xref: /linux/arch/um/kernel/irq.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 /*
2  * Copyright (C) 2017 - Cambridge Greys Ltd
3  * Copyright (C) 2011 - 2014 Cisco Systems Inc
4  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5  * Licensed under the GPL
6  * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
7  *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
8  */
9 
10 #include <linux/cpumask.h>
11 #include <linux/hardirq.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/seq_file.h>
17 #include <linux/slab.h>
18 #include <as-layout.h>
19 #include <kern_util.h>
20 #include <os.h>
21 #include <irq_user.h>
22 
23 
24 /* When epoll triggers we do not know why it did so
25  * we can also have different IRQs for read and write.
26  * This is why we keep a small irq_fd array for each fd -
27  * one entry per IRQ type
28  */
29 
30 struct irq_entry {
31 	struct irq_entry *next;
32 	int fd;
33 	struct irq_fd *irq_array[MAX_IRQ_TYPE + 1];
34 };
35 
36 static struct irq_entry *active_fds;
37 
38 static DEFINE_SPINLOCK(irq_lock);
39 
40 static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs)
41 {
42 /*
43  * irq->active guards against reentry
44  * irq->pending accumulates pending requests
45  * if pending is raised the irq_handler is re-run
46  * until pending is cleared
47  */
48 	if (irq->active) {
49 		irq->active = false;
50 		do {
51 			irq->pending = false;
52 			do_IRQ(irq->irq, regs);
53 		} while (irq->pending && (!irq->purge));
54 		if (!irq->purge)
55 			irq->active = true;
56 	} else {
57 		irq->pending = true;
58 	}
59 }
60 
61 void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
62 {
63 	struct irq_entry *irq_entry;
64 	struct irq_fd *irq;
65 
66 	int n, i, j;
67 
68 	while (1) {
69 		/* This is now lockless - epoll keeps back-referencesto the irqs
70 		 * which have trigger it so there is no need to walk the irq
71 		 * list and lock it every time. We avoid locking by turning off
72 		 * IO for a specific fd by executing os_del_epoll_fd(fd) before
73 		 * we do any changes to the actual data structures
74 		 */
75 		n = os_waiting_for_events_epoll();
76 
77 		if (n <= 0) {
78 			if (n == -EINTR)
79 				continue;
80 			else
81 				break;
82 		}
83 
84 		for (i = 0; i < n ; i++) {
85 			/* Epoll back reference is the entry with 3 irq_fd
86 			 * leaves - one for each irq type.
87 			 */
88 			irq_entry = (struct irq_entry *)
89 				os_epoll_get_data_pointer(i);
90 			for (j = 0; j < MAX_IRQ_TYPE ; j++) {
91 				irq = irq_entry->irq_array[j];
92 				if (irq == NULL)
93 					continue;
94 				if (os_epoll_triggered(i, irq->events) > 0)
95 					irq_io_loop(irq, regs);
96 				if (irq->purge) {
97 					irq_entry->irq_array[j] = NULL;
98 					kfree(irq);
99 				}
100 			}
101 		}
102 	}
103 }
104 
105 static int assign_epoll_events_to_irq(struct irq_entry *irq_entry)
106 {
107 	int i;
108 	int events = 0;
109 	struct irq_fd *irq;
110 
111 	for (i = 0; i < MAX_IRQ_TYPE ; i++) {
112 		irq = irq_entry->irq_array[i];
113 		if (irq != NULL)
114 			events = irq->events | events;
115 	}
116 	if (events > 0) {
117 	/* os_add_epoll will call os_mod_epoll if this already exists */
118 		return os_add_epoll_fd(events, irq_entry->fd, irq_entry);
119 	}
120 	/* No events - delete */
121 	return os_del_epoll_fd(irq_entry->fd);
122 }
123 
124 
125 
126 static int activate_fd(int irq, int fd, int type, void *dev_id)
127 {
128 	struct irq_fd *new_fd;
129 	struct irq_entry *irq_entry;
130 	int i, err, events;
131 	unsigned long flags;
132 
133 	err = os_set_fd_async(fd);
134 	if (err < 0)
135 		goto out;
136 
137 	spin_lock_irqsave(&irq_lock, flags);
138 
139 	/* Check if we have an entry for this fd */
140 
141 	err = -EBUSY;
142 	for (irq_entry = active_fds;
143 		irq_entry != NULL; irq_entry = irq_entry->next) {
144 		if (irq_entry->fd == fd)
145 			break;
146 	}
147 
148 	if (irq_entry == NULL) {
149 		/* This needs to be atomic as it may be called from an
150 		 * IRQ context.
