xref: /linux/arch/um/kernel/irq.c (revision 9d9659b6c0ebf7dde65ebada4c67980818245913)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Licensed under the GPL
4  * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
5  *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
6  */
7 
8 #include "linux/cpumask.h"
9 #include "linux/hardirq.h"
10 #include "linux/interrupt.h"
11 #include "linux/kernel_stat.h"
12 #include "linux/module.h"
13 #include "linux/sched.h"
14 #include "linux/seq_file.h"
15 #include "linux/slab.h"
16 #include "as-layout.h"
17 #include "kern_util.h"
18 #include "os.h"
19 
20 /*
21  * Generic, controller-independent functions:
22  */
23 
24 int show_interrupts(struct seq_file *p, void *v)
25 {
26 	int i = *(loff_t *) v, j;
27 	struct irqaction * action;
28 	unsigned long flags;
29 
30 	if (i == 0) {
31 		seq_printf(p, "           ");
32 		for_each_online_cpu(j)
33 			seq_printf(p, "CPU%d       ",j);
34 		seq_putc(p, '\n');
35 	}
36 
37 	if (i < NR_IRQS) {
38 		struct irq_desc *desc = irq_to_desc(i);
39 
40 		raw_spin_lock_irqsave(&desc->lock, flags);
41 		action = desc->action;
42 		if (!action)
43 			goto skip;
44 		seq_printf(p, "%3d: ",i);
45 #ifndef CONFIG_SMP
46 		seq_printf(p, "%10u ", kstat_irqs(i));
47 #else
48 		for_each_online_cpu(j)
49 			seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
50 #endif
51 		seq_printf(p, " %14s", get_irq_desc_chip(desc)->name);
52 		seq_printf(p, "  %s", action->name);
53 
54 		for (action=action->next; action; action = action->next)
55 			seq_printf(p, ", %s", action->name);
56 
57 		seq_putc(p, '\n');
58 skip:
59 		raw_spin_unlock_irqrestore(&desc->lock, flags);
60 	} else if (i == NR_IRQS)
61 		seq_putc(p, '\n');
62 
63 	return 0;
64 }
65 
66 /*
67  * This list is accessed under irq_lock, except in sigio_handler,
68  * where it is safe from being modified.  IRQ handlers won't change it -
69  * if an IRQ source has vanished, it will be freed by free_irqs just
70  * before returning from sigio_handler.  That will process a separate
71  * list of irqs to free, with its own locking, coming back here to
72  * remove list elements, taking the irq_lock to do so.
73  */
74 static struct irq_fd *active_fds = NULL;
75 static struct irq_fd **last_irq_ptr = &active_fds;
76 
77 extern void free_irqs(void);
78 
79 void sigio_handler(int sig, struct uml_pt_regs *regs)
80 {
81 	struct irq_fd *irq_fd;
82 	int n;
83 
84 	if (smp_sigio_handler())
85 		return;
86 
87 	while (1) {
88 		n = os_waiting_for_events(active_fds);
89 		if (n <= 0) {
90 			if (n == -EINTR)
91 				continue;
92 			else break;
93 		}
94 
95 		for (irq_fd = active_fds; irq_fd != NULL;
96 		     irq_fd = irq_fd->next) {
97 			if (irq_fd->current_events != 0) {
98 				irq_fd->current_events = 0;
99 				do_IRQ(irq_fd->irq, regs);
100 			}
101 		}
102 	}
103 
104 	free_irqs();
105 }
106 
107 static DEFINE_SPINLOCK(irq_lock);
108 
109 static int activate_fd(int irq, int fd, int type, void *dev_id)
110 {
111 	struct pollfd *tmp_pfd;
112 	struct irq_fd *new_fd, *irq_fd;
113 	unsigned long flags;
114 	int events, err, n;
115 
116 	err = os_set_fd_async(fd);
117 	if (err < 0)
118 		goto out;
119 
120 	err = -ENOMEM;
121 	new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
122 	if (new_fd == NULL)
123 		goto out;
124 
125 	if (type == IRQ_READ)
126 		events = UM_POLLIN | UM_POLLPRI;
127 	else events = UM_POLLOUT;
128 	*new_fd = ((struct irq_fd) { .next  		= NULL,
129 				     .id 		= dev_id,
130 				     .fd 		= fd,
131 				     .type 		= type,
132 				     .irq 		= irq,
133 				     .events 		= events,
134 				     .current_events 	= 0 } );
135 
136 	err = -EBUSY;
137 	spin_lock_irqsave(&irq_lock, flags);
138 	for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
139 		if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
140 			printk(KERN_ERR "Registering fd %d twice\n", fd);
141 			printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq);
142 			printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id,
143 			       dev_id);
144 			goto out_unlock;
145 		}
146 	}
147 
148 	if (type == IRQ_WRITE)
149 		fd = -1;
150 
151 	tmp_pfd = NULL;
152 	n = 0;
153 
154 	while (1) {
155 		n = os_create_pollfd(fd, events, tmp_pfd, n);
156 		if (n == 0)
157 			break;
158 
159 		/*
160 		 * n > 0
161 		 * It means we couldn't put new pollfd to current pollfds
162 		 * and tmp_fds is NULL or too small for new pollfds array.
