xref: /linux/arch/um/kernel/irq.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 - Cambridge Greys Ltd
4  * Copyright (C) 2011 - 2014 Cisco Systems Inc
5  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
7  *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
8  */
9 
10 #include <linux/cpumask.h>
11 #include <linux/hardirq.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/seq_file.h>
17 #include <linux/slab.h>
18 #include <as-layout.h>
19 #include <kern_util.h>
20 #include <os.h>
21 #include <irq_user.h>
22 #include <irq_kern.h>
23 #include <linux/time-internal.h>
24 
25 
26 extern void free_irqs(void);
27 
28 /* When epoll triggers we do not know why it did so
29  * we can also have different IRQs for read and write.
30  * This is why we keep a small irq_reg array for each fd -
31  * one entry per IRQ type
32  */
33 struct irq_reg {
34 	void *id;
35 	int irq;
36 	/* it's cheaper to store this than to query it */
37 	int events;
38 	bool active;
39 	bool pending;
40 	bool wakeup;
41 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
42 	bool pending_on_resume;
43 	void (*timetravel_handler)(int, int, void *,
44 				   struct time_travel_event *);
45 	struct time_travel_event event;
46 #endif
47 };
48 
49 struct irq_entry {
50 	struct list_head list;
51 	int fd;
52 	struct irq_reg reg[NUM_IRQ_TYPES];
53 	bool suspended;
54 	bool sigio_workaround;
55 };
56 
57 static DEFINE_SPINLOCK(irq_lock);
58 static LIST_HEAD(active_fds);
59 static DECLARE_BITMAP(irqs_allocated, UM_LAST_SIGNAL_IRQ);
60 static bool irqs_suspended;
61 
62 static void irq_io_loop(struct irq_reg *irq, struct uml_pt_regs *regs)
63 {
64 /*
65  * irq->active guards against reentry
66  * irq->pending accumulates pending requests
67  * if pending is raised the irq_handler is re-run
68  * until pending is cleared
69  */
70 	if (irq->active) {
71 		irq->active = false;
72 
73 		do {
74 			irq->pending = false;
75 			do_IRQ(irq->irq, regs);
76 		} while (irq->pending);
77 
78 		irq->active = true;
79 	} else {
80 		irq->pending = true;
81 	}
82 }
83 
84 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
85 static void irq_event_handler(struct time_travel_event *ev)
86 {
87 	struct irq_reg *reg = container_of(ev, struct irq_reg, event);
88 
89 	/* do nothing if suspended - just to cause a wakeup */
90 	if (irqs_suspended)
91 		return;
92 
93 	generic_handle_irq(reg->irq);
94 }
95 
96 static bool irq_do_timetravel_handler(struct irq_entry *entry,
97 				      enum um_irq_type t)
98 {
99 	struct irq_reg *reg = &entry->reg[t];
100 
101 	if (!reg->timetravel_handler)
102 		return false;
103 
104 	/*
105 	 * Handle all messages - we might get multiple even while
106 	 * interrupts are already suspended, due to suspend order
107 	 * etc. Note that time_travel_add_irq_event() will not add
108 	 * an event twice, if it's pending already "first wins".
109 	 */
110 	reg->timetravel_handler(reg->irq, entry->fd, reg->id, &reg->event);
111 
112 	if (!reg->event.pending)
113 		return false;
114 
115 	if (irqs_suspended)
116 		reg->pending_on_resume = true;
117 	return true;
118 }
119 #else
120 static bool irq_do_timetravel_handler(struct irq_entry *entry,
121 				      enum um_irq_type t)
122 {
123 	return false;
124 }
125 #endif
126 
127 static void sigio_reg_handler(int idx, struct irq_entry *entry, enum um_irq_type t,
128 			      struct uml_pt_regs *regs,
129 			      bool timetravel_handlers_only)
130 {
131 	struct irq_reg *reg = &entry->reg[t];
132 
133 	if (!reg->events)
134 		return;
135 
136 	if (os_epoll_triggered(idx, reg->events) <= 0)
137 		return;
138 
139 	if (irq_do_timetravel_handler(entry, t))
140 		return;
141 
142 	/*
143 	 * If we're called to only run time-travel handlers then don't
144 	 * actually proceed but mark sigio as pending (if applicable).
