xref: /linux/arch/um/include/asm/pgtable.h (revision 7681a4f58fb9c338d6dfe1181607f84c793d77de)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  * Copyright 2003 PathScale, Inc.
5  * Derived from include/asm-i386/pgtable.h
6  */
7 
8 #ifndef __UM_PGTABLE_H
9 #define __UM_PGTABLE_H
10 
11 #include <asm/fixmap.h>
12 
13 #define _PAGE_PRESENT	0x001
14 #define _PAGE_NEWPAGE	0x002
15 #define _PAGE_NEWPROT	0x004
16 #define _PAGE_RW	0x020
17 #define _PAGE_USER	0x040
18 #define _PAGE_ACCESSED	0x080
19 #define _PAGE_DIRTY	0x100
20 /* If _PAGE_PRESENT is clear, we use these: */
21 #define _PAGE_PROTNONE	0x010	/* if the user mapped it with PROT_NONE;
22 				   pte_present gives true */
23 
24 #ifdef CONFIG_3_LEVEL_PGTABLES
25 #include <asm/pgtable-3level.h>
26 #else
27 #include <asm/pgtable-2level.h>
28 #endif
29 
30 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
31 
32 /* zero page used for uninitialized stuff */
33 extern unsigned long *empty_zero_page;
34 
35 /* Just any arbitrary offset to the start of the vmalloc VM area: the
36  * current 8MB value just means that there will be a 8MB "hole" after the
37  * physical memory until the kernel virtual memory starts.  That means that
38  * any out-of-bounds memory accesses will hopefully be caught.
39  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
40  * area for the same reason. ;)
41  */
42 
43 extern unsigned long end_iomem;
44 
45 #define VMALLOC_OFFSET	(__va_space)
46 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
47 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
48 #define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
49 #define MODULES_VADDR	VMALLOC_START
50 #define MODULES_END	VMALLOC_END
51 #define MODULES_LEN	(MODULES_VADDR - MODULES_END)
52 
53 #define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
54 #define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
55 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
56 #define __PAGE_KERNEL_EXEC                                              \
57 	 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
58 #define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
59 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
60 #define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
61 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
62 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
63 #define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
64 
65 /*
66  * The i386 can't do page protection for execute, and considers that the same
67  * are read.
68  * Also, write permissions imply read permissions. This is the closest we can
69  * get..
70  */
71 
72 /*
73  * ZERO_PAGE is a global shared page that is always zero: used
74  * for zero-mapped memory areas etc..
75  */
76 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
77 
78 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
79 
80 #define pmd_none(x)	(!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
81 #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
82 
83 #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
84 #define pmd_clear(xp)	do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
85 
86 #define pmd_newpage(x)  (pmd_val(x) & _PAGE_NEWPAGE)
87 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
88 
89 #define pud_newpage(x)  (pud_val(x) & _PAGE_NEWPAGE)
90 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
91 
92 #define p4d_newpage(x)  (p4d_val(x) & _PAGE_NEWPAGE)
93 #define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE)
94 
95 #define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
96 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
97 
98 #define pte_page(x) pfn_to_page(pte_pfn(x))
99 
100 #define pte_present(x)	pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
101 
102 /*
103  * =================================
104  * Flags checking section.
105  * =================================
106  */
107 
108 static inline int pte_none(pte_t pte)
109 {
110 	return pte_is_zero(pte);
111 }
112 
113 /*
114  * The following only work if pte_present() is true.
115  * Undefined behaviour if not..
116  */
117 static inline int pte_read(pte_t pte)
118 {
119 	return((pte_get_bits(pte, _PAGE_USER)) &&
120 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
121 }
122 
123 static inline int pte_exec(pte_t pte){
124 	return((pte_get_bits(pte, _PAGE_USER)) &&
125 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
126 }
127 
128 static inline int pte_write(pte_t pte)
129 {
130 	return((pte_get_bits(pte, _PAGE_RW)) &&
131 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
132 }
133 
134 static inline int pte_dirty(pte_t pte)
135 {
136 	return pte_get_bits(pte, _PAGE_DIRTY);
137 }
138 
139 static inline int pte_young(pte_t pte)
140 {
141 	return pte_get_bits(pte, _PAGE_ACCESSED);
142 }
143 
144 static inline int pte_newpage(pte_t pte)
145 {
146 	return pte_get_bits(pte, _PAGE_NEWPAGE);
147 }
148 
149 static inline int pte_newprot(pte_t pte)
150 {
151 	return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
152 }
153 
154 /*
155  * =================================
156  * Flags setting section.