163 		 * Needed size is equal to n as minimum.
164 		 *
165 		 * Here we have to drop the lock in order to call
166 		 * kmalloc, which might sleep.
167 		 * If something else came in and changed the pollfds array
168 		 * so we will not be able to put new pollfd struct to pollfds
169 		 * then we free the buffer tmp_fds and try again.
170 		 */
171 		spin_unlock_irqrestore(&irq_lock, flags);
172 		kfree(tmp_pfd);
173 
174 		tmp_pfd = kmalloc(n, GFP_KERNEL);
175 		if (tmp_pfd == NULL)
176 			goto out_kfree;
177 
178 		spin_lock_irqsave(&irq_lock, flags);
179 	}
180 
181 	*last_irq_ptr = new_fd;
182 	last_irq_ptr = &new_fd->next;
183 
184 	spin_unlock_irqrestore(&irq_lock, flags);
185 
186 	/*
187 	 * This calls activate_fd, so it has to be outside the critical
188 	 * section.
189 	 */
190 	maybe_sigio_broken(fd, (type == IRQ_READ));
191 
192 	return 0;
193 
194  out_unlock:
195 	spin_unlock_irqrestore(&irq_lock, flags);
196  out_kfree:
197 	kfree(new_fd);
198  out:
199 	return err;
200 }
201 
202 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
203 {
204 	unsigned long flags;
205 
206 	spin_lock_irqsave(&irq_lock, flags);
207 	os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
208 	spin_unlock_irqrestore(&irq_lock, flags);
209 }
210 
211 struct irq_and_dev {
212 	int irq;
213 	void *dev;
214 };
215 
216 static int same_irq_and_dev(struct irq_fd *irq, void *d)
217 {
218 	struct irq_and_dev *data = d;
219 
220 	return ((irq->irq == data->irq) && (irq->id == data->dev));
221 }
222 
223 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
224 {
225 	struct irq_and_dev data = ((struct irq_and_dev) { .irq  = irq,
226 							  .dev  = dev });
227 
228 	free_irq_by_cb(same_irq_and_dev, &data);
229 }
230 
231 static int same_fd(struct irq_fd *irq, void *fd)
232 {
233 	return (irq->fd == *((int *)fd));
234 }
235 
236 void free_irq_by_fd(int fd)
237 {
238 	free_irq_by_cb(same_fd, &fd);
239 }
240 
241 /* Must be called with irq_lock held */
242 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
243 {
244 	struct irq_fd *irq;
245 	int i = 0;
246 	int fdi;
247 
248 	for (irq = active_fds; irq != NULL; irq = irq->next) {
249 		if ((irq->fd == fd) && (irq->irq == irqnum))
250 			break;
251 		i++;
252 	}
253 	if (irq == NULL) {
254 		printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n",
255 		       fd);
256 		goto out;
257 	}
258 	fdi = os_get_pollfd(i);
259 	if ((fdi != -1) && (fdi != fd)) {
260 		printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds "
261 		       "and pollfds, fd %d vs %d, need %d\n", irq->fd,
262 		       fdi, fd);
263 		irq = NULL;
264 		goto out;
265 	}
266 	*index_out = i;
267  out:
268 	return irq;
269 }
270 
271 void reactivate_fd(int fd, int irqnum)
272 {
273 	struct irq_fd *irq;
274 	unsigned long flags;
275 	int i;
276 
277 	spin_lock_irqsave(&irq_lock, flags);
278 	irq = find_irq_by_fd(fd, irqnum, &i);
279 	if (irq == NULL) {
280 		spin_unlock_irqrestore(&irq_lock, flags);
281 		return;
282 	}
283 	os_set_pollfd(i, irq->fd);
284 	spin_unlock_irqrestore(&irq_lock, flags);
