xref: /linux/arch/um/kernel/irq.c (revision e5e95a7639ed5f7dc3e404858ad7910de5fa2057)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 - Cambridge Greys Ltd
4  * Copyright (C) 2011 - 2014 Cisco Systems Inc
5  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
7  *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
8  */
9 
10 #include <linux/cpumask.h>
11 #include <linux/hardirq.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/seq_file.h>
17 #include <linux/slab.h>
18 #include <as-layout.h>
19 #include <kern_util.h>
20 #include <os.h>
21 #include <irq_user.h>
22 #include <irq_kern.h>
23 #include <as-layout.h>
24 
25 
26 extern void free_irqs(void);
27 
28 /* When epoll triggers we do not know why it did so
29  * we can also have different IRQs for read and write.
30  * This is why we keep a small irq_reg array for each fd -
31  * one entry per IRQ type
32  */
33 struct irq_reg {
34 	void *id;
35 	int irq;
36 	/* it's cheaper to store this than to query it */
37 	int events;
38 	bool active;
39 	bool pending;
40 	bool wakeup;
41 };
42 
43 struct irq_entry {
44 	struct list_head list;
45 	int fd;
46 	struct irq_reg reg[NUM_IRQ_TYPES];
47 	bool suspended;
48 	bool sigio_workaround;
49 };
50 
51 static DEFINE_SPINLOCK(irq_lock);
52 static LIST_HEAD(active_fds);
53 static DECLARE_BITMAP(irqs_allocated, NR_IRQS);
54 
55 static void irq_io_loop(struct irq_reg *irq, struct uml_pt_regs *regs)
56 {
57 /*
58  * irq->active guards against reentry
59  * irq->pending accumulates pending requests
60  * if pending is raised the irq_handler is re-run
61  * until pending is cleared
62  */
63 	if (irq->active) {
64 		irq->active = false;
65 
66 		do {
67 			irq->pending = false;
68 			do_IRQ(irq->irq, regs);
69 		} while (irq->pending);
70 
71 		irq->active = true;
72 	} else {
73 		irq->pending = true;
74 	}
75 }
76 
77 void sigio_handler_suspend(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
78 {
79 	/* nothing */
80 }
81 
82 void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
83 {
84 	struct irq_entry *irq_entry;
85 	int n, i;
86 
87 	while (1) {
88 		/* This is now lockless - epoll keeps back-referencesto the irqs
89 		 * which have trigger it so there is no need to walk the irq
90 		 * list and lock it every time. We avoid locking by turning off
91 		 * IO for a specific fd by executing os_del_epoll_fd(fd) before
92 		 * we do any changes to the actual data structures
93 		 */
94 		n = os_waiting_for_events_epoll();
95 
96 		if (n <= 0) {
97 			if (n == -EINTR)
98 				continue;
99 			else
100 				break;
101 		}
102 
103 		for (i = 0; i < n ; i++) {
104 			enum um_irq_type t;
105 
106 			irq_entry = os_epoll_get_data_pointer(i);
107 
108 			for (t = 0; t < NUM_IRQ_TYPES; t++) {
109 				int events = irq_entry->reg[t].events;
110 
111 				if (!events)
112 					continue;
113 
114 				if (os_epoll_triggered(i, events) > 0)
115 					irq_io_loop(&irq_entry->reg[t], regs);
116 			}
117 		}
118 	}
119 
120 	free_irqs();
121 }
122 
123 static struct irq_entry *get_irq_entry_by_fd(int fd)
124 {
125 	struct irq_entry *walk;
126 
127 	lockdep_assert_held(&irq_lock);
128 
129 	list_for_each_entry(walk, &active_fds, list) {
130 		if (walk->fd == fd)
131 			return walk;
132 	}
133 
134 	return NULL;
135 }
136 
137 static void free_irq_entry(struct irq_entry *to_free, bool remove)