145 	 * For suspend/resume, timetravel_handlers_only may be true
146 	 * despite time-travel not being configured and used.
147 	 */
148 	if (timetravel_handlers_only) {
149 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
150 		mark_sigio_pending();
151 #endif
152 		return;
153 	}
154 
155 	irq_io_loop(reg, regs);
156 }
157 
158 static void _sigio_handler(struct uml_pt_regs *regs,
159 			   bool timetravel_handlers_only)
160 {
161 	struct irq_entry *irq_entry;
162 	int n, i;
163 
164 	if (timetravel_handlers_only && !um_irq_timetravel_handler_used())
165 		return;
166 
167 	while (1) {
168 		/* This is now lockless - epoll keeps back-referencesto the irqs
169 		 * which have trigger it so there is no need to walk the irq
170 		 * list and lock it every time. We avoid locking by turning off
171 		 * IO for a specific fd by executing os_del_epoll_fd(fd) before
172 		 * we do any changes to the actual data structures
173 		 */
174 		n = os_waiting_for_events_epoll();
175 
176 		if (n <= 0) {
177 			if (n == -EINTR)
178 				continue;
179 			else
180 				break;
181 		}
182 
183 		for (i = 0; i < n ; i++) {
184 			enum um_irq_type t;
185 
186 			irq_entry = os_epoll_get_data_pointer(i);
187 
188 			for (t = 0; t < NUM_IRQ_TYPES; t++)
189 				sigio_reg_handler(i, irq_entry, t, regs,
190 						  timetravel_handlers_only);
191 		}
192 	}
193 
194 	if (!timetravel_handlers_only)
195 		free_irqs();
196 }
197 
198 void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
199 {
200 	_sigio_handler(regs, irqs_suspended);
201 }
202 
203 static struct irq_entry *get_irq_entry_by_fd(int fd)
204 {
205 	struct irq_entry *walk;
206 
207 	lockdep_assert_held(&irq_lock);
208 
209 	list_for_each_entry(walk, &active_fds, list) {
210 		if (walk->fd == fd)
211 			return walk;
212 	}
213 
214 	return NULL;
215 }
216 
217 static void free_irq_entry(struct irq_entry *to_free, bool remove)
218 {
219 	if (!to_free)
220 		return;
221 
222 	if (remove)
223 		os_del_epoll_fd(to_free->fd);
224 	list_del(&to_free->list);
225 	kfree(to_free);
226 }
227 
228 static bool update_irq_entry(struct irq_entry *entry)
229 {
230 	enum um_irq_type i;
231 	int events = 0;
232 
233 	for (i = 0; i < NUM_IRQ_TYPES; i++)
234 		events |= entry->reg[i].events;
235 
236 	if (events) {
237 		/* will modify (instead of add) if needed */
238 		os_add_epoll_fd(events, entry->fd, entry);
239 		return true;
240 	}
241 
242 	os_del_epoll_fd(entry->fd);
243 	return false;
244 }
245 
246 static void update_or_free_irq_entry(struct irq_entry *entry)
247 {
248 	if (!update_irq_entry(entry))
249 		free_irq_entry(entry, false);
250 }
251 
252 static int activate_fd(int irq, int fd, enum um_irq_type type, void *dev_id,
253 		       void (*timetravel_handler)(int, int, void *,
254 						  struct time_travel_event *))
255 {
256 	struct irq_entry *irq_entry;
257 	int err, events = os_event_mask(type);
258 	unsigned long flags;
259 
260 	err = os_set_fd_async(fd);
261 	if (err < 0)
262 		goto out;
263 
264 	spin_lock_irqsave(&irq_lock, flags);
265 	irq_entry = get_irq_entry_by_fd(fd);
266 	if (irq_entry) {
267 		/* cannot register the same FD twice with the same type */
