xref: /linux/arch/um/kernel/irq.c (revision 6ee738610f41b59733f63718f0bdbcba7d3a3f12)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Licensed under the GPL
4  * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
5  *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
6  */
7 
8 #include "linux/cpumask.h"
9 #include "linux/hardirq.h"
10 #include "linux/interrupt.h"
11 #include "linux/kernel_stat.h"
12 #include "linux/module.h"
13 #include "linux/sched.h"
14 #include "linux/seq_file.h"
15 #include "as-layout.h"
16 #include "kern_util.h"
17 #include "os.h"
18 
19 /*
20  * Generic, controller-independent functions:
21  */
22 
23 int show_interrupts(struct seq_file *p, void *v)
24 {
25 	int i = *(loff_t *) v, j;
26 	struct irqaction * action;
27 	unsigned long flags;
28 
29 	if (i == 0) {
30 		seq_printf(p, "           ");
31 		for_each_online_cpu(j)
32 			seq_printf(p, "CPU%d       ",j);
33 		seq_putc(p, '\n');
34 	}
35 
36 	if (i < NR_IRQS) {
37 		spin_lock_irqsave(&irq_desc[i].lock, flags);
38 		action = irq_desc[i].action;
39 		if (!action)
40 			goto skip;
41 		seq_printf(p, "%3d: ",i);
42 #ifndef CONFIG_SMP
43 		seq_printf(p, "%10u ", kstat_irqs(i));
44 #else
45 		for_each_online_cpu(j)
46 			seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
47 #endif
48 		seq_printf(p, " %14s", irq_desc[i].chip->typename);
49 		seq_printf(p, "  %s", action->name);
50 
51 		for (action=action->next; action; action = action->next)
52 			seq_printf(p, ", %s", action->name);
53 
54 		seq_putc(p, '\n');
55 skip:
56 		spin_unlock_irqrestore(&irq_desc[i].lock, flags);
57 	} else if (i == NR_IRQS)
58 		seq_putc(p, '\n');
59 
60 	return 0;
61 }
62 
63 /*
64  * This list is accessed under irq_lock, except in sigio_handler,
65  * where it is safe from being modified.  IRQ handlers won't change it -
66  * if an IRQ source has vanished, it will be freed by free_irqs just
67  * before returning from sigio_handler.  That will process a separate
68  * list of irqs to free, with its own locking, coming back here to
69  * remove list elements, taking the irq_lock to do so.
70  */
71 static struct irq_fd *active_fds = NULL;
72 static struct irq_fd **last_irq_ptr = &active_fds;
73 
74 extern void free_irqs(void);
75 
76 void sigio_handler(int sig, struct uml_pt_regs *regs)
77 {
78 	struct irq_fd *irq_fd;
79 	int n;
80 
81 	if (smp_sigio_handler())
82 		return;
83 
84 	while (1) {
85 		n = os_waiting_for_events(active_fds);
86 		if (n <= 0) {
87 			if (n == -EINTR)
88 				continue;
89 			else break;
90 		}
91 
92 		for (irq_fd = active_fds; irq_fd != NULL;
93 		     irq_fd = irq_fd->next) {
94 			if (irq_fd->current_events != 0) {
95 				irq_fd->current_events = 0;
96 				do_IRQ(irq_fd->irq, regs);
97 			}
98 		}
99 	}
100 
101 	free_irqs();
102 }
103 
104 static DEFINE_SPINLOCK(irq_lock);
105 
106 static int activate_fd(int irq, int fd, int type, void *dev_id)
107 {
108 	struct pollfd *tmp_pfd;
109 	struct irq_fd *new_fd, *irq_fd;
110 	unsigned long flags;
111 	int events, err, n;
112 
113 	err = os_set_fd_async(fd);
114 	if (err < 0)
115 		goto out;
116 
117 	err = -ENOMEM;
118 	new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
119 	if (new_fd == NULL)
120 		goto out;
121 
122 	if (type == IRQ_READ)
123 		events = UM_POLLIN | UM_POLLPRI;
124 	else events = UM_POLLOUT;
125 	*new_fd = ((struct irq_fd) { .next  		= NULL,
126 				     .id 		= dev_id,
127 				     .fd 		= fd,
128 				     .type 		= type,
129 				     .irq 		= irq,
130 				     .events 		= events,
131 				     .current_events 	= 0 } );
132 
133 	err = -EBUSY;
134 	spin_lock_irqsave(&irq_lock, flags);
135 	for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
136 		if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
137 			printk(KERN_ERR "Registering fd %d twice\n", fd);
138 			printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq);
139 			printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id,
140 			       dev_id);
141 			goto out_unlock;
142 		}
143 	}
144 
145 	if (type == IRQ_WRITE)
146 		fd = -1;
147 
148 	tmp_pfd = NULL;
149 	n = 0;
150 
151 	while (1) {
152 		n = os_create_pollfd(fd, events, tmp_pfd, n);
153 		if (n == 0)
154 			break;
155 
156 		/*
157 		 * n > 0
158 		 * It means we couldn't put new pollfd to current pollfds
159 		 * and tmp_fds is NULL or too small for new pollfds array.
