1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Copyright 2003 PathScale, Inc. 4 * Licensed under the GPL 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/err.h> 9 #include <linux/hardirq.h> 10 #include <linux/mm.h> 11 #include <linux/module.h> 12 #include <linux/personality.h> 13 #include <linux/proc_fs.h> 14 #include <linux/ptrace.h> 15 #include <linux/random.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/seq_file.h> 19 #include <linux/tick.h> 20 #include <linux/threads.h> 21 #include <linux/tracehook.h> 22 #include <asm/current.h> 23 #include <asm/pgtable.h> 24 #include <asm/mmu_context.h> 25 #include <asm/uaccess.h> 26 #include <as-layout.h> 27 #include <kern_util.h> 28 #include <os.h> 29 #include <skas.h> 30 31 /* 32 * This is a per-cpu array. A processor only modifies its entry and it only 33 * cares about its entry, so it's OK if another processor is modifying its 34 * entry. 35 */ 36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; 37 38 static inline int external_pid(void) 39 { 40 /* FIXME: Need to look up userspace_pid by cpu */ 41 return userspace_pid[0]; 42 } 43 44 int pid_to_processor_id(int pid) 45 { 46 int i; 47 48 for (i = 0; i < ncpus; i++) { 49 if (cpu_tasks[i].pid == pid) 50 return i; 51 } 52 return -1; 53 } 54 55 void free_stack(unsigned long stack, int order) 56 { 57 free_pages(stack, order); 58 } 59 60 unsigned long alloc_stack(int order, int atomic) 61 { 62 unsigned long page; 63 gfp_t flags = GFP_KERNEL; 64 65 if (atomic) 66 flags = GFP_ATOMIC; 67 page = __get_free_pages(flags, order); 68 69 return page; 70 } 71 72 static inline void set_current(struct task_struct *task) 73 { 74 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) 75 { external_pid(), task }); 76 } 77 78 extern void arch_switch_to(struct task_struct *to); 79 80 void *__switch_to(struct task_struct *from, struct task_struct *to) 81 { 82 to->thread.prev_sched = from; 83 set_current(to); 84 85 do { 86 current->thread.saved_task = NULL; 87 88 switch_threads(&from->thread.switch_buf, 89 &to->thread.switch_buf); 90 91 arch_switch_to(current); 92 93 if (current->thread.saved_task) 94 show_regs(&(current->thread.regs)); 95 to = current->thread.saved_task; 96 from = current; 97 } while (current->thread.saved_task); 98 99 return current->thread.prev_sched; 100 } 101 102 void interrupt_end(void) 103 { 104 if (need_resched()) 105 schedule(); 106 if (test_thread_flag(TIF_SIGPENDING)) 107 do_signal(); 108 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) 109 tracehook_notify_resume(¤t->thread.regs); 110 } 111 112 void exit_thread(void) 113 { 114 } 115 116 int get_current_pid(void) 117 { 118 return task_pid_nr(current); 119 } 120 121 /* 122 * This is called magically, by its address being stuffed in a jmp_buf 123 * and being longjmp-d to. 124 */ 125 void new_thread_handler(void) 126 { 127 int (*fn)(void *), n; 128 void *arg; 129 130 if (current->thread.prev_sched != NULL) 131 schedule_tail(current->thread.prev_sched); 132 current->thread.prev_sched = NULL; 133 134 fn = current->thread.request.u.thread.proc; 135 arg = current->thread.request.u.thread.arg; 136 137 /* 138 * callback returns only if the kernel thread execs a process 139 */ 140 n = fn(arg); 141 userspace(¤t->thread.regs.regs); 142 } 143 144 /* Called magically, see new_thread_handler above */ 145 void fork_handler(void) 146 { 147 force_flush_all(); 148 149 schedule_tail(current->thread.prev_sched); 150 151 /* 152 * XXX: if interrupt_end() calls schedule, this call to 153 * arch_switch_to isn't needed. We could want to apply this to 154 * improve performance. -bb 155 */ 156 arch_switch_to(current); 157 158 current->thread.prev_sched = NULL; 159 160 userspace(¤t->thread.regs.regs); 161 } 162 163 int copy_thread(unsigned long clone_flags, unsigned long sp, 164 unsigned long arg, struct task_struct * p) 165 { 166 void (*handler)(void); 167 int kthread = current->flags & PF_KTHREAD; 168 int ret = 0; 169 170 p->thread = (struct thread_struct) INIT_THREAD; 171 172 if (!kthread) { 173 memcpy(&p->thread.regs.regs, current_pt_regs(), 174 sizeof(p->thread.regs.regs)); 175 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0); 176 if (sp != 0) 177 REGS_SP(p->thread.regs.regs.gp) = sp; 178 179 handler = fork_handler; 180 181 arch_copy_thread(¤t->thread.arch, &p->thread.arch); 182 } else { 183 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp); 184 p->thread.request.u.thread.proc = (int (*)(void *))sp; 185 p->thread.request.u.thread.arg = (void *)arg; 186 handler = new_thread_handler; 187 } 188 189 new_thread(task_stack_page(p), &p->thread.switch_buf, handler); 190 191 if (!kthread) { 192 clear_flushed_tls(p); 193 194 /* 195 * Set a new TLS for the child thread? 