268 		if (WARN_ON(irq_entry->reg[type].events)) {
269 			err = -EALREADY;
270 			goto out_unlock;
271 		}
272 
273 		/* temporarily disable to avoid IRQ-side locking */
274 		os_del_epoll_fd(fd);
275 	} else {
276 		irq_entry = kzalloc(sizeof(*irq_entry), GFP_ATOMIC);
277 		if (!irq_entry) {
278 			err = -ENOMEM;
279 			goto out_unlock;
280 		}
281 		irq_entry->fd = fd;
282 		list_add_tail(&irq_entry->list, &active_fds);
283 		maybe_sigio_broken(fd);
284 	}
285 
286 	irq_entry->reg[type].id = dev_id;
287 	irq_entry->reg[type].irq = irq;
288 	irq_entry->reg[type].active = true;
289 	irq_entry->reg[type].events = events;
290 
291 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
292 	if (um_irq_timetravel_handler_used()) {
293 		irq_entry->reg[type].timetravel_handler = timetravel_handler;
294 		irq_entry->reg[type].event.fn = irq_event_handler;
295 	}
296 #endif
297 
298 	WARN_ON(!update_irq_entry(irq_entry));
299 	spin_unlock_irqrestore(&irq_lock, flags);
300 
301 	return 0;
302 out_unlock:
303 	spin_unlock_irqrestore(&irq_lock, flags);
304 out:
305 	return err;
306 }
307 
308 /*
309  * Remove the entry or entries for a specific FD, if you
310  * don't want to remove all the possible entries then use
311  * um_free_irq() or deactivate_fd() instead.
312  */
313 void free_irq_by_fd(int fd)
314 {
315 	struct irq_entry *to_free;
316 	unsigned long flags;
317 
318 	spin_lock_irqsave(&irq_lock, flags);
319 	to_free = get_irq_entry_by_fd(fd);
320 	free_irq_entry(to_free, true);
321 	spin_unlock_irqrestore(&irq_lock, flags);
322 }
323 EXPORT_SYMBOL(free_irq_by_fd);
324 
325 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
326 {
327 	struct irq_entry *entry;
328 	unsigned long flags;
329 
330 	spin_lock_irqsave(&irq_lock, flags);
331 	list_for_each_entry(entry, &active_fds, list) {
332 		enum um_irq_type i;
333 
334 		for (i = 0; i < NUM_IRQ_TYPES; i++) {
335 			struct irq_reg *reg = &entry->reg[i];
336 
337 			if (!reg->events)
338 				continue;
339 			if (reg->irq != irq)
340 				continue;
341 			if (reg->id != dev)
342 				continue;
343 
344 			os_del_epoll_fd(entry->fd);
345 			reg->events = 0;
346 			update_or_free_irq_entry(entry);
347 			goto out;
348 		}
349 	}
350 out:
351 	spin_unlock_irqrestore(&irq_lock, flags);
352 }
353 
354 void deactivate_fd(int fd, int irqnum)
355 {
356 	struct irq_entry *entry;
357 	unsigned long flags;
358 	enum um_irq_type i;
359 
360 	os_del_epoll_fd(fd);
361 
362 	spin_lock_irqsave(&irq_lock, flags);
363 	entry = get_irq_entry_by_fd(fd);
364 	if (!entry)
365 		goto out;
366 
367 	for (i = 0; i < NUM_IRQ_TYPES; i++) {
368 		if (!entry->reg[i].events)
369 			continue;
370 		if (entry->reg[i].irq == irqnum)
371 			entry->reg[i].events = 0;
372 	}
373 
374 	update_or_free_irq_entry(entry);
375 out:
376 	spin_unlock_irqrestore(&irq_lock, flags);
377 
378 	ignore_sigio_fd(fd);
379 }
380 EXPORT_SYMBOL(deactivate_fd);
381 
382 /*
383  * Called just before shutdown in order to provide a clean exec
384  * environment in case the system is rebooting.  No locking because
385  * that would cause a pointless shutdown hang if something hadn't
386  * released the lock.