160 		 * Needed size is equal to n as minimum.
161 		 *
162 		 * Here we have to drop the lock in order to call
163 		 * kmalloc, which might sleep.
164 		 * If something else came in and changed the pollfds array
165 		 * so we will not be able to put new pollfd struct to pollfds
166 		 * then we free the buffer tmp_fds and try again.
167 		 */
168 		spin_unlock_irqrestore(&irq_lock, flags);
169 		kfree(tmp_pfd);
170 
171 		tmp_pfd = kmalloc(n, GFP_KERNEL);
172 		if (tmp_pfd == NULL)
173 			goto out_kfree;
174 
175 		spin_lock_irqsave(&irq_lock, flags);
176 	}
177 
178 	*last_irq_ptr = new_fd;
179 	last_irq_ptr = &new_fd->next;
180 
181 	spin_unlock_irqrestore(&irq_lock, flags);
182 
183 	/*
184 	 * This calls activate_fd, so it has to be outside the critical
185 	 * section.
186 	 */
187 	maybe_sigio_broken(fd, (type == IRQ_READ));
188 
189 	return 0;
190 
191  out_unlock:
192 	spin_unlock_irqrestore(&irq_lock, flags);
193  out_kfree:
194 	kfree(new_fd);
195  out:
196 	return err;
197 }
198 
199 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
200 {
201 	unsigned long flags;
202 
203 	spin_lock_irqsave(&irq_lock, flags);
204 	os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
205 	spin_unlock_irqrestore(&irq_lock, flags);
206 }
207 
208 struct irq_and_dev {
209 	int irq;
210 	void *dev;
211 };
212 
213 static int same_irq_and_dev(struct irq_fd *irq, void *d)
214 {
215 	struct irq_and_dev *data = d;
216 
217 	return ((irq->irq == data->irq) && (irq->id == data->dev));
218 }
219 
220 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
221 {
222 	struct irq_and_dev data = ((struct irq_and_dev) { .irq  = irq,
223 							  .dev  = dev });
224 
225 	free_irq_by_cb(same_irq_and_dev, &data);
226 }
227 
228 static int same_fd(struct irq_fd *irq, void *fd)
229 {
230 	return (irq->fd == *((int *)fd));
231 }
232 
233 void free_irq_by_fd(int fd)
234 {
235 	free_irq_by_cb(same_fd, &fd);
236 }
237 
238 /* Must be called with irq_lock held */
239 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
240 {
241 	struct irq_fd *irq;
242 	int i = 0;
243 	int fdi;
244 
245 	for (irq = active_fds; irq != NULL; irq = irq->next) {
246 		if ((irq->fd == fd) && (irq->irq == irqnum))
247 			break;
248 		i++;
249 	}
250 	if (irq == NULL) {
251 		printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n",
252 		       fd);
253 		goto out;
254 	}
255 	fdi = os_get_pollfd(i);
256 	if ((fdi != -1) && (fdi != fd)) {
257 		printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds "
258 		       "and pollfds, fd %d vs %d, need %d\n", irq->fd,
259 		       fdi, fd);
260 		irq = NULL;
261 		goto out;
262 	}
263 	*index_out = i;
264  out:
265 	return irq;
266 }
267 
268 void reactivate_fd(int fd, int irqnum)
269 {
270 	struct irq_fd *irq;
271 	unsigned long flags;
272 	int i;
273 
274 	spin_lock_irqsave(&irq_lock, flags);
275 	irq = find_irq_by_fd(fd, irqnum, &i);
276 	if (irq == NULL) {
277 		spin_unlock_irqrestore(&irq_lock, flags);
278 		return;
279 	}
280 	os_set_pollfd(i, irq->fd);
281 	spin_unlock_irqrestore(&irq_lock, flags);
282 
283 	add_sigio_fd(fd);
284 }
285 
286 void deactivate_fd(int fd, int irqnum)
287 {
288 	struct irq_fd *irq;