196 */ 197 if (clone_flags & CLONE_SETTLS) 198 ret = arch_copy_tls(p); 199 } 200 201 return ret; 202 } 203 204 void initial_thread_cb(void (*proc)(void *), void *arg) 205 { 206 int save_kmalloc_ok = kmalloc_ok; 207 208 kmalloc_ok = 0; 209 initial_thread_cb_skas(proc, arg); 210 kmalloc_ok = save_kmalloc_ok; 211 } 212 213 void arch_cpu_idle(void) 214 { 215 unsigned long long nsecs; 216 217 cpu_tasks[current_thread_info()->cpu].pid = os_getpid(); 218 nsecs = disable_timer(); 219 idle_sleep(nsecs); 220 local_irq_enable(); 221 } 222 223 int __cant_sleep(void) { 224 return in_atomic() || irqs_disabled() || in_interrupt(); 225 /* Is in_interrupt() really needed? */ 226 } 227 228 int user_context(unsigned long sp) 229 { 230 unsigned long stack; 231 232 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); 233 return stack != (unsigned long) current_thread_info(); 234 } 235 236 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; 237 238 void do_uml_exitcalls(void) 239 { 240 exitcall_t *call; 241 242 call = &__uml_exitcall_end; 243 while (--call >= &__uml_exitcall_begin) 244 (*call)(); 245 } 246 247 char *uml_strdup(const char *string) 248 { 249 return kstrdup(string, GFP_KERNEL); 250 } 251 EXPORT_SYMBOL(uml_strdup); 252 253 int copy_to_user_proc(void __user *to, void *from, int size) 254 { 255 return copy_to_user(to, from, size); 256 } 257 258 int copy_from_user_proc(void *to, void __user *from, int size) 259 { 260 return copy_from_user(to, from, size); 261 } 262 263 int clear_user_proc(void __user *buf, int size) 264 { 265 return clear_user(buf, size); 266 } 267 268 int strlen_user_proc(char __user *str) 269 { 270 return strlen_user(str); 271 } 272 273 int smp_sigio_handler(void) 274 { 275 #ifdef CONFIG_SMP 276 int cpu = current_thread_info()->cpu; 277 IPI_handler(cpu); 278 if (cpu != 0) 279 return 1; 280 #endif 281 return 0; 282 } 283 284 int cpu(void) 285 { 286 return current_thread_info()->cpu; 287 } 288 289 static atomic_t using_sysemu = ATOMIC_INIT(0); 290 int sysemu_supported; 291 292 void set_using_sysemu(int value) 293 { 294 if (value > sysemu_supported) 295 return; 296 atomic_set(&using_sysemu, value); 297 } 298 299 int get_using_sysemu(void) 300 { 301 return atomic_read(&using_sysemu); 302 } 303 304 static int sysemu_proc_show(struct seq_file *m, void *v) 305 { 306 seq_printf(m, "%d\n", get_using_sysemu()); 307 return 0; 308 } 309 310 static int sysemu_proc_open(struct inode *inode, struct file *file) 311 { 312 return single_open(file, sysemu_proc_show, NULL); 313 } 314 315 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf, 316 size_t count, loff_t *pos) 317 { 318 char tmp[2]; 319 320 if (copy_from_user(tmp, buf, 1)) 321 return -EFAULT; 322 323 if (tmp[0] >= '0' && tmp[0] <= '2') 324 set_using_sysemu(tmp[0] - '0'); 325 /* We use the first char, but pretend to write everything */ 326 return count; 327 } 328 329 static const struct file_operations sysemu_proc_fops = { 330 .owner = THIS_MODULE, 331 .open = sysemu_proc_open, 332 .read = seq_read, 333 .llseek = seq_lseek, 334 .release = single_release, 335 .write = sysemu_proc_write, 336 }; 337 338 int __init make_proc_sysemu(void) 339 { 340 struct proc_dir_entry *ent; 341 if (!sysemu_supported) 342 return 0; 343 344 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops); 345 346 if (ent == NULL) 347 { 348 printk(KERN_WARNING "Failed to register /proc/sysemu\n"); 349 return 0; 350 } 351 352 return 0; 353 } 354 355 late_initcall(make_proc_sysemu); 356 357 int singlestepping(void * t) 358 { 359 struct task_struct *task = t ? t : current; 360 361 if (!(task->ptrace & PT_DTRACE)) 362 return 0; 363 364 if (task->thread.singlestep_syscall) 365 return 1; 366 367 return 2; 368 } 369 370 /* 371 * Only x86 and x86_64 have an arch_align_stack(). 372 * All other arches have "#define arch_align_stack(x) (x)" 373 * in their asm/system.h 374 * As this is included in UML from asm-um/system-generic.h, 375 * we can use it to behave as the subarch does. 376 */ 377 #ifndef arch_align_stack 378 unsigned long arch_align_stack(unsigned long sp) 379 { 380 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 381 sp -= get_random_int() % 8192; 382 return sp & ~0xf; 383 } 384 #endif 385 386 unsigned long get_wchan(struct task_struct *p) 387 { 388 unsigned long stack_page, sp, ip; 389 bool seen_sched = 0; 390 391 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING)) 392 return 0; 393 394 stack_page = (unsigned long) task_stack_page(p); 395 /* Bail if the process has no kernel stack for some reason */ 396 if (stack_page == 0) 397 return 0; 398 399 sp = p->thread.switch_buf->JB_SP; 400 /* 401 * Bail if the stack pointer is below the bottom of the kernel 402 * stack for some reason 403 */ 404 if (sp < stack_page) 405 return 0; 406 407 while (sp < stack_page + THREAD_SIZE) { 408 ip = *((unsigned long *) sp); 409 if (in_sched_functions(ip)) 410 /* Ignore everything until we're above the scheduler */ 411 seen_sched = 1; 412 else if (kernel_text_address(ip) && seen_sched) 413 return ip; 414 415 sp += sizeof(unsigned long); 416 } 417 418 return 0; 419 } 420 421 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu) 422 { 423 int cpu = current_thread_info()->cpu; 424 425 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu); 426 } 427 428