387  */
388 int deactivate_all_fds(void)
389 {
390 	struct irq_entry *entry;
391 
392 	/* Stop IO. The IRQ loop has no lock so this is our
393 	 * only way of making sure we are safe to dispose
394 	 * of all IRQ handlers
395 	 */
396 	os_set_ioignore();
397 
398 	/* we can no longer call kfree() here so just deactivate */
399 	list_for_each_entry(entry, &active_fds, list)
400 		os_del_epoll_fd(entry->fd);
401 	os_close_epoll_fd();
402 	return 0;
403 }
404 
405 /*
406  * do_IRQ handles all normal device IRQs (the special
407  * SMP cross-CPU interrupts have their own specific
408  * handlers).
409  */
410 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
411 {
412 	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
413 	irq_enter();
414 	generic_handle_irq(irq);
415 	irq_exit();
416 	set_irq_regs(old_regs);
417 	return 1;
418 }
419 
420 void um_free_irq(int irq, void *dev)
421 {
422 	if (WARN(irq < 0 || irq > UM_LAST_SIGNAL_IRQ,
423 		 "freeing invalid irq %d", irq))
424 		return;
425 
426 	free_irq_by_irq_and_dev(irq, dev);
427 	free_irq(irq, dev);
428 	clear_bit(irq, irqs_allocated);
429 }
430 EXPORT_SYMBOL(um_free_irq);
431 
432 static int
433 _um_request_irq(int irq, int fd, enum um_irq_type type,
434 		irq_handler_t handler, unsigned long irqflags,
435 		const char *devname, void *dev_id,
436 		void (*timetravel_handler)(int, int, void *,
437 					   struct time_travel_event *))
438 {
439 	int err;
440 
441 	if (irq == UM_IRQ_ALLOC) {
442 		int i;
443 
444 		for (i = UM_FIRST_DYN_IRQ; i < NR_IRQS; i++) {
445 			if (!test_and_set_bit(i, irqs_allocated)) {
446 				irq = i;
447 				break;
448 			}
449 		}
450 	}
451 
452 	if (irq < 0)
453 		return -ENOSPC;
454 
455 	if (fd != -1) {
456 		err = activate_fd(irq, fd, type, dev_id, timetravel_handler);
457 		if (err)
458 			goto error;
459 	}
460 
461 	err = request_irq(irq, handler, irqflags, devname, dev_id);
462 	if (err < 0)
463 		goto error;
464 
465 	return irq;
466 error:
467 	clear_bit(irq, irqs_allocated);
468 	return err;
469 }
470 
471 int um_request_irq(int irq, int fd, enum um_irq_type type,
472 		   irq_handler_t handler, unsigned long irqflags,
473 		   const char *devname, void *dev_id)
474 {
475 	return _um_request_irq(irq, fd, type, handler, irqflags,
476 			       devname, dev_id, NULL);
477 }
478 EXPORT_SYMBOL(um_request_irq);
479 
480 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
481 int um_request_irq_tt(int irq, int fd, enum um_irq_type type,
482 		      irq_handler_t handler, unsigned long irqflags,
483 		      const char *devname, void *dev_id,
484 		      void (*timetravel_handler)(int, int, void *,
485 						 struct time_travel_event *))
486 {
487 	return _um_request_irq(irq, fd, type, handler, irqflags,
488 			       devname, dev_id, timetravel_handler);
489 }
490 EXPORT_SYMBOL(um_request_irq_tt);
491 
492 void sigio_run_timetravel_handlers(void)
493 {
494 	_sigio_handler(NULL, true);
495 }
496 #endif
497 
498 #ifdef CONFIG_PM_SLEEP
499 void um_irqs_suspend(void)
500 {
501 	struct irq_entry *entry;
502 	unsigned long flags;
503 
504 	irqs_suspended = true;
505 
506 	spin_lock_irqsave(&irq_lock, flags);
507 	list_for_each_entry(entry, &active_fds, list) {
508 		enum um_irq_type t;
509 		bool clear = true;
510 
511 		for (t = 0; t < NUM_IRQ_TYPES; t++) {
512 			if (!entry->reg[t].events)
513 				continue;
514 
515 			/*
516 			 * For the SIGIO_WRITE_IRQ, which is used to handle the
517 			 * SIGIO workaround thread, we need special handling:
518 			 * enable wake for it itself, but below we tell it about
519 			 * any FDs that should be suspended.
