
222 	pmd_t *pmd;
223 	pte_t *pte;
224 	pte_t ptent;
225 
226 	if(task->mm == NULL)
227 		return ERR_PTR(-EINVAL);
228 	pgd = pgd_offset(task->mm, addr);
229 	if(!pgd_present(*pgd))
230 		return ERR_PTR(-EINVAL);
231 
232 	pud = pud_offset(pgd, addr);
233 	if(!pud_present(*pud))
234 		return ERR_PTR(-EINVAL);
235 
236 	pmd = pmd_offset(pud, addr);
237 	if(!pmd_present(*pmd))
238 		return ERR_PTR(-EINVAL);
239 
240 	pte = pte_offset_kernel(pmd, addr);
241 	ptent = *pte;
242 	if(!pte_present(ptent))
243 		return ERR_PTR(-EINVAL);
244 
245 	if(pte_out != NULL)
246 		*pte_out = ptent;
247 	return (void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK);
248 }
249 
250 char *current_cmd(void)
251 {
252 #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM)
253 	return "(Unknown)";
254 #else
255 	void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL);
256 	return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr);
257 #endif
258 }
259 
260 void dump_thread(struct pt_regs *regs, struct user *u)
261 {
262 }
263 
264 int __cant_sleep(void) {
265 	return in_atomic() || irqs_disabled() || in_interrupt();
266 	/* Is in_interrupt() really needed? */
267 }
268 
269 int user_context(unsigned long sp)
270 {
271 	unsigned long stack;
272 
273 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
274 	return stack != (unsigned long) current_thread;
275 }
276 
277 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
278 
279 void do_uml_exitcalls(void)
280 {
281 	exitcall_t *call;
282 
283 	call = &__uml_exitcall_end;
284 	while (--call >= &__uml_exitcall_begin)
285 		(*call)();
286 }
287 
288 char *uml_strdup(char *string)
289 {
290 	return kstrdup(string, GFP_KERNEL);
291 }
292 
293 int copy_to_user_proc(void __user *to, void *from, int size)
294 {
295 	return copy_to_user(to, from, size);
296 }
297 
298 int copy_from_user_proc(void *to, void __user *from, int size)
299 {
300 	return copy_from_user(to, from, size);
301 }
302 
303 int clear_user_proc(void __user *buf, int size)
304 {
305 	return clear_user(buf, size);
306 }
307 
308 int strlen_user_proc(char __user *str)
309 {
310 	return strlen_user(str);
311 }
312 
313 int smp_sigio_handler(void)
314 {
315 #ifdef CONFIG_SMP
316 	int cpu = current_thread->cpu;
317 	IPI_handler(cpu);
318 	if(cpu != 0)
319 		return 1;
320 #endif
321 	return 0;
322 }
323 
324 int cpu(void)
325 {
326 	return current_thread->cpu;
327 }
328 
329 static atomic_t using_sysemu = ATOMIC_INIT(0);
330 int sysemu_supported;
331 
332 void set_using_sysemu(int value)
333 {
334 	if (value > sysemu_supported)
335 		return;
336 	atomic_set(&using_sysemu, value);
337 }
338 
339 int get_using_sysemu(void)
340 {
341 	return atomic_read(&using_sysemu);
342 }
343 
344 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
345 {
346 	if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) /*No overflow*/
347 		*eof = 1;
348 
349 	return strlen(buf);
350 }
351 
352 static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
353 {
354 	char tmp[2];
355 
356 	if (copy_from_user(tmp, buf, 1))
357 		return -EFAULT;
358 
359 	if (tmp[0] >= '0' && tmp[0] <= '2')
360 		set_using_sysemu(tmp[0] - '0');
361 	return count; /*We use the first char, but pretend to write everything*/
362 }
363 
364 int __init make_proc_sysemu(void)
365 {
366 	struct proc_dir_entry *ent;
367 	if (!sysemu_supported)
368 		return 0;
369 
370 	ent = create_proc_entry("sysemu", 0600, &proc_root);
371 
372 	if (ent == NULL)
373 	{
374 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
375 		return 0;
376 	}
377 
378 	ent->read_proc  = proc_read_sysemu;
379 	ent->write_proc = proc_write_sysemu;
380 
381 	return 0;
382 }
383 
384 late_initcall(make_proc_sysemu);
385 
386 int singlestepping(void * t)
387 {
388 	struct task_struct *task = t ? t : current;
389 
390 	if ( ! (task->ptrace & PT_DTRACE) )
391 		return(0);
392 
393 	if (task->thread.singlestep_syscall)
394 		return(1);
395 
396 	return 2;
397 }
398 
399 /*
400  * Only x86 and x86_64 have an arch_align_stack().
401  * All other arches have "#define arch_align_stack(x) (x)"
402  * in their asm/system.h
403  * As this is included in UML from asm-um/system-generic.h,
404  * we can use it to behave as the subarch does.
405  */
406 #ifndef arch_align_stack
407 unsigned long arch_align_stack(unsigned long sp)
408 {
409 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
410 		sp -= get_random_int() % 8192;
411 	return sp & ~0xf;
412 }
413 #endif
414