289 	unsigned long flags;
290 	int i;
291 
292 	spin_lock_irqsave(&irq_lock, flags);
293 	irq = find_irq_by_fd(fd, irqnum, &i);
294 	if (irq == NULL) {
295 		spin_unlock_irqrestore(&irq_lock, flags);
296 		return;
297 	}
298 
299 	os_set_pollfd(i, -1);
300 	spin_unlock_irqrestore(&irq_lock, flags);
301 
302 	ignore_sigio_fd(fd);
303 }
304 
305 /*
306  * Called just before shutdown in order to provide a clean exec
307  * environment in case the system is rebooting.  No locking because
308  * that would cause a pointless shutdown hang if something hadn't
309  * released the lock.
310  */
311 int deactivate_all_fds(void)
312 {
313 	struct irq_fd *irq;
314 	int err;
315 
316 	for (irq = active_fds; irq != NULL; irq = irq->next) {
317 		err = os_clear_fd_async(irq->fd);
318 		if (err)
319 			return err;
320 	}
321 	/* If there is a signal already queued, after unblocking ignore it */
322 	os_set_ioignore();
323 
324 	return 0;
325 }
326 
327 /*
328  * do_IRQ handles all normal device IRQs (the special
329  * SMP cross-CPU interrupts have their own specific
330  * handlers).
331  */
332 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
333 {
334 	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
335 	irq_enter();
336 	__do_IRQ(irq);
337 	irq_exit();
338 	set_irq_regs(old_regs);
339 	return 1;
340 }
341 
342 int um_request_irq(unsigned int irq, int fd, int type,
343 		   irq_handler_t handler,
344 		   unsigned long irqflags, const char * devname,
345 		   void *dev_id)
346 {
347 	int err;
348 
349 	if (fd != -1) {
350 		err = activate_fd(irq, fd, type, dev_id);
351 		if (err)
352 			return err;
353 	}
354 
355 	return request_irq(irq, handler, irqflags, devname, dev_id);
356 }
357 
358 EXPORT_SYMBOL(um_request_irq);
359 EXPORT_SYMBOL(reactivate_fd);
360 
361 /*
362  * irq_chip must define (startup || enable) &&
363  * (shutdown || disable) && end
364  */
365 static void dummy(unsigned int irq)
366 {
367 }
368 
369 /* This is used for everything else than the timer. */
370 static struct irq_chip normal_irq_type = {
371 	.typename = "SIGIO",
372 	.release = free_irq_by_irq_and_dev,
373 	.disable = dummy,
374 	.enable = dummy,
375 	.ack = dummy,
376 	.end = dummy
377 };
378 
379 static struct irq_chip SIGVTALRM_irq_type = {
380 	.typename = "SIGVTALRM",
381 	.release = free_irq_by_irq_and_dev,
382 	.shutdown = dummy, /* never called */
383 	.disable = dummy,
384 	.enable = dummy,
385 	.ack = dummy,
386 	.end = dummy
387 };
388 
389 void __init init_IRQ(void)
390 {
391 	int i;
392 
393 	irq_desc[TIMER_IRQ].status = IRQ_DISABLED;
394 	irq_desc[TIMER_IRQ].action = NULL;
395 	irq_desc[TIMER_IRQ].depth = 1;
396 	irq_desc[TIMER_IRQ].chip = &SIGVTALRM_irq_type;
397 	enable_irq(TIMER_IRQ);
398 	for (i = 1; i < NR_IRQS; i++) {
399 		irq_desc[i].status = IRQ_DISABLED;
400 		irq_desc[i].action = NULL;
401 		irq_desc[i].depth = 1;
402 		irq_desc[i].chip = &normal_irq_type;
403 		enable_irq(i);
404 	}
405 }
406 
407 /*
408  * IRQ stack entry and exit:
409  *
410  * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
411  * and switch over to the IRQ stack after some preparation.  We use
412  * sigaltstack to receive signals on a separate stack from the start.
