xref: /linux/arch/um/kernel/irq.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 - Cambridge Greys Ltd
4  * Copyright (C) 2011 - 2014 Cisco Systems Inc
5  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
7  *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
8  */
9 
10 #include <linux/cpumask.h>
11 #include <linux/hardirq.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/seq_file.h>
17 #include <linux/slab.h>
18 #include <as-layout.h>
19 #include <kern_util.h>
20 #include <os.h>
21 #include <irq_user.h>
22 #include <irq_kern.h>
23 #include <linux/time-internal.h>
24 
25 
26 /* When epoll triggers we do not know why it did so
27  * we can also have different IRQs for read and write.
28  * This is why we keep a small irq_reg array for each fd -
29  * one entry per IRQ type
30  */
31 struct irq_reg {
32 	void *id;
33 	int irq;
34 	/* it's cheaper to store this than to query it */
35 	int events;
36 	bool active;
37 	bool pending;
38 	bool wakeup;
39 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
40 	bool pending_event;
41 	void (*timetravel_handler)(int, int, void *,
42 				   struct time_travel_event *);
43 	struct time_travel_event event;
44 #endif
45 };
46 
47 struct irq_entry {
48 	struct list_head list;
49 	int fd;
50 	struct irq_reg reg[NUM_IRQ_TYPES];
51 	bool suspended;
52 	bool sigio_workaround;
53 };
54 
55 static DEFINE_SPINLOCK(irq_lock);
56 static LIST_HEAD(active_fds);
57 static DECLARE_BITMAP(irqs_allocated, UM_LAST_SIGNAL_IRQ);
58 static bool irqs_suspended;
59 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
60 static bool irqs_pending;
61 #endif
62 
63 static void irq_io_loop(struct irq_reg *irq, struct uml_pt_regs *regs)
64 {
65 /*
66  * irq->active guards against reentry
67  * irq->pending accumulates pending requests
68  * if pending is raised the irq_handler is re-run
69  * until pending is cleared
70  */
71 	if (irq->active) {
72 		irq->active = false;
73 
74 		do {
75 			irq->pending = false;
76 			do_IRQ(irq->irq, regs);
77 		} while (irq->pending);
78 
79 		irq->active = true;
80 	} else {
81 		irq->pending = true;
82 	}
83 }
84 
85 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
86 static void irq_event_handler(struct time_travel_event *ev)
87 {
88 	struct irq_reg *reg = container_of(ev, struct irq_reg, event);
89 
90 	/* do nothing if suspended; just cause a wakeup and mark as pending */
91 	if (irqs_suspended) {
92 		irqs_pending = true;
93 		reg->pending_event = true;
94 		return;
95 	}
96 
97 	generic_handle_irq(reg->irq);
98 }
99 
100 static bool irq_do_timetravel_handler(struct irq_entry *entry,
101 				      enum um_irq_type t)
102 {
103 	struct irq_reg *reg = &entry->reg[t];
104 
105 	if (!reg->timetravel_handler)
106 		return false;
107 
108 	/*
109 	 * Handle all messages - we might get multiple even while
110 	 * interrupts are already suspended, due to suspend order
111 	 * etc. Note that time_travel_add_irq_event() will not add
112 	 * an event twice, if it's pending already "first wins".
113 	 */
114 	reg->timetravel_handler(reg->irq, entry->fd, reg->id, &reg->event);
115 
116 	if (!reg->event.pending)
117 		return false;
118 
119 	return true;
120 }
121 
122 static void irq_do_pending_events(bool timetravel_handlers_only)
123 {
124 	struct irq_entry *entry;
125 
126 	if (!irqs_pending || timetravel_handlers_only)
127 		return;
128 
129 	irqs_pending = false;
130 
131 	list_for_each_entry(entry, &active_fds, list) {
132 		enum um_irq_type t;
133 
134 		for (t = 0; t < NUM_IRQ_TYPES; t++) {
135 			struct irq_reg *reg = &entry->reg[t];
136 
137 			/*
138 			 * Any timetravel_handler was invoked already, just
139 			 * directly run the IRQ.