285 
286 	add_sigio_fd(fd);
287 }
288 
289 void deactivate_fd(int fd, int irqnum)
290 {
291 	struct irq_fd *irq;
292 	unsigned long flags;
293 	int i;
294 
295 	spin_lock_irqsave(&irq_lock, flags);
296 	irq = find_irq_by_fd(fd, irqnum, &i);
297 	if (irq == NULL) {
298 		spin_unlock_irqrestore(&irq_lock, flags);
299 		return;
300 	}
301 
302 	os_set_pollfd(i, -1);
303 	spin_unlock_irqrestore(&irq_lock, flags);
304 
305 	ignore_sigio_fd(fd);
306 }
307 
308 /*
309  * Called just before shutdown in order to provide a clean exec
310  * environment in case the system is rebooting.  No locking because
311  * that would cause a pointless shutdown hang if something hadn't
312  * released the lock.
313  */
314 int deactivate_all_fds(void)
315 {
316 	struct irq_fd *irq;
317 	int err;
318 
319 	for (irq = active_fds; irq != NULL; irq = irq->next) {
320 		err = os_clear_fd_async(irq->fd);
321 		if (err)
322 			return err;
323 	}
324 	/* If there is a signal already queued, after unblocking ignore it */
325 	os_set_ioignore();
326 
327 	return 0;
328 }
329 
330 /*
331  * do_IRQ handles all normal device IRQs (the special
332  * SMP cross-CPU interrupts have their own specific
333  * handlers).
334  */
335 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
336 {
337 	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
338 	irq_enter();
339 	generic_handle_irq(irq);
340 	irq_exit();
341 	set_irq_regs(old_regs);
342 	return 1;
343 }
344 
345 int um_request_irq(unsigned int irq, int fd, int type,
346 		   irq_handler_t handler,
347 		   unsigned long irqflags, const char * devname,
348 		   void *dev_id)
349 {
350 	int err;
351 
352 	if (fd != -1) {
353 		err = activate_fd(irq, fd, type, dev_id);
354 		if (err)
355 			return err;
356 	}
357 
358 	return request_irq(irq, handler, irqflags, devname, dev_id);
359 }
360 
361 EXPORT_SYMBOL(um_request_irq);
362 EXPORT_SYMBOL(reactivate_fd);
363 
364 /*
365  * irq_chip must define at least enable/disable and ack when
366  * the edge handler is used.
367  */
368 static void dummy(struct irq_data *d)
369 {
370 }
371 
372 /* This is used for everything else than the timer. */
373 static struct irq_chip normal_irq_type = {
374 	.name = "SIGIO",
375 	.release = free_irq_by_irq_and_dev,
376 	.irq_disable = dummy,
377 	.irq_enable = dummy,
378 	.irq_ack = dummy,
379 };
380 
381 static struct irq_chip SIGVTALRM_irq_type = {
382 	.name = "SIGVTALRM",
383 	.release = free_irq_by_irq_and_dev,
384 	.irq_disable = dummy,
385 	.irq_enable = dummy,
386 	.irq_ack = dummy,
387 };
388 
389 void __init init_IRQ(void)
390 {
391 	int i;
392 
393 	set_irq_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
394 
395 	for (i = 1; i < NR_IRQS; i++) {
396 		set_irq_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
397 	}
398 }
399 
400 /*
401  * IRQ stack entry and exit:
402  *
403  * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
404  * and switch over to the IRQ stack after some preparation.  We use
405  * sigaltstack to receive signals on a separate stack from the start.