138 {
139 	if (!to_free)
140 		return;
141 
142 	if (remove)
143 		os_del_epoll_fd(to_free->fd);
144 	list_del(&to_free->list);
145 	kfree(to_free);
146 }
147 
148 static bool update_irq_entry(struct irq_entry *entry)
149 {
150 	enum um_irq_type i;
151 	int events = 0;
152 
153 	for (i = 0; i < NUM_IRQ_TYPES; i++)
154 		events |= entry->reg[i].events;
155 
156 	if (events) {
157 		/* will modify (instead of add) if needed */
158 		os_add_epoll_fd(events, entry->fd, entry);
159 		return true;
160 	}
161 
162 	os_del_epoll_fd(entry->fd);
163 	return false;
164 }
165 
166 static void update_or_free_irq_entry(struct irq_entry *entry)
167 {
168 	if (!update_irq_entry(entry))
169 		free_irq_entry(entry, false);
170 }
171 
172 static int activate_fd(int irq, int fd, enum um_irq_type type, void *dev_id)
173 {
174 	struct irq_entry *irq_entry;
175 	int err, events = os_event_mask(type);
176 	unsigned long flags;
177 
178 	err = os_set_fd_async(fd);
179 	if (err < 0)
180 		goto out;
181 
182 	spin_lock_irqsave(&irq_lock, flags);
183 	irq_entry = get_irq_entry_by_fd(fd);
184 	if (irq_entry) {
185 		/* cannot register the same FD twice with the same type */
186 		if (WARN_ON(irq_entry->reg[type].events)) {
187 			err = -EALREADY;
188 			goto out_unlock;
189 		}
190 
191 		/* temporarily disable to avoid IRQ-side locking */
192 		os_del_epoll_fd(fd);
193 	} else {
194 		irq_entry = kzalloc(sizeof(*irq_entry), GFP_ATOMIC);
195 		if (!irq_entry) {
196 			err = -ENOMEM;
197 			goto out_unlock;
198 		}
199 		irq_entry->fd = fd;
200 		list_add_tail(&irq_entry->list, &active_fds);
201 		maybe_sigio_broken(fd);
202 	}
203 
204 	irq_entry->reg[type].id = dev_id;
205 	irq_entry->reg[type].irq = irq;
206 	irq_entry->reg[type].active = true;
207 	irq_entry->reg[type].events = events;
208 
209 	WARN_ON(!update_irq_entry(irq_entry));
210 	spin_unlock_irqrestore(&irq_lock, flags);
211 
212 	return 0;
213 out_unlock:
214 	spin_unlock_irqrestore(&irq_lock, flags);
215 out:
216 	return err;
217 }
218 
219 /*
220  * Remove the entry or entries for a specific FD, if you
221  * don't want to remove all the possible entries then use
222  * um_free_irq() or deactivate_fd() instead.
223  */
224 void free_irq_by_fd(int fd)
225 {
226 	struct irq_entry *to_free;
227 	unsigned long flags;
228 
229 	spin_lock_irqsave(&irq_lock, flags);
230 	to_free = get_irq_entry_by_fd(fd);
231 	free_irq_entry(to_free, true);
232 	spin_unlock_irqrestore(&irq_lock, flags);
233 }
234 EXPORT_SYMBOL(free_irq_by_fd);
235 
236 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
237 {
238 	struct irq_entry *entry;
239 	unsigned long flags;
240 
241 	spin_lock_irqsave(&irq_lock, flags);
242 	list_for_each_entry(entry, &active_fds, list) {
243 		enum um_irq_type i;
244 
245 		for (i = 0; i < NUM_IRQ_TYPES; i++) {
246 			struct irq_reg *reg = &entry->reg[i];
247 
248 			if (!reg->events)
249 				continue;
250 			if (reg->irq != irq)
251 				continue;
252 			if (reg->id != dev)
253 				continue;
254 
255 			os_del_epoll_fd(entry->fd);
256 			reg->events = 0;
257 			update_or_free_irq_entry(entry);
258 			goto out;
259 		}
260 	}
261 out:
262 	spin_unlock_irqrestore(&irq_lock, flags);
263 }
264 
265 void deactivate_fd(int fd, int irqnum)
266 {
267 	struct irq_entry *entry;
268 	unsigned long flags;
269 	enum um_irq_type i;
270 