140 			 */
141 			if (reg->pending_event) {
142 				irq_enter();
143 				generic_handle_irq(reg->irq);
144 				irq_exit();
145 				reg->pending_event = false;
146 			}
147 		}
148 	}
149 }
150 #else
151 static bool irq_do_timetravel_handler(struct irq_entry *entry,
152 				      enum um_irq_type t)
153 {
154 	return false;
155 }
156 
157 static void irq_do_pending_events(bool timetravel_handlers_only)
158 {
159 }
160 #endif
161 
162 static void sigio_reg_handler(int idx, struct irq_entry *entry, enum um_irq_type t,
163 			      struct uml_pt_regs *regs,
164 			      bool timetravel_handlers_only)
165 {
166 	struct irq_reg *reg = &entry->reg[t];
167 
168 	if (!reg->events)
169 		return;
170 
171 	if (os_epoll_triggered(idx, reg->events) <= 0)
172 		return;
173 
174 	if (irq_do_timetravel_handler(entry, t))
175 		return;
176 
177 	/*
178 	 * If we're called to only run time-travel handlers then don't
179 	 * actually proceed but mark sigio as pending (if applicable).
180 	 * For suspend/resume, timetravel_handlers_only may be true
181 	 * despite time-travel not being configured and used.
182 	 */
183 	if (timetravel_handlers_only) {
184 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
185 		reg->pending_event = true;
186 		irqs_pending = true;
187 		mark_sigio_pending();
188 #endif
189 		return;
190 	}
191 
192 	irq_io_loop(reg, regs);
193 }
194 
195 static void _sigio_handler(struct uml_pt_regs *regs,
196 			   bool timetravel_handlers_only)
197 {
198 	struct irq_entry *irq_entry;
199 	int n, i;
200 
201 	if (timetravel_handlers_only && !um_irq_timetravel_handler_used())
202 		return;
203 
204 	/* Flush out pending events that were ignored due to time-travel. */
205 	if (!irqs_suspended)
206 		irq_do_pending_events(timetravel_handlers_only);
207 
208 	while (1) {
209 		/* This is now lockless - epoll keeps back-referencesto the irqs
210 		 * which have trigger it so there is no need to walk the irq
211 		 * list and lock it every time. We avoid locking by turning off
212 		 * IO for a specific fd by executing os_del_epoll_fd(fd) before
213 		 * we do any changes to the actual data structures
214 		 */
215 		n = os_waiting_for_events_epoll();
216 
217 		if (n <= 0) {
218 			if (n == -EINTR)
219 				continue;
220 			else
221 				break;
222 		}
223 
224 		for (i = 0; i < n ; i++) {
225 			enum um_irq_type t;
226 
227 			irq_entry = os_epoll_get_data_pointer(i);
228 
229 			for (t = 0; t < NUM_IRQ_TYPES; t++)
230 				sigio_reg_handler(i, irq_entry, t, regs,
231 						  timetravel_handlers_only);
232 		}
233 	}
234 
235 	if (!timetravel_handlers_only)
236 		free_irqs();
237 }
238 
239 void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
240 {
241 	preempt_disable();
242 	_sigio_handler(regs, irqs_suspended);
243 	preempt_enable();
244 }
245 
246 static struct irq_entry *get_irq_entry_by_fd(int fd)
247 {
248 	struct irq_entry *walk;
249 
250 	lockdep_assert_held(&irq_lock);
251 
252 	list_for_each_entry(walk, &active_fds, list) {
253 		if (walk->fd == fd)
254 			return walk;
255 	}
256 
257 	return NULL;
258 }
259 
260 static void free_irq_entry(struct irq_entry *to_free, bool remove)
261 {
262 	if (!to_free)
263 		return;
264 
265 	if (remove)
266 		os_del_epoll_fd(to_free->fd);
267 	list_del(&to_free->list);
268 	kfree(to_free);
269 }
270 
271 static bool update_irq_entry(struct irq_entry *entry)
272 {
273 	enum um_irq_type i;
274 	int events = 0;
275 
276 	for (i = 0; i < NUM_IRQ_TYPES; i++)
277 		events |= entry->reg[i].events;
278 
279 	if (events) {
280 		/* will modify (instead of add) if needed */
281 		os_add_epoll_fd(events, entry->fd, entry);
282 		return true;
283 	}
284 
285 	os_del_epoll_fd(entry->fd);
286 	return false;
287 }
288 
289 static void update_or_free_irq_entry(struct irq_entry *entry)