520 			 */
521 			if (entry->reg[t].wakeup ||
522 			    entry->reg[t].irq == SIGIO_WRITE_IRQ
523 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
524 			    || entry->reg[t].timetravel_handler
525 #endif
526 			    ) {
527 				clear = false;
528 				break;
529 			}
530 		}
531 
532 		if (clear) {
533 			entry->suspended = true;
534 			os_clear_fd_async(entry->fd);
535 			entry->sigio_workaround =
536 				!__ignore_sigio_fd(entry->fd);
537 		}
538 	}
539 	spin_unlock_irqrestore(&irq_lock, flags);
540 }
541 
542 void um_irqs_resume(void)
543 {
544 	struct irq_entry *entry;
545 	unsigned long flags;
546 
547 
548 	local_irq_save(flags);
549 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
550 	/*
551 	 * We don't need to lock anything here since we're in resume
552 	 * and nothing else is running, but have disabled IRQs so we
553 	 * don't try anything else with the interrupt list from there.
554 	 */
555 	list_for_each_entry(entry, &active_fds, list) {
556 		enum um_irq_type t;
557 
558 		for (t = 0; t < NUM_IRQ_TYPES; t++) {
559 			struct irq_reg *reg = &entry->reg[t];
560 
561 			if (reg->pending_on_resume) {
562 				irq_enter();
563 				generic_handle_irq(reg->irq);
564 				irq_exit();
565 				reg->pending_on_resume = false;
566 			}
567 		}
568 	}
569 #endif
570 
571 	spin_lock(&irq_lock);
572 	list_for_each_entry(entry, &active_fds, list) {
573 		if (entry->suspended) {
574 			int err = os_set_fd_async(entry->fd);
575 
576 			WARN(err < 0, "os_set_fd_async returned %d\n", err);
577 			entry->suspended = false;
578 
579 			if (entry->sigio_workaround) {
580 				err = __add_sigio_fd(entry->fd);
581 				WARN(err < 0, "add_sigio_returned %d\n", err);
582 			}
583 		}
584 	}
585 	spin_unlock_irqrestore(&irq_lock, flags);
586 
587 	irqs_suspended = false;
588 	send_sigio_to_self();
589 }
590 
591 static int normal_irq_set_wake(struct irq_data *d, unsigned int on)
592 {
593 	struct irq_entry *entry;
594 	unsigned long flags;
595 
596 	spin_lock_irqsave(&irq_lock, flags);
597 	list_for_each_entry(entry, &active_fds, list) {
598 		enum um_irq_type t;
599 
600 		for (t = 0; t < NUM_IRQ_TYPES; t++) {
601 			if (!entry->reg[t].events)
602 				continue;
603 
604 			if (entry->reg[t].irq != d->irq)
605 				continue;
606 			entry->reg[t].wakeup = on;
607 			goto unlock;
608 		}
609 	}
610 unlock:
611 	spin_unlock_irqrestore(&irq_lock, flags);
612 	return 0;
613 }
614 #else
615 #define normal_irq_set_wake NULL
616 #endif
617 
618 /*
619  * irq_chip must define at least enable/disable and ack when
620  * the edge handler is used.
621  */
622 static void dummy(struct irq_data *d)
623 {
624 }
625 
626 /* This is used for everything other than the timer. */
627 static struct irq_chip normal_irq_type = {
628 	.name = "SIGIO",
629 	.irq_disable = dummy,
630 	.irq_enable = dummy,
631 	.irq_ack = dummy,
632 	.irq_mask = dummy,
633 	.irq_unmask = dummy,
634 	.irq_set_wake = normal_irq_set_wake,
635 };
636 
637 static struct irq_chip alarm_irq_type = {
638 	.name = "SIGALRM",
639 	.irq_disable = dummy,
640 	.irq_enable = dummy,
641 	.irq_ack = dummy,
642 	.irq_mask = dummy,
643 	.irq_unmask = dummy,
644 };
645 
646 void __init init_IRQ(void)
647 {
648 	int i;
649 
650 	irq_set_chip_and_handler(TIMER_IRQ, &alarm_irq_type, handle_edge_irq);
651 
652 	for (i = 1; i < UM_LAST_SIGNAL_IRQ; i++)
653 		irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
654 	/* Initialize EPOLL Loop */
655 	os_setup_epoll();
656 }
657 
658 /*
659  * IRQ stack entry and exit:
660  *
661  * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
662  * and switch over to the IRQ stack after some preparation.  We use
663  * sigaltstack to receive signals on a separate stack from the start.