151 		 */
152 		irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC);
153 		if (irq_entry == NULL) {
154 			printk(KERN_ERR
155 				"Failed to allocate new IRQ entry\n");
156 			goto out_unlock;
157 		}
158 		irq_entry->fd = fd;
159 		for (i = 0; i < MAX_IRQ_TYPE; i++)
160 			irq_entry->irq_array[i] = NULL;
161 		irq_entry->next = active_fds;
162 		active_fds = irq_entry;
163 	}
164 
165 	/* Check if we are trying to re-register an interrupt for a
166 	 * particular fd
167 	 */
168 
169 	if (irq_entry->irq_array[type] != NULL) {
170 		printk(KERN_ERR
171 			"Trying to reregister IRQ %d FD %d TYPE %d ID %p\n",
172 			irq, fd, type, dev_id
173 		);
174 		goto out_unlock;
175 	} else {
176 		/* New entry for this fd */
177 
178 		err = -ENOMEM;
179 		new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC);
180 		if (new_fd == NULL)
181 			goto out_unlock;
182 
183 		events = os_event_mask(type);
184 
185 		*new_fd = ((struct irq_fd) {
186 			.id		= dev_id,
187 			.irq		= irq,
188 			.type		= type,
189 			.events		= events,
190 			.active		= true,
191 			.pending	= false,
192 			.purge		= false
193 		});
194 		/* Turn off any IO on this fd - allows us to
195 		 * avoid locking the IRQ loop
196 		 */
197 		os_del_epoll_fd(irq_entry->fd);
198 		irq_entry->irq_array[type] = new_fd;
199 	}
200 
201 	/* Turn back IO on with the correct (new) IO event mask */
202 	assign_epoll_events_to_irq(irq_entry);
203 	spin_unlock_irqrestore(&irq_lock, flags);
204 	maybe_sigio_broken(fd, (type != IRQ_NONE));
205 
206 	return 0;
207 out_unlock:
208 	spin_unlock_irqrestore(&irq_lock, flags);
209 out:
210 	return err;
211 }
212 
213 /*
214  * Walk the IRQ list and dispose of any unused entries.
215  * Should be done under irq_lock.
216  */
217 
218 static void garbage_collect_irq_entries(void)
219 {
220 	int i;
221 	bool reap;
222 	struct irq_entry *walk;
223 	struct irq_entry *previous = NULL;
224 	struct irq_entry *to_free;
225 
226 	if (active_fds == NULL)
227 		return;
228 	walk = active_fds;
229 	while (walk != NULL) {
230 		reap = true;
231 		for (i = 0; i < MAX_IRQ_TYPE ; i++) {
232 			if (walk->irq_array[i] != NULL) {
233 				reap = false;
234 				break;
235 			}
236 		}
237 		if (reap) {
238 			if (previous == NULL)
239 				active_fds = walk->next;
240 			else
241 				previous->next = walk->next;
242 			to_free = walk;
243 		} else {
244 			to_free = NULL;
245 		}
246 		walk = walk->next;
247 		kfree(to_free);
248 	}
249 }
250 
251 /*
252  * Walk the IRQ list and get the descriptor for our FD
253  */
254 
255 static struct irq_entry *get_irq_entry_by_fd(int fd)
256 {
257 	struct irq_entry *walk = active_fds;
258 
259 	while (walk != NULL) {
260 		if (walk->fd == fd)
261 			return walk;
262 		walk = walk->next;
263 	}
264 	return NULL;
265 }
266 
267 
268 /*
269  * Walk the IRQ list and dispose of an entry for a specific
270  * device, fd and number. Note - if sharing an IRQ for read
271  * and writefor the same FD it will be disposed in either case.
272  * If this behaviour is undesirable use different IRQ ids.
