1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Licensed under the GPL 4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: 5 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar 6 */ 7 8 #include "linux/cpumask.h" 9 #include "linux/hardirq.h" 10 #include "linux/interrupt.h" 11 #include "linux/kernel_stat.h" 12 #include "linux/module.h" 13 #include "linux/sched.h" 14 #include "linux/seq_file.h" 15 #include "as-layout.h" 16 #include "kern_util.h" 17 #include "os.h" 18 19 /* 20 * Generic, controller-independent functions: 21 */ 22 23 int show_interrupts(struct seq_file *p, void *v) 24 { 25 int i = *(loff_t *) v, j; 26 struct irqaction * action; 27 unsigned long flags; 28 29 if (i == 0) { 30 seq_printf(p, " "); 31 for_each_online_cpu(j) 32 seq_printf(p, "CPU%d ",j); 33 seq_putc(p, '\n'); 34 } 35 36 if (i < NR_IRQS) { 37 spin_lock_irqsave(&irq_desc[i].lock, flags); 38 action = irq_desc[i].action; 39 if (!action) 40 goto skip; 41 seq_printf(p, "%3d: ",i); 42 #ifndef CONFIG_SMP 43 seq_printf(p, "%10u ", kstat_irqs(i)); 44 #else 45 for_each_online_cpu(j) 46 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j)); 47 #endif 48 seq_printf(p, " %14s", irq_desc[i].chip->typename); 49 seq_printf(p, " %s", action->name); 50 51 for (action=action->next; action; action = action->next) 52 seq_printf(p, ", %s", action->name); 53 54 seq_putc(p, '\n'); 55 skip: 56 spin_unlock_irqrestore(&irq_desc[i].lock, flags); 57 } else if (i == NR_IRQS) 58 seq_putc(p, '\n'); 59 60 return 0; 61 } 62 63 /* 64 * This list is accessed under irq_lock, except in sigio_handler, 65 * where it is safe from being modified. IRQ handlers won't change it - 66 * if an IRQ source has vanished, it will be freed by free_irqs just 67 * before returning from sigio_handler. That will process a separate 68 * list of irqs to free, with its own locking, coming back here to 69 * remove list elements, taking the irq_lock to do so. 70 */ 71 static struct irq_fd *active_fds = NULL; 72 static struct irq_fd **last_irq_ptr = &active_fds; 73 74 extern void free_irqs(void); 75 76 void sigio_handler(int sig, struct uml_pt_regs *regs) 77 { 78 struct irq_fd *irq_fd; 79 int n; 80 81 if (smp_sigio_handler()) 82 return; 83 84 while (1) { 85 n = os_waiting_for_events(active_fds); 86 if (n <= 0) { 87 if (n == -EINTR) 88 continue; 89 else break; 90 } 91 92 for (irq_fd = active_fds; irq_fd != NULL; 93 irq_fd = irq_fd->next) { 94 if (irq_fd->current_events != 0) { 95 irq_fd->current_events = 0; 96 do_IRQ(irq_fd->irq, regs); 97 } 98 } 99 } 100 101 free_irqs(); 102 } 103 104 static DEFINE_SPINLOCK(irq_lock); 105 106 static int activate_fd(int irq, int fd, int type, void *dev_id) 107 { 108 struct pollfd *tmp_pfd; 109 struct irq_fd *new_fd, *irq_fd; 110 unsigned long flags; 111 int events, err, n; 112 113 err = os_set_fd_async(fd); 114 if (err < 0) 115 goto out; 116 117 err = -ENOMEM; 118 new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL); 119 if (new_fd == NULL) 120 goto out; 121 122 if (type == IRQ_READ) 123 events = UM_POLLIN | UM_POLLPRI; 124 else events = UM_POLLOUT; 125 *new_fd = ((struct irq_fd) { .next = NULL, 126 .id = dev_id, 127 .fd = fd, 128 .type = type, 129 .irq = irq, 130 .events = events, 131 .current_events = 0 } ); 132 133 err = -EBUSY; 134 spin_lock_irqsave(&irq_lock, flags); 135 for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) { 136 if ((irq_fd->fd == fd) && (irq_fd->type == type)) { 137 printk(KERN_ERR "Registering fd %d twice\n", fd); 138 printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq); 139 printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id, 140 dev_id); 141 goto out_unlock; 142 } 143 } 144 145 if (type == IRQ_WRITE) 146 fd = -1; 147 148 tmp_pfd = NULL; 149 n = 0; 150 151 while (1) { 152 n = os_create_pollfd(fd, events, tmp_pfd, n); 153 if (n == 0) 154 break; 155 156 /* 157 * n > 0 158 * It means we couldn't put new pollfd to current pollfds 159 * and tmp_fds is NULL or too small for new pollfds array. 160 * Needed size is equal to n as minimum. 161 * 162 * Here we have to drop the lock in order to call 163 * kmalloc, which might sleep. 164 * If something else came in and changed the pollfds array 165 * so we will not be able to put new pollfd struct to pollfds 166 * then we free the buffer tmp_fds and try again. 167 */ 168 spin_unlock_irqrestore(&irq_lock, flags); 169 kfree(tmp_pfd); 170 171 tmp_pfd = kmalloc(n, GFP_KERNEL); 172 if (tmp_pfd == NULL) 173 goto out_kfree; 174 175 spin_lock_irqsave(&irq_lock, flags); 176 } 177 178 *last_irq_ptr = new_fd; 179 last_irq_ptr = &new_fd->next; 180 181 spin_unlock_irqrestore(&irq_lock, flags); 182 183 /* 184 * This calls activate_fd, so it has to be outside the critical 185 * section. 186 */ 187 maybe_sigio_broken(fd, (type == IRQ_READ)); 188 189 return 0; 190 191 out_unlock: 192 spin_unlock_irqrestore(&irq_lock, flags); 193 out_kfree: 194 kfree(new_fd); 195 out: 196 return err; 197 } 198 199 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg) 200 { 201 unsigned long flags; 202 203 spin_lock_irqsave(&irq_lock, flags); 204 os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr); 205 spin_unlock_irqrestore(&irq_lock, flags); 206 } 207 208 struct irq_and_dev { 209 int irq; 210 void *dev; 211 }; 212 213 static int same_irq_and_dev(struct irq_fd *irq, void *d) 214 { 215 struct irq_and_dev *data = d; 216 217 return ((irq->irq == data->irq) && (irq->id == data->dev)); 218 } 219 220 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) 221 { 222 struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq, 223 .dev = dev }); 224 225 free_irq_by_cb(same_irq_and_dev, &data); 226 } 227 228 static int same_fd(struct irq_fd *irq, void *fd) 229 { 230 return (irq->fd == *((int *)fd)); 231 } 232 233 void free_irq_by_fd(int fd) 234 { 235 free_irq_by_cb(same_fd, &fd); 236 } 237 238 /* Must be called with irq_lock held */ 239 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out) 240 { 241 struct irq_fd *irq; 242 int i = 0; 243 int fdi; 244 245 for (irq = active_fds; irq != NULL; irq = irq->next) { 246 if ((irq->fd == fd) && (irq->irq == irqnum)) 247 break; 248 i++; 249 } 250 if (irq == NULL) { 251 printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n", 252 fd); 253 goto out; 254 } 255 fdi = os_get_pollfd(i); 256 if ((fdi != -1) && (fdi != fd)) { 257 printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds " 258 "and pollfds, fd %d vs %d, need %d\n", irq->fd, 259 fdi, fd); 260 irq = NULL; 261 goto out; 262 } 263 *index_out = i; 264 out: 265 return irq; 266 } 267 268 void reactivate_fd(int fd, int irqnum) 269 { 270 struct irq_fd *irq; 271 unsigned long flags; 272 int i; 273 274 spin_lock_irqsave(&irq_lock, flags); 275 irq = find_irq_by_fd(fd, irqnum, &i); 276 if (irq == NULL) { 277 spin_unlock_irqrestore(&irq_lock, flags); 