157  * =================================
158  */
159 
160 static inline pte_t pte_mknewprot(pte_t pte)
161 {
162 	pte_set_bits(pte, _PAGE_NEWPROT);
163 	return(pte);
164 }
165 
166 static inline pte_t pte_mkclean(pte_t pte)
167 {
168 	pte_clear_bits(pte, _PAGE_DIRTY);
169 	return(pte);
170 }
171 
172 static inline pte_t pte_mkold(pte_t pte)
173 {
174 	pte_clear_bits(pte, _PAGE_ACCESSED);
175 	return(pte);
176 }
177 
178 static inline pte_t pte_wrprotect(pte_t pte)
179 {
180 	if (likely(pte_get_bits(pte, _PAGE_RW)))
181 		pte_clear_bits(pte, _PAGE_RW);
182 	else
183 		return pte;
184 	return(pte_mknewprot(pte));
185 }
186 
187 static inline pte_t pte_mkread(pte_t pte)
188 {
189 	if (unlikely(pte_get_bits(pte, _PAGE_USER)))
190 		return pte;
191 	pte_set_bits(pte, _PAGE_USER);
192 	return(pte_mknewprot(pte));
193 }
194 
195 static inline pte_t pte_mkdirty(pte_t pte)
196 {
197 	pte_set_bits(pte, _PAGE_DIRTY);
198 	return(pte);
199 }
200 
201 static inline pte_t pte_mkyoung(pte_t pte)
202 {
203 	pte_set_bits(pte, _PAGE_ACCESSED);
204 	return(pte);
205 }
206 
207 static inline pte_t pte_mkwrite(pte_t pte)
208 {
209 	if (unlikely(pte_get_bits(pte,  _PAGE_RW)))
210 		return pte;
211 	pte_set_bits(pte, _PAGE_RW);
212 	return(pte_mknewprot(pte));
213 }
214 
215 static inline pte_t pte_mkuptodate(pte_t pte)
216 {
217 	pte_clear_bits(pte, _PAGE_NEWPAGE);
218 	if(pte_present(pte))
219 		pte_clear_bits(pte, _PAGE_NEWPROT);
220 	return(pte);
221 }
222 
223 static inline pte_t pte_mknewpage(pte_t pte)
224 {
225 	pte_set_bits(pte, _PAGE_NEWPAGE);
226 	return(pte);
227 }
228 
229 static inline void set_pte(pte_t *pteptr, pte_t pteval)
230 {
231 	pte_copy(*pteptr, pteval);
232 
233 	/* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
234 	 * fix_range knows to unmap it.  _PAGE_NEWPROT is specific to
235 	 * mapped pages.
236 	 */
237 
238 	*pteptr = pte_mknewpage(*pteptr);
239 	if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
240 }
241 
242 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
243 			      pte_t *pteptr, pte_t pteval)
244 {
245 	set_pte(pteptr, pteval);
246 }
247 
248 #define __HAVE_ARCH_PTE_SAME
249 static inline int pte_same(pte_t pte_a, pte_t pte_b)
250 {
251 	return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
252 }
253 
254 /*
255  * Conversion functions: convert a page and protection to a page entry,
256  * and a page entry and page directory to the page they refer to.
257  */
258 
259 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
260 #define __virt_to_page(virt) phys_to_page(__pa(virt))
261 #define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
262 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
263 
264 #define mk_pte(page, pgprot) \
265 	({ pte_t pte;					\
266 							\
267 	pte_set_val(pte, page_to_phys(page), (pgprot));	\
268 	if (pte_present(pte))				\
269 		pte_mknewprot(pte_mknewpage(pte));	\
270 	pte;})
271 
272 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
273 {
274 	pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
275 	return pte;
276 }
277 
278 /*
279  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
280  *
281  * this macro returns the index of the entry in the pmd page which would
282  * control the given virtual address
283  */
284 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
285 
286 struct mm_struct;
287 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
288 
289 #define update_mmu_cache(vma,address,ptep) do {} while (0)
290 
291 /* Encode and de-code a swap entry */
292 #define __swp_type(x)			(((x).val >> 5) & 0x1f)
293 #define __swp_offset(x)			((x).val >> 11)
294 
295 #define __swp_entry(type, offset) \
296 	((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
297 #define __pte_to_swp_entry(pte) \
298 	((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
299 #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
300 
301 /* Clear a kernel PTE and flush it from the TLB */
302 #define kpte_clear_flush(ptep, vaddr)		\
303 do {						\
304 	pte_clear(&init_mm, (vaddr), (ptep));	\
305 	__flush_tlb_one((vaddr));		\
306 } while (0)
307 
308 #endif
309