273  */
274 
275 #define IGNORE_IRQ 1
276 #define IGNORE_DEV (1<<1)
277 
278 static void do_free_by_irq_and_dev(
279 	struct irq_entry *irq_entry,
280 	unsigned int irq,
281 	void *dev,
282 	int flags
283 )
284 {
285 	int i;
286 	struct irq_fd *to_free;
287 
288 	for (i = 0; i < MAX_IRQ_TYPE ; i++) {
289 		if (irq_entry->irq_array[i] != NULL) {
290 			if (
291 			((flags & IGNORE_IRQ) ||
292 				(irq_entry->irq_array[i]->irq == irq)) &&
293 			((flags & IGNORE_DEV) ||
294 				(irq_entry->irq_array[i]->id == dev))
295 			) {
296 				/* Turn off any IO on this fd - allows us to
297 				 * avoid locking the IRQ loop
298 				 */
299 				os_del_epoll_fd(irq_entry->fd);
300 				to_free = irq_entry->irq_array[i];
301 				irq_entry->irq_array[i] = NULL;
302 				assign_epoll_events_to_irq(irq_entry);
303 				if (to_free->active)
304 					to_free->purge = true;
305 				else
306 					kfree(to_free);
307 			}
308 		}
309 	}
310 }
311 
312 void free_irq_by_fd(int fd)
313 {
314 	struct irq_entry *to_free;
315 	unsigned long flags;
316 
317 	spin_lock_irqsave(&irq_lock, flags);
318 	to_free = get_irq_entry_by_fd(fd);
319 	if (to_free != NULL) {
320 		do_free_by_irq_and_dev(
321 			to_free,
322 			-1,
323 			NULL,
324 			IGNORE_IRQ | IGNORE_DEV
325 		);
326 	}
327 	garbage_collect_irq_entries();
328 	spin_unlock_irqrestore(&irq_lock, flags);
329 }
330 EXPORT_SYMBOL(free_irq_by_fd);
331 
332 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
333 {
334 	struct irq_entry *to_free;
335 	unsigned long flags;
336 
337 	spin_lock_irqsave(&irq_lock, flags);
338 	to_free = active_fds;
339 	while (to_free != NULL) {
340 		do_free_by_irq_and_dev(
341 			to_free,
342 			irq,
343 			dev,
344 			0
345 		);
346 		to_free = to_free->next;
347 	}
348 	garbage_collect_irq_entries();
349 	spin_unlock_irqrestore(&irq_lock, flags);
350 }
351 
352 
353 void deactivate_fd(int fd, int irqnum)
354 {
355 	struct irq_entry *to_free;
356 	unsigned long flags;
357 
358 	os_del_epoll_fd(fd);
359 	spin_lock_irqsave(&irq_lock, flags);
360 	to_free = get_irq_entry_by_fd(fd);
361 	if (to_free != NULL) {
362 		do_free_by_irq_and_dev(
363 			to_free,
364 			irqnum,
365 			NULL,
366 			IGNORE_DEV
367 		);
368 	}
369 	garbage_collect_irq_entries();
370 	spin_unlock_irqrestore(&irq_lock, flags);
371 	ignore_sigio_fd(fd);
372 }
373 EXPORT_SYMBOL(deactivate_fd);
374 
375 /*
376  * Called just before shutdown in order to provide a clean exec
377  * environment in case the system is rebooting.  No locking because
378  * that would cause a pointless shutdown hang if something hadn't
379  * released the lock.
380  */
381 int deactivate_all_fds(void)
382 {
383 	unsigned long flags;
384 	struct irq_entry *to_free;
385 
386 	spin_lock_irqsave(&irq_lock, flags);
387 	/* Stop IO. The IRQ loop has no lock so this is our
388 	 * only way of making sure we are safe to dispose
389 	 * of all IRQ handlers
390 	 */
391 	os_set_ioignore();
392 	to_free = active_fds;
393 	while (to_free != NULL) {
394 		do_free_by_irq_and_dev(
395 			to_free,
396 			-1,
397 			NULL,
398 			IGNORE_IRQ | IGNORE_DEV
399 		);
400 		to_free = to_free->next;
401 	}
402 	garbage_collect_irq_entries();
403 	spin_unlock_irqrestore(&irq_lock, flags);
404 	os_close_epoll_fd();
405 	return 0;
406 }
407 
408 /*
409  * do_IRQ handles all normal device IRQs (the special
410  * SMP cross-CPU interrupts have their own specific
411  * handlers).
412  */
413 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
414 {
415 	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
416 	irq_enter();
417 	generic_handle_irq(irq);
418 	irq_exit();
419 	set_irq_regs(old_regs);
420 	return 1;
421 }
422 
423 void um_free_irq(unsigned int irq, void *dev)
424 {
425 	free_irq_by_irq_and_dev(irq, dev);
426 	free_irq(irq, dev);
427 }
428 EXPORT_SYMBOL(um_free_irq);
429 
430 int um_request_irq(unsigned int irq, int fd, int type,
431 		   irq_handler_t handler,
432 		   unsigned long irqflags, const char * devname,
433 		   void *dev_id)
434 {
435 	int err;
436 
437 	if (fd != -1) {
438 		err = activate_fd(irq, fd, type, dev_id);
439 		if (err)
440 			return err;
441 	}
442 
443 	return request_irq(irq, handler, irqflags, devname, dev_id);
444 }
445 
446 EXPORT_SYMBOL(um_request_irq);
447 
448 /*
449  * irq_chip must define at least enable/disable and ack when
450  * the edge handler is used.
