1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Copyright 2003 PathScale, Inc. 4 * Derived from include/asm-i386/pgtable.h 5 * Licensed under the GPL 6 */ 7 8 #ifndef __UM_PGTABLE_H 9 #define __UM_PGTABLE_H 10 11 #include <asm/fixmap.h> 12 13 #define _PAGE_PRESENT 0x001 14 #define _PAGE_NEWPAGE 0x002 15 #define _PAGE_NEWPROT 0x004 16 #define _PAGE_RW 0x020 17 #define _PAGE_USER 0x040 18 #define _PAGE_ACCESSED 0x080 19 #define _PAGE_DIRTY 0x100 20 /* If _PAGE_PRESENT is clear, we use these: */ 21 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE; 22 pte_present gives true */ 23 24 #ifdef CONFIG_3_LEVEL_PGTABLES 25 #include <asm/pgtable-3level.h> 26 #else 27 #include <asm/pgtable-2level.h> 28 #endif 29 30 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 31 32 /* zero page used for uninitialized stuff */ 33 extern unsigned long *empty_zero_page; 34 35 #define pgtable_cache_init() do ; while (0) 36 37 /* Just any arbitrary offset to the start of the vmalloc VM area: the 38 * current 8MB value just means that there will be a 8MB "hole" after the 39 * physical memory until the kernel virtual memory starts. That means that 40 * any out-of-bounds memory accesses will hopefully be caught. 41 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 42 * area for the same reason. ;) 43 */ 44 45 extern unsigned long end_iomem; 46 47 #define VMALLOC_OFFSET (__va_space) 48 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 49 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK) 50 #define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) 51 #define MODULES_VADDR VMALLOC_START 52 #define MODULES_END VMALLOC_END 53 #define MODULES_LEN (MODULES_VADDR - MODULES_END) 54 55 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) 56 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) 57 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 58 #define __PAGE_KERNEL_EXEC \ 59 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 60 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 61 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) 62 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 63 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 64 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 65 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) 66 67 /* 68 * The i386 can't do page protection for execute, and considers that the same 69 * are read. 70 * Also, write permissions imply read permissions. This is the closest we can 71 * get.. 72 */ 73 #define __P000 PAGE_NONE 74 #define __P001 PAGE_READONLY 75 #define __P010 PAGE_COPY 76 #define __P011 PAGE_COPY 77 #define __P100 PAGE_READONLY 78 #define __P101 PAGE_READONLY 79 #define __P110 PAGE_COPY 80 #define __P111 PAGE_COPY 81 82 #define __S000 PAGE_NONE 83 #define __S001 PAGE_READONLY 84 #define __S010 PAGE_SHARED 85 #define __S011 PAGE_SHARED 86 #define __S100 PAGE_READONLY 87 #define __S101 PAGE_READONLY 88 #define __S110 PAGE_SHARED 89 #define __S111 PAGE_SHARED 90 91 /* 92 * ZERO_PAGE is a global shared page that is always zero: used 93 * for zero-mapped memory areas etc.. 94 */ 95 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) 96 97 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE)) 98 99 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE)) 100 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 101 102 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 103 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0) 104 105 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE) 106 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE) 107 108 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE) 109 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE) 110 111 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK) 112 113 #define pte_page(x) pfn_to_page(pte_pfn(x)) 114 115 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE)) 116 117 /* 118 * ================================= 119 * Flags checking section. 120 * ================================= 121 */ 122 123 static inline int pte_none(pte_t pte) 124 { 125 return pte_is_zero(pte); 126 } 127 128 /* 129 * The following only work if pte_present() is true. 130 * Undefined behaviour if not.. 131 */ 132 static inline int pte_read(pte_t pte) 133 { 134 return((pte_get_bits(pte, _PAGE_USER)) && 135 !(pte_get_bits(pte, _PAGE_PROTNONE))); 136 } 137 138 static inline int pte_exec(pte_t pte){ 139 return((pte_get_bits(pte, _PAGE_USER)) && 140 !(pte_get_bits(pte, _PAGE_PROTNONE))); 141 } 142 143 static inline int pte_write(pte_t pte) 144 { 145 return((pte_get_bits(pte, _PAGE_RW)) && 146 !(pte_get_bits(pte, _PAGE_PROTNONE))); 147 } 148 149 static inline int pte_dirty(pte_t pte) 150 { 151 return pte_get_bits(pte, _PAGE_DIRTY); 152 } 153 154 static inline int pte_young(pte_t pte) 155 { 156 return pte_get_bits(pte, _PAGE_ACCESSED); 157 } 158 159 static inline int pte_newpage(pte_t pte) 160 { 161 return pte_get_bits(pte, _PAGE_NEWPAGE); 162 } 163 164 static inline int pte_newprot(pte_t pte) 165 { 166 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT))); 167 } 168 169 static inline int pte_special(pte_t pte) 170 { 171 return 0; 172 } 173 174 /* 175 * ================================= 176 * Flags setting section. 