290 {
291 	if (!update_irq_entry(entry))
292 		free_irq_entry(entry, false);
293 }
294 
295 static int activate_fd(int irq, int fd, enum um_irq_type type, void *dev_id,
296 		       void (*timetravel_handler)(int, int, void *,
297 						  struct time_travel_event *))
298 {
299 	struct irq_entry *irq_entry;
300 	int err, events = os_event_mask(type);
301 	unsigned long flags;
302 
303 	err = os_set_fd_async(fd);
304 	if (err < 0)
305 		goto out;
306 
307 	spin_lock_irqsave(&irq_lock, flags);
308 	irq_entry = get_irq_entry_by_fd(fd);
309 	if (irq_entry) {
310 		/* cannot register the same FD twice with the same type */
311 		if (WARN_ON(irq_entry->reg[type].events)) {
312 			err = -EALREADY;
313 			goto out_unlock;
314 		}
315 
316 		/* temporarily disable to avoid IRQ-side locking */
317 		os_del_epoll_fd(fd);
318 	} else {
319 		irq_entry = kzalloc(sizeof(*irq_entry), GFP_ATOMIC);
320 		if (!irq_entry) {
321 			err = -ENOMEM;
322 			goto out_unlock;
323 		}
324 		irq_entry->fd = fd;
325 		list_add_tail(&irq_entry->list, &active_fds);
326 		maybe_sigio_broken(fd);
327 	}
328 
329 	irq_entry->reg[type].id = dev_id;
330 	irq_entry->reg[type].irq = irq;
331 	irq_entry->reg[type].active = true;
332 	irq_entry->reg[type].events = events;
333 
334 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
335 	if (um_irq_timetravel_handler_used()) {
336 		irq_entry->reg[type].timetravel_handler = timetravel_handler;
337 		irq_entry->reg[type].event.fn = irq_event_handler;
338 	}
339 #endif
340 
341 	WARN_ON(!update_irq_entry(irq_entry));
342 	spin_unlock_irqrestore(&irq_lock, flags);
343 
344 	return 0;
345 out_unlock:
346 	spin_unlock_irqrestore(&irq_lock, flags);
347 out:
348 	return err;
349 }
350 
351 /*
352  * Remove the entry or entries for a specific FD, if you
353  * don't want to remove all the possible entries then use
354  * um_free_irq() or deactivate_fd() instead.
355  */
356 void free_irq_by_fd(int fd)
357 {
358 	struct irq_entry *to_free;
359 	unsigned long flags;
360 
361 	spin_lock_irqsave(&irq_lock, flags);
362 	to_free = get_irq_entry_by_fd(fd);
363 	free_irq_entry(to_free, true);
364 	spin_unlock_irqrestore(&irq_lock, flags);
365 }
366 EXPORT_SYMBOL(free_irq_by_fd);
367 
368 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
369 {
370 	struct irq_entry *entry;
371 	unsigned long flags;
372 
373 	spin_lock_irqsave(&irq_lock, flags);
374 	list_for_each_entry(entry, &active_fds, list) {
375 		enum um_irq_type i;
376 
377 		for (i = 0; i < NUM_IRQ_TYPES; i++) {
378 			struct irq_reg *reg = &entry->reg[i];
379 
380 			if (!reg->events)
381 				continue;
382 			if (reg->irq != irq)
383 				continue;
384 			if (reg->id != dev)
385 				continue;
386 
387 			os_del_epoll_fd(entry->fd);
388 			reg->events = 0;
389 			update_or_free_irq_entry(entry);
390 			goto out;
391 		}
392 	}
393 out:
394 	spin_unlock_irqrestore(&irq_lock, flags);
395 }
396 
397 void deactivate_fd(int fd, int irqnum)
398 {
399 	struct irq_entry *entry;
400 	unsigned long flags;
401 	enum um_irq_type i;
402 
403 	os_del_epoll_fd(fd);
404 
405 	spin_lock_irqsave(&irq_lock, flags);
406 	entry = get_irq_entry_by_fd(fd);
407 	if (!entry)
408 		goto out;
409 
410 	for (i = 0; i < NUM_IRQ_TYPES; i++) {
411 		if (!entry->reg[i].events)
412 			continue;
413 		if (entry->reg[i].irq == irqnum)
414 			entry->reg[i].events = 0;
415 	}
416 
417 	update_or_free_irq_entry(entry);
418 out:
419 	spin_unlock_irqrestore(&irq_lock, flags);
420 
421 	ignore_sigio_fd(fd);
422 }
423 EXPORT_SYMBOL(deactivate_fd);
424 
425 /*
426  * Called just before shutdown in order to provide a clean exec
427  * environment in case the system is rebooting.  No locking because
428  * that would cause a pointless shutdown hang if something hadn't
429  * released the lock.