278 return; 279 } 280 os_set_pollfd(i, irq->fd); 281 spin_unlock_irqrestore(&irq_lock, flags); 282 283 add_sigio_fd(fd); 284 } 285 286 void deactivate_fd(int fd, int irqnum) 287 { 288 struct irq_fd *irq; 289 unsigned long flags; 290 int i; 291 292 spin_lock_irqsave(&irq_lock, flags); 293 irq = find_irq_by_fd(fd, irqnum, &i); 294 if (irq == NULL) { 295 spin_unlock_irqrestore(&irq_lock, flags); 296 return; 297 } 298 299 os_set_pollfd(i, -1); 300 spin_unlock_irqrestore(&irq_lock, flags); 301 302 ignore_sigio_fd(fd); 303 } 304 305 /* 306 * Called just before shutdown in order to provide a clean exec 307 * environment in case the system is rebooting. No locking because 308 * that would cause a pointless shutdown hang if something hadn't 309 * released the lock. 310 */ 311 int deactivate_all_fds(void) 312 { 313 struct irq_fd *irq; 314 int err; 315 316 for (irq = active_fds; irq != NULL; irq = irq->next) { 317 err = os_clear_fd_async(irq->fd); 318 if (err) 319 return err; 320 } 321 /* If there is a signal already queued, after unblocking ignore it */ 322 os_set_ioignore(); 323 324 return 0; 325 } 326 327 /* 328 * do_IRQ handles all normal device IRQs (the special 329 * SMP cross-CPU interrupts have their own specific 330 * handlers). 331 */ 332 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) 333 { 334 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); 335 irq_enter(); 336 __do_IRQ(irq); 337 irq_exit(); 338 set_irq_regs(old_regs); 339 return 1; 340 } 341 342 int um_request_irq(unsigned int irq, int fd, int type, 343 irq_handler_t handler, 344 unsigned long irqflags, const char * devname, 345 void *dev_id) 346 { 347 int err; 348 349 if (fd != -1) { 350 err = activate_fd(irq, fd, type, dev_id); 351 if (err) 352 return err; 353 } 354 355 return request_irq(irq, handler, irqflags, devname, dev_id); 356 } 357 358 EXPORT_SYMBOL(um_request_irq); 359 EXPORT_SYMBOL(reactivate_fd); 360 361 /* 362 * irq_chip must define (startup || enable) && 363 * (shutdown || disable) && end 364 */ 365 static void dummy(unsigned int irq) 366 { 367 } 368 369 /* This is used for everything else than the timer. */ 370 static struct irq_chip normal_irq_type = { 371 .typename = "SIGIO", 372 .release = free_irq_by_irq_and_dev, 373 .disable = dummy, 374 .enable = dummy, 375 .ack = dummy, 376 .end = dummy 377 }; 378 379 static struct irq_chip SIGVTALRM_irq_type = { 380 .typename = "SIGVTALRM", 381 .release = free_irq_by_irq_and_dev, 382 .shutdown = dummy, /* never called */ 383 .disable = dummy, 384 .enable = dummy, 385 .ack = dummy, 386 .end = dummy 387 }; 388 389 void __init init_IRQ(void) 390 { 391 int i; 392 393 irq_desc[TIMER_IRQ].status = IRQ_DISABLED; 394 irq_desc[TIMER_IRQ].action = NULL; 395 irq_desc[TIMER_IRQ].depth = 1; 396 irq_desc[TIMER_IRQ].chip = &SIGVTALRM_irq_type; 397 enable_irq(TIMER_IRQ); 398 for (i = 1; i < NR_IRQS; i++) { 399 irq_desc[i].status = IRQ_DISABLED; 400 irq_desc[i].action = NULL; 401 irq_desc[i].depth = 1; 402 irq_desc[i].chip = &normal_irq_type; 403 enable_irq(i); 404 } 405 } 406 407 /* 408 * IRQ stack entry and exit: 409 * 410 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack 411 * and switch over to the IRQ stack after some preparation. We use 412 * sigaltstack to receive signals on a separate stack from the start. 