664  * These two functions make sure the rest of the kernel won't be too
665  * upset by being on a different stack.  The IRQ stack has a
666  * thread_info structure at the bottom so that current et al continue
667  * to work.
668  *
669  * to_irq_stack copies the current task's thread_info to the IRQ stack
670  * thread_info and sets the tasks's stack to point to the IRQ stack.
671  *
672  * from_irq_stack copies the thread_info struct back (flags may have
673  * been modified) and resets the task's stack pointer.
674  *
675  * Tricky bits -
676  *
677  * What happens when two signals race each other?  UML doesn't block
678  * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
679  * could arrive while a previous one is still setting up the
680  * thread_info.
681  *
682  * There are three cases -
683  *     The first interrupt on the stack - sets up the thread_info and
684  * handles the interrupt
685  *     A nested interrupt interrupting the copying of the thread_info -
686  * can't handle the interrupt, as the stack is in an unknown state
687  *     A nested interrupt not interrupting the copying of the
688  * thread_info - doesn't do any setup, just handles the interrupt
689  *
690  * The first job is to figure out whether we interrupted stack setup.
691  * This is done by xchging the signal mask with thread_info->pending.
692  * If the value that comes back is zero, then there is no setup in
693  * progress, and the interrupt can be handled.  If the value is
694  * non-zero, then there is stack setup in progress.  In order to have
695  * the interrupt handled, we leave our signal in the mask, and it will
696  * be handled by the upper handler after it has set up the stack.
697  *
698  * Next is to figure out whether we are the outer handler or a nested
699  * one.  As part of setting up the stack, thread_info->real_thread is
700  * set to non-NULL (and is reset to NULL on exit).  This is the
701  * nesting indicator.  If it is non-NULL, then the stack is already
702  * set up and the handler can run.
703  */
704 
705 static unsigned long pending_mask;
706 
707 unsigned long to_irq_stack(unsigned long *mask_out)
708 {
709 	struct thread_info *ti;
710 	unsigned long mask, old;
711 	int nested;
712 
713 	mask = xchg(&pending_mask, *mask_out);
714 	if (mask != 0) {
715 		/*
716 		 * If any interrupts come in at this point, we want to
717 		 * make sure that their bits aren't lost by our
718 		 * putting our bit in.  So, this loop accumulates bits
719 		 * until xchg returns the same value that we put in.
720 		 * When that happens, there were no new interrupts,
721 		 * and pending_mask contains a bit for each interrupt
722 		 * that came in.
723 		 */
724 		old = *mask_out;
725 		do {
726 			old |= mask;
727 			mask = xchg(&pending_mask, old);
728 		} while (mask != old);
729 		return 1;
730 	}
731 
732 	ti = current_thread_info();
733 	nested = (ti->real_thread != NULL);
734 	if (!nested) {
735 		struct task_struct *task;
736 		struct thread_info *tti;
737 
738 		task = cpu_tasks[ti->cpu].task;
739 		tti = task_thread_info(task);
740 
741 		*ti = *tti;
742 		ti->real_thread = tti;
743 		task->stack = ti;
744 	}
745 
746 	mask = xchg(&pending_mask, 0);
747 	*mask_out |= mask | nested;
748 	return 0;
749 }
750 
751 unsigned long from_irq_stack(int nested)
752 {
753 	struct thread_info *ti, *to;
754 	unsigned long mask;
755 
756 	ti = current_thread_info();
757 
758 	pending_mask = 1;
759 
760 	to = ti->real_thread;
761 	current->stack = to;
762 	ti->real_thread = NULL;
763 	*to = *ti;
764 
765 	mask = xchg(&pending_mask, 0);
766 	return mask & ~1;
767 }
768 
769