430  */
431 int deactivate_all_fds(void)
432 {
433 	struct irq_entry *entry;
434 
435 	/* Stop IO. The IRQ loop has no lock so this is our
436 	 * only way of making sure we are safe to dispose
437 	 * of all IRQ handlers
438 	 */
439 	os_set_ioignore();
440 
441 	/* we can no longer call kfree() here so just deactivate */
442 	list_for_each_entry(entry, &active_fds, list)
443 		os_del_epoll_fd(entry->fd);
444 	os_close_epoll_fd();
445 	return 0;
446 }
447 
448 /*
449  * do_IRQ handles all normal device IRQs (the special
450  * SMP cross-CPU interrupts have their own specific
451  * handlers).
452  */
453 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
454 {
455 	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
456 	irq_enter();
457 	generic_handle_irq(irq);
458 	irq_exit();
459 	set_irq_regs(old_regs);
460 	return 1;
461 }
462 
463 void um_free_irq(int irq, void *dev)
464 {
465 	if (WARN(irq < 0 || irq > UM_LAST_SIGNAL_IRQ,
466 		 "freeing invalid irq %d", irq))
467 		return;
468 
469 	free_irq_by_irq_and_dev(irq, dev);
470 	free_irq(irq, dev);
471 	clear_bit(irq, irqs_allocated);
472 }
473 EXPORT_SYMBOL(um_free_irq);
474 
475 static int
476 _um_request_irq(int irq, int fd, enum um_irq_type type,
477 		irq_handler_t handler, unsigned long irqflags,
478 		const char *devname, void *dev_id,
479 		void (*timetravel_handler)(int, int, void *,
480 					   struct time_travel_event *))
481 {
482 	int err;
483 
484 	if (irq == UM_IRQ_ALLOC) {
485 		int i;
486 
487 		for (i = UM_FIRST_DYN_IRQ; i < NR_IRQS; i++) {
488 			if (!test_and_set_bit(i, irqs_allocated)) {
489 				irq = i;
490 				break;
491 			}
492 		}
493 	}
494 
495 	if (irq < 0)
496 		return -ENOSPC;
497 
498 	if (fd != -1) {
499 		err = activate_fd(irq, fd, type, dev_id, timetravel_handler);
500 		if (err)
501 			goto error;
502 	}
503 
504 	err = request_irq(irq, handler, irqflags, devname, dev_id);
505 	if (err < 0)
506 		goto error;
507 
508 	return irq;
509 error:
510 	clear_bit(irq, irqs_allocated);
511 	return err;
512 }
513 
514 int um_request_irq(int irq, int fd, enum um_irq_type type,
515 		   irq_handler_t handler, unsigned long irqflags,
516 		   const char *devname, void *dev_id)
517 {
518 	return _um_request_irq(irq, fd, type, handler, irqflags,
519 			       devname, dev_id, NULL);
520 }
521 EXPORT_SYMBOL(um_request_irq);
522 
523 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
524 int um_request_irq_tt(int irq, int fd, enum um_irq_type type,
525 		      irq_handler_t handler, unsigned long irqflags,
526 		      const char *devname, void *dev_id,
527 		      void (*timetravel_handler)(int, int, void *,
528 						 struct time_travel_event *))
529 {
530 	return _um_request_irq(irq, fd, type, handler, irqflags,
531 			       devname, dev_id, timetravel_handler);
532 }
533 EXPORT_SYMBOL(um_request_irq_tt);
534 
535 void sigio_run_timetravel_handlers(void)
536 {
537 	_sigio_handler(NULL, true);
538 }
539 #endif
540 
541 #ifdef CONFIG_PM_SLEEP
542 void um_irqs_suspend(void)
543 {
544 	struct irq_entry *entry;
545 	unsigned long flags;
546 
547 	irqs_suspended = true;
548 
549 	spin_lock_irqsave(&irq_lock, flags);
550 	list_for_each_entry(entry, &active_fds, list) {
551 		enum um_irq_type t;
552 		bool clear = true;
553 
554 		for (t = 0; t < NUM_IRQ_TYPES; t++) {
555 			if (!entry->reg[t].events)
556 				continue;
557 
558 			/*
559 			 * For the SIGIO_WRITE_IRQ, which is used to handle the
560 			 * SIGIO workaround thread, we need special handling:
561 			 * enable wake for it itself, but below we tell it about
562 			 * any FDs that should be suspended.