413 * These two functions make sure the rest of the kernel won't be too 414 * upset by being on a different stack. The IRQ stack has a 415 * thread_info structure at the bottom so that current et al continue 416 * to work. 417 * 418 * to_irq_stack copies the current task's thread_info to the IRQ stack 419 * thread_info and sets the tasks's stack to point to the IRQ stack. 420 * 421 * from_irq_stack copies the thread_info struct back (flags may have 422 * been modified) and resets the task's stack pointer. 423 * 424 * Tricky bits - 425 * 426 * What happens when two signals race each other? UML doesn't block 427 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal 428 * could arrive while a previous one is still setting up the 429 * thread_info. 430 * 431 * There are three cases - 432 * The first interrupt on the stack - sets up the thread_info and 433 * handles the interrupt 434 * A nested interrupt interrupting the copying of the thread_info - 435 * can't handle the interrupt, as the stack is in an unknown state 436 * A nested interrupt not interrupting the copying of the 437 * thread_info - doesn't do any setup, just handles the interrupt 438 * 439 * The first job is to figure out whether we interrupted stack setup. 440 * This is done by xchging the signal mask with thread_info->pending. 441 * If the value that comes back is zero, then there is no setup in 442 * progress, and the interrupt can be handled. If the value is 443 * non-zero, then there is stack setup in progress. In order to have 444 * the interrupt handled, we leave our signal in the mask, and it will 445 * be handled by the upper handler after it has set up the stack. 446 * 447 * Next is to figure out whether we are the outer handler or a nested 448 * one. As part of setting up the stack, thread_info->real_thread is 449 * set to non-NULL (and is reset to NULL on exit). This is the 450 * nesting indicator. If it is non-NULL, then the stack is already 451 * set up and the handler can run. 452 */ 453 454 static unsigned long pending_mask; 455 456 unsigned long to_irq_stack(unsigned long *mask_out) 457 { 458 struct thread_info *ti; 459 unsigned long mask, old; 460 int nested; 461 462 mask = xchg(&pending_mask, *mask_out); 463 if (mask != 0) { 464 /* 465 * If any interrupts come in at this point, we want to 466 * make sure that their bits aren't lost by our 467 * putting our bit in. So, this loop accumulates bits 468 * until xchg returns the same value that we put in. 469 * When that happens, there were no new interrupts, 470 * and pending_mask contains a bit for each interrupt 471 * that came in. 472 */ 473 old = *mask_out; 474 do { 475 old |= mask; 476 mask = xchg(&pending_mask, old); 477 } while (mask != old); 478 return 1; 479 } 480 481 ti = current_thread_info(); 482 nested = (ti->real_thread != NULL); 483 if (!nested) { 484 struct task_struct *task; 485 struct thread_info *tti; 486 487 task = cpu_tasks[ti->cpu].task; 488 tti = task_thread_info(task); 489 490 *ti = *tti; 491 ti->real_thread = tti; 492 task->stack = ti; 493 } 494 495 mask = xchg(&pending_mask, 0); 496 *mask_out |= mask | nested; 497 return 0; 498 } 499 500 unsigned long from_irq_stack(int nested) 501 { 502 struct thread_info *ti, *to; 503 unsigned long mask; 504 505 ti = current_thread_info(); 506 507 pending_mask = 1; 508 509 to = ti->real_thread; 510 current->stack = to; 511 ti->real_thread = NULL; 512 *to = *ti; 513 514 mask = xchg(&pending_mask, 0); 515 return mask & ~1; 516 } 517 518