177 * ================================= 178 */ 179 180 static inline pte_t pte_mknewprot(pte_t pte) 181 { 182 pte_set_bits(pte, _PAGE_NEWPROT); 183 return(pte); 184 } 185 186 static inline pte_t pte_mkclean(pte_t pte) 187 { 188 pte_clear_bits(pte, _PAGE_DIRTY); 189 return(pte); 190 } 191 192 static inline pte_t pte_mkold(pte_t pte) 193 { 194 pte_clear_bits(pte, _PAGE_ACCESSED); 195 return(pte); 196 } 197 198 static inline pte_t pte_wrprotect(pte_t pte) 199 { 200 if (likely(pte_get_bits(pte, _PAGE_RW))) 201 pte_clear_bits(pte, _PAGE_RW); 202 else 203 return pte; 204 return(pte_mknewprot(pte)); 205 } 206 207 static inline pte_t pte_mkread(pte_t pte) 208 { 209 if (unlikely(pte_get_bits(pte, _PAGE_USER))) 210 return pte; 211 pte_set_bits(pte, _PAGE_USER); 212 return(pte_mknewprot(pte)); 213 } 214 215 static inline pte_t pte_mkdirty(pte_t pte) 216 { 217 pte_set_bits(pte, _PAGE_DIRTY); 218 return(pte); 219 } 220 221 static inline pte_t pte_mkyoung(pte_t pte) 222 { 223 pte_set_bits(pte, _PAGE_ACCESSED); 224 return(pte); 225 } 226 227 static inline pte_t pte_mkwrite(pte_t pte) 228 { 229 if (unlikely(pte_get_bits(pte, _PAGE_RW))) 230 return pte; 231 pte_set_bits(pte, _PAGE_RW); 232 return(pte_mknewprot(pte)); 233 } 234 235 static inline pte_t pte_mkuptodate(pte_t pte) 236 { 237 pte_clear_bits(pte, _PAGE_NEWPAGE); 238 if(pte_present(pte)) 239 pte_clear_bits(pte, _PAGE_NEWPROT); 240 return(pte); 241 } 242 243 static inline pte_t pte_mknewpage(pte_t pte) 244 { 245 pte_set_bits(pte, _PAGE_NEWPAGE); 246 return(pte); 247 } 248 249 static inline pte_t pte_mkspecial(pte_t pte) 250 { 251 return(pte); 252 } 253 254 static inline void set_pte(pte_t *pteptr, pte_t pteval) 255 { 256 pte_copy(*pteptr, pteval); 257 258 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so 259 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to 260 * mapped pages. 261 */ 262 263 *pteptr = pte_mknewpage(*pteptr); 264 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr); 265 } 266 267 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 268 pte_t *pteptr, pte_t pteval) 269 { 270 set_pte(pteptr, pteval); 271 } 272 273 #define __HAVE_ARCH_PTE_SAME 274 static inline int pte_same(pte_t pte_a, pte_t pte_b) 275 { 276 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE); 277 } 278 279 /* 280 * Conversion functions: convert a page and protection to a page entry, 281 * and a page entry and page directory to the page they refer to. 282 */ 283 284 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys)) 285 #define __virt_to_page(virt) phys_to_page(__pa(virt)) 286 #define page_to_phys(page) pfn_to_phys(page_to_pfn(page)) 287 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr) 288 289 #define mk_pte(page, pgprot) \ 290 ({ pte_t pte; \ 291 \ 292 pte_set_val(pte, page_to_phys(page), (pgprot)); \ 293 if (pte_present(pte)) \ 294 pte_mknewprot(pte_mknewpage(pte)); \ 295 pte;}) 296 297 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 298 { 299 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot); 300 return pte; 301 } 302 303 /* 304 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 305 * 306 * this macro returns the index of the entry in the pgd page which would 307 * control the given virtual address 308 */ 309 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 310 311 /* 312 * pgd_offset() returns a (pgd_t *) 313 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 314 */ 315 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 316 317 /* 318 * a shortcut which implies the use of the kernel's pgd, instead 319 * of a process's 320 */ 321 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 322 323 /* 324 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 325 * 326 * this macro returns the index of the entry in the pmd page which would 327 * control the given virtual address 328 */ 329 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 330 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 331 332 #define pmd_page_vaddr(pmd) \ 333 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 334 335 /* 336 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 337 * 338 * this macro returns the index of the entry in the pte page which would 339 * control the given virtual address 340 */ 341 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 342 #define pte_offset_kernel(dir, address) \ 343 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) 344 #define pte_offset_map(dir, address) \ 345 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) 346 #define pte_unmap(pte) do { } while (0) 347 348 struct mm_struct; 349 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr); 350 351 #define update_mmu_cache(vma,address,ptep) do ; while (0) 352 353 /* Encode and de-code a swap entry */ 354 #define __swp_type(x) (((x).val >> 5) & 0x1f) 355 #define __swp_offset(x) ((x).val >> 11) 356 357 #define __swp_entry(type, offset) \ 358 ((swp_entry_t) { ((type) << 5) | ((offset) << 11) }) 359 #define __pte_to_swp_entry(pte) \ 360 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) }) 361 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 362 363 #define kern_addr_valid(addr) (1) 364 365 #include <asm-generic/pgtable.h> 366 367 /* Clear a kernel PTE and flush it from the TLB */ 368 #define kpte_clear_flush(ptep, vaddr) \ 369 do { \ 370 pte_clear(&init_mm, (vaddr), (ptep)); \ 371 __flush_tlb_one((vaddr)); \ 372 } while (0) 373 374 #endif 375