451  */
452 static void dummy(struct irq_data *d)
453 {
454 }
455 
456 /* This is used for everything else than the timer. */
457 static struct irq_chip normal_irq_type = {
458 	.name = "SIGIO",
459 	.irq_disable = dummy,
460 	.irq_enable = dummy,
461 	.irq_ack = dummy,
462 	.irq_mask = dummy,
463 	.irq_unmask = dummy,
464 };
465 
466 static struct irq_chip SIGVTALRM_irq_type = {
467 	.name = "SIGVTALRM",
468 	.irq_disable = dummy,
469 	.irq_enable = dummy,
470 	.irq_ack = dummy,
471 	.irq_mask = dummy,
472 	.irq_unmask = dummy,
473 };
474 
475 void __init init_IRQ(void)
476 {
477 	int i;
478 
479 	irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
480 
481 
482 	for (i = 1; i < LAST_IRQ; i++)
483 		irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
484 	/* Initialize EPOLL Loop */
485 	os_setup_epoll();
486 }
487 
488 /*
489  * IRQ stack entry and exit:
490  *
491  * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
492  * and switch over to the IRQ stack after some preparation.  We use
493  * sigaltstack to receive signals on a separate stack from the start.
494  * These two functions make sure the rest of the kernel won't be too
495  * upset by being on a different stack.  The IRQ stack has a
496  * thread_info structure at the bottom so that current et al continue
497  * to work.
498  *
499  * to_irq_stack copies the current task's thread_info to the IRQ stack
500  * thread_info and sets the tasks's stack to point to the IRQ stack.
501  *
502  * from_irq_stack copies the thread_info struct back (flags may have
503  * been modified) and resets the task's stack pointer.
504  *
505  * Tricky bits -
506  *
507  * What happens when two signals race each other?  UML doesn't block
508  * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
509  * could arrive while a previous one is still setting up the
510  * thread_info.
511  *
512  * There are three cases -
513  *     The first interrupt on the stack - sets up the thread_info and
514  * handles the interrupt
515  *     A nested interrupt interrupting the copying of the thread_info -
516  * can't handle the interrupt, as the stack is in an unknown state
517  *     A nested interrupt not interrupting the copying of the
518  * thread_info - doesn't do any setup, just handles the interrupt
519  *
520  * The first job is to figure out whether we interrupted stack setup.
521  * This is done by xchging the signal mask with thread_info->pending.
522  * If the value that comes back is zero, then there is no setup in
523  * progress, and the interrupt can be handled.  If the value is
524  * non-zero, then there is stack setup in progress.  In order to have
525  * the interrupt handled, we leave our signal in the mask, and it will
526  * be handled by the upper handler after it has set up the stack.
527  *
528  * Next is to figure out whether we are the outer handler or a nested
529  * one.  As part of setting up the stack, thread_info->real_thread is
530  * set to non-NULL (and is reset to NULL on exit).  This is the
531  * nesting indicator.  If it is non-NULL, then the stack is already
532  * set up and the handler can run.
533  */
534 
535 static unsigned long pending_mask;
536 
537 unsigned long to_irq_stack(unsigned long *mask_out)
538 {
539 	struct thread_info *ti;
540 	unsigned long mask, old;
541 	int nested;
542 
543 	mask = xchg(&pending_mask, *mask_out);
544 	if (mask != 0) {
545 		/*
546 		 * If any interrupts come in at this point, we want to
547 		 * make sure that their bits aren't lost by our
548 		 * putting our bit in.  So, this loop accumulates bits
549 		 * until xchg returns the same value that we put in.
550 		 * When that happens, there were no new interrupts,
551 		 * and pending_mask contains a bit for each interrupt
552 		 * that came in.
553 		 */
554 		old = *mask_out;
555 		do {
556 			old |= mask;
557 			mask = xchg(&pending_mask, old);
558 		} while (mask != old);
559 		return 1;
560 	}
561 
562 	ti = current_thread_info();
563 	nested = (ti->real_thread != NULL);
564 	if (!nested) {
565 		struct task_struct *task;
566 		struct thread_info *tti;
567 
568 		task = cpu_tasks[ti->cpu].task;
569 		tti = task_thread_info(task);
570 
571 		*ti = *tti;
572 		ti->real_thread = tti;
573 		task->stack = ti;
574 	}
575 
576 	mask = xchg(&pending_mask, 0);
577 	*mask_out |= mask | nested;
578 	return 0;
579 }
580 
581 unsigned long from_irq_stack(int nested)
582 {
583 	struct thread_info *ti, *to;
584 	unsigned long mask;
585 
586 	ti = current_thread_info();
587 
588 	pending_mask = 1;
589 
590 	to = ti->real_thread;
591 	current->stack = to;
592 	ti->real_thread = NULL;
593 	*to = *ti;
594 
595 	mask = xchg(&pending_mask, 0);
596 	return mask & ~1;
597 }
598 
599