413  * These two functions make sure the rest of the kernel won't be too
414  * upset by being on a different stack.  The IRQ stack has a
415  * thread_info structure at the bottom so that current et al continue
416  * to work.
417  *
418  * to_irq_stack copies the current task's thread_info to the IRQ stack
419  * thread_info and sets the tasks's stack to point to the IRQ stack.
420  *
421  * from_irq_stack copies the thread_info struct back (flags may have
422  * been modified) and resets the task's stack pointer.
423  *
424  * Tricky bits -
425  *
426  * What happens when two signals race each other?  UML doesn't block
427  * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
428  * could arrive while a previous one is still setting up the
429  * thread_info.
430  *
431  * There are three cases -
432  *     The first interrupt on the stack - sets up the thread_info and
433  * handles the interrupt
434  *     A nested interrupt interrupting the copying of the thread_info -
435  * can't handle the interrupt, as the stack is in an unknown state
436  *     A nested interrupt not interrupting the copying of the
437  * thread_info - doesn't do any setup, just handles the interrupt
438  *
439  * The first job is to figure out whether we interrupted stack setup.
440  * This is done by xchging the signal mask with thread_info->pending.
441  * If the value that comes back is zero, then there is no setup in
442  * progress, and the interrupt can be handled.  If the value is
443  * non-zero, then there is stack setup in progress.  In order to have
444  * the interrupt handled, we leave our signal in the mask, and it will
445  * be handled by the upper handler after it has set up the stack.
446  *
447  * Next is to figure out whether we are the outer handler or a nested
448  * one.  As part of setting up the stack, thread_info->real_thread is
449  * set to non-NULL (and is reset to NULL on exit).  This is the
450  * nesting indicator.  If it is non-NULL, then the stack is already
451  * set up and the handler can run.
452  */
453 
454 static unsigned long pending_mask;
455 
456 unsigned long to_irq_stack(unsigned long *mask_out)
457 {
458 	struct thread_info *ti;
459 	unsigned long mask, old;
460 	int nested;
461 
462 	mask = xchg(&pending_mask, *mask_out);
463 	if (mask != 0) {
464 		/*
465 		 * If any interrupts come in at this point, we want to
466 		 * make sure that their bits aren't lost by our
467 		 * putting our bit in.  So, this loop accumulates bits
468 		 * until xchg returns the same value that we put in.
469 		 * When that happens, there were no new interrupts,
470 		 * and pending_mask contains a bit for each interrupt
471 		 * that came in.
472 		 */
473 		old = *mask_out;
474 		do {
475 			old |= mask;
476 			mask = xchg(&pending_mask, old);
477 		} while (mask != old);
478 		return 1;
479 	}
480 
481 	ti = current_thread_info();
482 	nested = (ti->real_thread != NULL);
483 	if (!nested) {
484 		struct task_struct *task;
485 		struct thread_info *tti;
486 
487 		task = cpu_tasks[ti->cpu].task;
488 		tti = task_thread_info(task);
489 
490 		*ti = *tti;
491 		ti->real_thread = tti;
492 		task->stack = ti;
493 	}
494 
495 	mask = xchg(&pending_mask, 0);
496 	*mask_out |= mask | nested;
497 	return 0;
498 }
499 
500 unsigned long from_irq_stack(int nested)
501 {
502 	struct thread_info *ti, *to;
503 	unsigned long mask;
504 
505 	ti = current_thread_info();
506 
507 	pending_mask = 1;
508 
509 	to = ti->real_thread;
510 	current->stack = to;
511 	ti->real_thread = NULL;
512 	*to = *ti;
513 
514 	mask = xchg(&pending_mask, 0);
515 	return mask & ~1;
516 }
517 
518