563 			 */
564 			if (entry->reg[t].wakeup ||
565 			    entry->reg[t].irq == SIGIO_WRITE_IRQ
566 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
567 			    || entry->reg[t].timetravel_handler
568 #endif
569 			    ) {
570 				clear = false;
571 				break;
572 			}
573 		}
574 
575 		if (clear) {
576 			entry->suspended = true;
577 			os_clear_fd_async(entry->fd);
578 			entry->sigio_workaround =
579 				!__ignore_sigio_fd(entry->fd);
580 		}
581 	}
582 	spin_unlock_irqrestore(&irq_lock, flags);
583 }
584 
585 void um_irqs_resume(void)
586 {
587 	struct irq_entry *entry;
588 	unsigned long flags;
589 
590 
591 	spin_lock_irqsave(&irq_lock, flags);
592 	list_for_each_entry(entry, &active_fds, list) {
593 		if (entry->suspended) {
594 			int err = os_set_fd_async(entry->fd);
595 
596 			WARN(err < 0, "os_set_fd_async returned %d\n", err);
597 			entry->suspended = false;
598 
599 			if (entry->sigio_workaround) {
600 				err = __add_sigio_fd(entry->fd);
601 				WARN(err < 0, "add_sigio_returned %d\n", err);
602 			}
603 		}
604 	}
605 	spin_unlock_irqrestore(&irq_lock, flags);
606 
607 	irqs_suspended = false;
608 	send_sigio_to_self();
609 }
610 
611 static int normal_irq_set_wake(struct irq_data *d, unsigned int on)
612 {
613 	struct irq_entry *entry;
614 	unsigned long flags;
615 
616 	spin_lock_irqsave(&irq_lock, flags);
617 	list_for_each_entry(entry, &active_fds, list) {
618 		enum um_irq_type t;
619 
620 		for (t = 0; t < NUM_IRQ_TYPES; t++) {
621 			if (!entry->reg[t].events)
622 				continue;
623 
624 			if (entry->reg[t].irq != d->irq)
625 				continue;
626 			entry->reg[t].wakeup = on;
627 			goto unlock;
628 		}
629 	}
630 unlock:
631 	spin_unlock_irqrestore(&irq_lock, flags);
632 	return 0;
633 }
634 #else
635 #define normal_irq_set_wake NULL
636 #endif
637 
638 /*
639  * irq_chip must define at least enable/disable and ack when
640  * the edge handler is used.
641  */
642 static void dummy(struct irq_data *d)
643 {
644 }
645 
646 /* This is used for everything other than the timer. */
647 static struct irq_chip normal_irq_type = {
648 	.name = "SIGIO",
649 	.irq_disable = dummy,
650 	.irq_enable = dummy,
651 	.irq_ack = dummy,
652 	.irq_mask = dummy,
653 	.irq_unmask = dummy,
654 	.irq_set_wake = normal_irq_set_wake,
655 };
656 
657 static struct irq_chip alarm_irq_type = {
658 	.name = "SIGALRM",
659 	.irq_disable = dummy,
660 	.irq_enable = dummy,
661 	.irq_ack = dummy,
662 	.irq_mask = dummy,
663 	.irq_unmask = dummy,
664 };
665 
666 void __init init_IRQ(void)
667 {
668 	int i;
669 
670 	irq_set_chip_and_handler(TIMER_IRQ, &alarm_irq_type, handle_edge_irq);
671 
672 	for (i = 1; i < UM_LAST_SIGNAL_IRQ; i++)
673 		irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
674 	/* Initialize EPOLL Loop */
675 	os_setup_epoll();
676 }
677 
678 /*
679  * IRQ stack entry and exit:
680  *
681  * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
682  * and switch over to the IRQ stack after some preparation.  We use
683  * sigaltstack to receive signals on a separate stack from the start.