271 	os_del_epoll_fd(fd);
272 
273 	spin_lock_irqsave(&irq_lock, flags);
274 	entry = get_irq_entry_by_fd(fd);
275 	if (!entry)
276 		goto out;
277 
278 	for (i = 0; i < NUM_IRQ_TYPES; i++) {
279 		if (!entry->reg[i].events)
280 			continue;
281 		if (entry->reg[i].irq == irqnum)
282 			entry->reg[i].events = 0;
283 	}
284 
285 	update_or_free_irq_entry(entry);
286 out:
287 	spin_unlock_irqrestore(&irq_lock, flags);
288 
289 	ignore_sigio_fd(fd);
290 }
291 EXPORT_SYMBOL(deactivate_fd);
292 
293 /*
294  * Called just before shutdown in order to provide a clean exec
295  * environment in case the system is rebooting.  No locking because
296  * that would cause a pointless shutdown hang if something hadn't
297  * released the lock.
298  */
299 int deactivate_all_fds(void)
300 {
301 	struct irq_entry *entry;
302 
303 	/* Stop IO. The IRQ loop has no lock so this is our
304 	 * only way of making sure we are safe to dispose
305 	 * of all IRQ handlers
306 	 */
307 	os_set_ioignore();
308 
309 	/* we can no longer call kfree() here so just deactivate */
310 	list_for_each_entry(entry, &active_fds, list)
311 		os_del_epoll_fd(entry->fd);
312 	os_close_epoll_fd();
313 	return 0;
314 }
315 
316 /*
317  * do_IRQ handles all normal device IRQs (the special
318  * SMP cross-CPU interrupts have their own specific
319  * handlers).
320  */
321 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
322 {
323 	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
324 	irq_enter();
325 	generic_handle_irq(irq);
326 	irq_exit();
327 	set_irq_regs(old_regs);
328 	return 1;
329 }
330 
331 void um_free_irq(int irq, void *dev)
332 {
333 	if (WARN(irq < 0 || irq > NR_IRQS, "freeing invalid irq %d", irq))
334 		return;
335 
336 	free_irq_by_irq_and_dev(irq, dev);
337 	free_irq(irq, dev);
338 	clear_bit(irq, irqs_allocated);
339 }
340 EXPORT_SYMBOL(um_free_irq);
341 
342 int um_request_irq(int irq, int fd, enum um_irq_type type,
343 		   irq_handler_t handler, unsigned long irqflags,
344 		   const char *devname, void *dev_id)
345 {
346 	int err;
347 
348 	if (irq == UM_IRQ_ALLOC) {
349 		int i;
350 
351 		for (i = UM_FIRST_DYN_IRQ; i < NR_IRQS; i++) {
352 			if (!test_and_set_bit(i, irqs_allocated)) {
353 				irq = i;
354 				break;
355 			}
356 		}
357 	}
358 
359 	if (irq < 0)
360 		return -ENOSPC;
361 
362 	if (fd != -1) {
363 		err = activate_fd(irq, fd, type, dev_id);
364 		if (err)
365 			goto error;
366 	}
367 
368 	err = request_irq(irq, handler, irqflags, devname, dev_id);
369 	if (err < 0)
370 		goto error;
371 
372 	return irq;
373 error:
374 	clear_bit(irq, irqs_allocated);
375 	return err;
376 }
377 EXPORT_SYMBOL(um_request_irq);
378 
379 #ifdef CONFIG_PM_SLEEP
380 void um_irqs_suspend(void)
381 {
382 	struct irq_entry *entry;
383 	unsigned long flags;
384 
385 	sig_info[SIGIO] = sigio_handler_suspend;
386 
387 	spin_lock_irqsave(&irq_lock, flags);
388 	list_for_each_entry(entry, &active_fds, list) {
389 		enum um_irq_type t;
390 		bool wake = false;
391 
392 		for (t = 0; t < NUM_IRQ_TYPES; t++) {
393 			if (!entry->reg[t].events)
394 				continue;
395 
396 			/*
397 			 * For the SIGIO_WRITE_IRQ, which is used to handle the
398 			 * SIGIO workaround thread, we need special handling:
399 			 * enable wake for it itself, but below we tell it about
400 			 * any FDs that should be suspended.