406  * These two functions make sure the rest of the kernel won't be too
407  * upset by being on a different stack.  The IRQ stack has a
408  * thread_info structure at the bottom so that current et al continue
409  * to work.
410  *
411  * to_irq_stack copies the current task's thread_info to the IRQ stack
412  * thread_info and sets the tasks's stack to point to the IRQ stack.
413  *
414  * from_irq_stack copies the thread_info struct back (flags may have
415  * been modified) and resets the task's stack pointer.
416  *
417  * Tricky bits -
418  *
419  * What happens when two signals race each other?  UML doesn't block
420  * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
421  * could arrive while a previous one is still setting up the
422  * thread_info.
423  *
424  * There are three cases -
425  *     The first interrupt on the stack - sets up the thread_info and
426  * handles the interrupt
427  *     A nested interrupt interrupting the copying of the thread_info -
428  * can't handle the interrupt, as the stack is in an unknown state
429  *     A nested interrupt not interrupting the copying of the
430  * thread_info - doesn't do any setup, just handles the interrupt
431  *
432  * The first job is to figure out whether we interrupted stack setup.
433  * This is done by xchging the signal mask with thread_info->pending.
434  * If the value that comes back is zero, then there is no setup in
435  * progress, and the interrupt can be handled.  If the value is
436  * non-zero, then there is stack setup in progress.  In order to have
437  * the interrupt handled, we leave our signal in the mask, and it will
438  * be handled by the upper handler after it has set up the stack.
439  *
440  * Next is to figure out whether we are the outer handler or a nested
441  * one.  As part of setting up the stack, thread_info->real_thread is
442  * set to non-NULL (and is reset to NULL on exit).  This is the
443  * nesting indicator.  If it is non-NULL, then the stack is already
444  * set up and the handler can run.
445  */
446 
447 static unsigned long pending_mask;
448 
449 unsigned long to_irq_stack(unsigned long *mask_out)
450 {
451 	struct thread_info *ti;
452 	unsigned long mask, old;
453 	int nested;
454 
455 	mask = xchg(&pending_mask, *mask_out);
456 	if (mask != 0) {
457 		/*
458 		 * If any interrupts come in at this point, we want to
459 		 * make sure that their bits aren't lost by our
460 		 * putting our bit in.  So, this loop accumulates bits
461 		 * until xchg returns the same value that we put in.
462 		 * When that happens, there were no new interrupts,
463 		 * and pending_mask contains a bit for each interrupt
464 		 * that came in.
465 		 */
466 		old = *mask_out;
467 		do {
468 			old |= mask;
469 			mask = xchg(&pending_mask, old);
470 		} while (mask != old);
471 		return 1;
472 	}
473 
474 	ti = current_thread_info();
475 	nested = (ti->real_thread != NULL);
476 	if (!nested) {
477 		struct task_struct *task;
478 		struct thread_info *tti;
479 
480 		task = cpu_tasks[ti->cpu].task;
481 		tti = task_thread_info(task);
482 
483 		*ti = *tti;
484 		ti->real_thread = tti;
485 		task->stack = ti;
486 	}
487 
488 	mask = xchg(&pending_mask, 0);
489 	*mask_out |= mask | nested;
490 	return 0;
491 }
492 
493 unsigned long from_irq_stack(int nested)
494 {
495 	struct thread_info *ti, *to;
496 	unsigned long mask;
497 
498 	ti = current_thread_info();
499 
500 	pending_mask = 1;
501 
502 	to = ti->real_thread;
503 	current->stack = to;
504 	ti->real_thread = NULL;
505 	*to = *ti;
506 
507 	mask = xchg(&pending_mask, 0);
508 	return mask & ~1;
509 }
510 
511