684  * These two functions make sure the rest of the kernel won't be too
685  * upset by being on a different stack.  The IRQ stack has a
686  * thread_info structure at the bottom so that current et al continue
687  * to work.
688  *
689  * to_irq_stack copies the current task's thread_info to the IRQ stack
690  * thread_info and sets the tasks's stack to point to the IRQ stack.
691  *
692  * from_irq_stack copies the thread_info struct back (flags may have
693  * been modified) and resets the task's stack pointer.
694  *
695  * Tricky bits -
696  *
697  * What happens when two signals race each other?  UML doesn't block
698  * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
699  * could arrive while a previous one is still setting up the
700  * thread_info.
701  *
702  * There are three cases -
703  *     The first interrupt on the stack - sets up the thread_info and
704  * handles the interrupt
705  *     A nested interrupt interrupting the copying of the thread_info -
706  * can't handle the interrupt, as the stack is in an unknown state
707  *     A nested interrupt not interrupting the copying of the
708  * thread_info - doesn't do any setup, just handles the interrupt
709  *
710  * The first job is to figure out whether we interrupted stack setup.
711  * This is done by xchging the signal mask with thread_info->pending.
712  * If the value that comes back is zero, then there is no setup in
713  * progress, and the interrupt can be handled.  If the value is
714  * non-zero, then there is stack setup in progress.  In order to have
715  * the interrupt handled, we leave our signal in the mask, and it will
716  * be handled by the upper handler after it has set up the stack.
717  *
718  * Next is to figure out whether we are the outer handler or a nested
719  * one.  As part of setting up the stack, thread_info->real_thread is
720  * set to non-NULL (and is reset to NULL on exit).  This is the
721  * nesting indicator.  If it is non-NULL, then the stack is already
722  * set up and the handler can run.
723  */
724 
725 static unsigned long pending_mask;
726 
727 unsigned long to_irq_stack(unsigned long *mask_out)
728 {
729 	struct thread_info *ti;
730 	unsigned long mask, old;
731 	int nested;
732 
733 	mask = xchg(&pending_mask, *mask_out);
734 	if (mask != 0) {
735 		/*
736 		 * If any interrupts come in at this point, we want to
737 		 * make sure that their bits aren't lost by our
738 		 * putting our bit in.  So, this loop accumulates bits
739 		 * until xchg returns the same value that we put in.
740 		 * When that happens, there were no new interrupts,
741 		 * and pending_mask contains a bit for each interrupt
742 		 * that came in.
743 		 */
744 		old = *mask_out;
745 		do {
746 			old |= mask;
747 			mask = xchg(&pending_mask, old);
748 		} while (mask != old);
749 		return 1;
750 	}
751 
752 	ti = current_thread_info();
753 	nested = (ti->real_thread != NULL);
754 	if (!nested) {
755 		struct task_struct *task;
756 		struct thread_info *tti;
757 
758 		task = cpu_tasks[ti->cpu].task;
759 		tti = task_thread_info(task);
760 
761 		*ti = *tti;
762 		ti->real_thread = tti;
763 		task->stack = ti;
764 	}
765 
766 	mask = xchg(&pending_mask, 0);
767 	*mask_out |= mask | nested;
768 	return 0;
769 }
770 
771 unsigned long from_irq_stack(int nested)
772 {
773 	struct thread_info *ti, *to;
774 	unsigned long mask;
775 
776 	ti = current_thread_info();
777 
778 	pending_mask = 1;
779 
780 	to = ti->real_thread;
781 	current->stack = to;
782 	ti->real_thread = NULL;
783 	*to = *ti;
784 
785 	mask = xchg(&pending_mask, 0);
786 	return mask & ~1;
787 }
788 
789