401 			 */
402 			if (entry->reg[t].wakeup ||
403 			    entry->reg[t].irq == SIGIO_WRITE_IRQ) {
404 				wake = true;
405 				break;
406 			}
407 		}
408 
409 		if (!wake) {
410 			entry->suspended = true;
411 			os_clear_fd_async(entry->fd);
412 			entry->sigio_workaround =
413 				!__ignore_sigio_fd(entry->fd);
414 		}
415 	}
416 	spin_unlock_irqrestore(&irq_lock, flags);
417 }
418 
419 void um_irqs_resume(void)
420 {
421 	struct irq_entry *entry;
422 	unsigned long flags;
423 
424 	spin_lock_irqsave(&irq_lock, flags);
425 	list_for_each_entry(entry, &active_fds, list) {
426 		if (entry->suspended) {
427 			int err = os_set_fd_async(entry->fd);
428 
429 			WARN(err < 0, "os_set_fd_async returned %d\n", err);
430 			entry->suspended = false;
431 
432 			if (entry->sigio_workaround) {
433 				err = __add_sigio_fd(entry->fd);
434 				WARN(err < 0, "add_sigio_returned %d\n", err);
435 			}
436 		}
437 	}
438 	spin_unlock_irqrestore(&irq_lock, flags);
439 
440 	sig_info[SIGIO] = sigio_handler;
441 	send_sigio_to_self();
442 }
443 
444 static int normal_irq_set_wake(struct irq_data *d, unsigned int on)
445 {
446 	struct irq_entry *entry;
447 	unsigned long flags;
448 
449 	spin_lock_irqsave(&irq_lock, flags);
450 	list_for_each_entry(entry, &active_fds, list) {
451 		enum um_irq_type t;
452 
453 		for (t = 0; t < NUM_IRQ_TYPES; t++) {
454 			if (!entry->reg[t].events)
455 				continue;
456 
457 			if (entry->reg[t].irq != d->irq)
458 				continue;
459 			entry->reg[t].wakeup = on;
460 			goto unlock;
461 		}
462 	}
463 unlock:
464 	spin_unlock_irqrestore(&irq_lock, flags);
465 	return 0;
466 }
467 #else
468 #define normal_irq_set_wake NULL
469 #endif
470 
471 /*
472  * irq_chip must define at least enable/disable and ack when
473  * the edge handler is used.
474  */
475 static void dummy(struct irq_data *d)
476 {
477 }
478 
479 /* This is used for everything other than the timer. */
480 static struct irq_chip normal_irq_type = {
481 	.name = "SIGIO",
482 	.irq_disable = dummy,
483 	.irq_enable = dummy,
484 	.irq_ack = dummy,
485 	.irq_mask = dummy,
486 	.irq_unmask = dummy,
487 	.irq_set_wake = normal_irq_set_wake,
488 };
489 
490 static struct irq_chip alarm_irq_type = {
491 	.name = "SIGALRM",
492 	.irq_disable = dummy,
493 	.irq_enable = dummy,
494 	.irq_ack = dummy,
495 	.irq_mask = dummy,
496 	.irq_unmask = dummy,
497 };
498 
499 void __init init_IRQ(void)
500 {
501 	int i;
502 
503 	irq_set_chip_and_handler(TIMER_IRQ, &alarm_irq_type, handle_edge_irq);
504 
505 	for (i = 1; i < NR_IRQS; i++)
506 		irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
507 	/* Initialize EPOLL Loop */
508 	os_setup_epoll();
509 }
510 
511 /*
512  * IRQ stack entry and exit:
513  *
514  * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
515  * and switch over to the IRQ stack after some preparation.  We use
516  * sigaltstack to receive signals on a separate stack from the start.
517  * These two functions make sure the rest of the kernel won't be too
518  * upset by being on a different stack.  The IRQ stack has a
519  * thread_info structure at the bottom so that current et al continue
520  * to work.
521  *
522  * to_irq_stack copies the current task's thread_info to the IRQ stack
523  * thread_info and sets the tasks's stack to point to the IRQ stack.
524  *
525  * from_irq_stack copies the thread_info struct back (flags may have
526  * been modified) and resets the task's stack pointer.
527  *
528  * Tricky bits -
529  *
530  * What happens when two signals race each other?  UML doesn't block
531  * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
532  * could arrive while a previous one is still setting up the
533  * thread_info.
534  *
535  * There are three cases -
536  *     The first interrupt on the stack - sets up the thread_info and
537  * handles the interrupt
538  *     A nested interrupt interrupting the copying of the thread_info -
539  * can't handle the interrupt, as the stack is in an unknown state
540  *     A nested interrupt not interrupting the copying of the
541  * thread_info - doesn't do any setup, just handles the interrupt
542  *
543  * The first job is to figure out whether we interrupted stack setup.
544  * This is done by xchging the signal mask with thread_info->pending.
545  * If the value that comes back is zero, then there is no setup in
546  * progress, and the interrupt can be handled.  If the value is
547  * non-zero, then there is stack setup in progress.  In order to have
548  * the interrupt handled, we leave our signal in the mask, and it will
549  * be handled by the upper handler after it has set up the stack.
550  *
551  * Next is to figure out whether we are the outer handler or a nested
552  * one.  As part of setting up the stack, thread_info->real_thread is
553  * set to non-NULL (and is reset to NULL on exit).  This is the
554  * nesting indicator.  If it is non-NULL, then the stack is already
555  * set up and the handler can run.
556  */
557 
558 static unsigned long pending_mask;
559 
560 unsigned long to_irq_stack(unsigned long *mask_out)
561 {
562 	struct thread_info *ti;
563 	unsigned long mask, old;
564 	int nested;
565 
566 	mask = xchg(&pending_mask, *mask_out);
567 	if (mask != 0) {
568 		/*
569 		 * If any interrupts come in at this point, we want to
570 		 * make sure that their bits aren't lost by our
571 		 * putting our bit in.  So, this loop accumulates bits
572 		 * until xchg returns the same value that we put in.
573 		 * When that happens, there were no new interrupts,
574 		 * and pending_mask contains a bit for each interrupt
575 		 * that came in.
576 		 */
577 		old = *mask_out;
578 		do {
579 			old |= mask;
580 			mask = xchg(&pending_mask, old);
581 		} while (mask != old);
582 		return 1;
583 	}
584 
585 	ti = current_thread_info();
586 	nested = (ti->real_thread != NULL);
587 	if (!nested) {
588 		struct task_struct *task;
589 		struct thread_info *tti;
590 
591 		task = cpu_tasks[ti->cpu].task;
592 		tti = task_thread_info(task);
593 
594 		*ti = *tti;
595 		ti->real_thread = tti;
596 		task->stack = ti;
597 	}
598 
599 	mask = xchg(&pending_mask, 0);
600 	*mask_out |= mask | nested;
601 	return 0;
602 }
603 
604 unsigned long from_irq_stack(int nested)
605 {
606 	struct thread_info *ti, *to;
607 	unsigned long mask;
608 
609 	ti = current_thread_info();
610 
611 	pending_mask = 1;
612 
613 	to = ti->real_thread;
614 	current->stack = to;
615 	ti->real_thread = NULL;
616 	*to = *ti;
617 
618 	mask = xchg(&pending_mask, 0);
619 	return mask & ~1;
620 }
621 
622