xref: /linux/arch/um/include/asm/pgtable.h (revision 6af91e3d2cfc8bb579b1aa2d22cd91f8c34acdf6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  * Copyright 2003 PathScale, Inc.
5  * Derived from include/asm-i386/pgtable.h
6  */
7 
8 #ifndef __UM_PGTABLE_H
9 #define __UM_PGTABLE_H
10 
11 #include <asm/fixmap.h>
12 
13 #define _PAGE_PRESENT	0x001
14 #define _PAGE_NEWPAGE	0x002
15 #define _PAGE_NEWPROT	0x004
16 #define _PAGE_RW	0x020
17 #define _PAGE_USER	0x040
18 #define _PAGE_ACCESSED	0x080
19 #define _PAGE_DIRTY	0x100
20 /* If _PAGE_PRESENT is clear, we use these: */
21 #define _PAGE_PROTNONE	0x010	/* if the user mapped it with PROT_NONE;
22 				   pte_present gives true */
23 
24 /* We borrow bit 10 to store the exclusive marker in swap PTEs. */
25 #define _PAGE_SWP_EXCLUSIVE	0x400
26 
27 #ifdef CONFIG_3_LEVEL_PGTABLES
28 #include <asm/pgtable-3level.h>
29 #else
30 #include <asm/pgtable-2level.h>
31 #endif
32 
33 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
34 
35 /* zero page used for uninitialized stuff */
36 extern unsigned long *empty_zero_page;
37 
38 /* Just any arbitrary offset to the start of the vmalloc VM area: the
39  * current 8MB value just means that there will be a 8MB "hole" after the
40  * physical memory until the kernel virtual memory starts.  That means that
41  * any out-of-bounds memory accesses will hopefully be caught.
42  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43  * area for the same reason. ;)
44  */
45 
46 extern unsigned long end_iomem;
47 
48 #define VMALLOC_OFFSET	(__va_space)
49 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
50 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
51 #define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
52 #define MODULES_VADDR	VMALLOC_START
53 #define MODULES_END	VMALLOC_END
54 #define MODULES_LEN	(MODULES_VADDR - MODULES_END)
55 
56 #define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
57 #define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
58 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
59 #define __PAGE_KERNEL_EXEC                                              \
60 	 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
61 #define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
62 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
63 #define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
64 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
65 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
66 #define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
67 
68 /*
69  * The i386 can't do page protection for execute, and considers that the same
70  * are read.
71  * Also, write permissions imply read permissions. This is the closest we can
72  * get..
73  */
74 
75 /*
76  * ZERO_PAGE is a global shared page that is always zero: used
77  * for zero-mapped memory areas etc..
78  */
79 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
80 
81 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
82 
83 #define pmd_none(x)	(!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
84 #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
85 
86 #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
87 #define pmd_clear(xp)	do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
88 
89 #define pmd_newpage(x)  (pmd_val(x) & _PAGE_NEWPAGE)
90 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
91 
92 #define pud_newpage(x)  (pud_val(x) & _PAGE_NEWPAGE)
93 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
94 
95 #define p4d_newpage(x)  (p4d_val(x) & _PAGE_NEWPAGE)
96 #define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE)
97 
98 #define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
99 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
100 
101 #define pte_page(x) pfn_to_page(pte_pfn(x))
102 
103 #define pte_present(x)	pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
104 
105 /*
106  * =================================
107  * Flags checking section.
108  * =================================
109  */
110 
111 static inline int pte_none(pte_t pte)
112 {
113 	return pte_is_zero(pte);
114 }
115 
116 /*
117  * The following only work if pte_present() is true.
118  * Undefined behaviour if not..
119  */
120 static inline int pte_read(pte_t pte)
121 {
122 	return((pte_get_bits(pte, _PAGE_USER)) &&
123 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
124 }
125 
126 static inline int pte_exec(pte_t pte){
127 	return((pte_get_bits(pte, _PAGE_USER)) &&
128 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
129 }
130 
131 static inline int pte_write(pte_t pte)
132 {
133 	return((pte_get_bits(pte, _PAGE_RW)) &&
134 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
135 }
136 
137 static inline int pte_dirty(pte_t pte)
138 {
139 	return pte_get_bits(pte, _PAGE_DIRTY);
140 }
141 
142 static inline int pte_young(pte_t pte)
143 {
144 	return pte_get_bits(pte, _PAGE_ACCESSED);
145 }
146 
147 static inline int pte_newpage(pte_t pte)
148 {
149 	return pte_get_bits(pte, _PAGE_NEWPAGE);
150 }
151 
152 static inline int pte_newprot(pte_t pte)
153 {
154 	return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
155 }
156 
157 /*
158  * =================================
159  * Flags setting section.
160  * =================================
161  */
162 
163 static inline pte_t pte_mknewprot(pte_t pte)
164 {
165 	pte_set_bits(pte, _PAGE_NEWPROT);
166 	return(pte);
167 }
168 
169 static inline pte_t pte_mkclean(pte_t pte)
170 {
171 	pte_clear_bits(pte, _PAGE_DIRTY);
172 	return(pte);
173 }
174 
175 static inline pte_t pte_mkold(pte_t pte)
176 {
177 	pte_clear_bits(pte, _PAGE_ACCESSED);
178 	return(pte);
179 }
180 
181 static inline pte_t pte_wrprotect(pte_t pte)
182 {
183 	if (likely(pte_get_bits(pte, _PAGE_RW)))
184 		pte_clear_bits(pte, _PAGE_RW);
185 	else
186 		return pte;
187 	return(pte_mknewprot(pte));
188 }
189 
190 static inline pte_t pte_mkread(pte_t pte)
191 {
192 	if (unlikely(pte_get_bits(pte, _PAGE_USER)))
193 		return pte;
194 	pte_set_bits(pte, _PAGE_USER);
195 	return(pte_mknewprot(pte));
196 }
197 
198 static inline pte_t pte_mkdirty(pte_t pte)
199 {
200 	pte_set_bits(pte, _PAGE_DIRTY);
201 	return(pte);
202 }
203 
204 static inline pte_t pte_mkyoung(pte_t pte)
205 {
206 	pte_set_bits(pte, _PAGE_ACCESSED);
207 	return(pte);
208 }
209 
210 static inline pte_t pte_mkwrite_novma(pte_t pte)
211 {
212 	if (unlikely(pte_get_bits(pte,  _PAGE_RW)))
213 		return pte;
214 	pte_set_bits(pte, _PAGE_RW);
215 	return(pte_mknewprot(pte));
216 }
217 
218 static inline pte_t pte_mkuptodate(pte_t pte)
219 {
220 	pte_clear_bits(pte, _PAGE_NEWPAGE);
221 	if(pte_present(pte))
222 		pte_clear_bits(pte, _PAGE_NEWPROT);
223 	return(pte);
224 }
225 
226 static inline pte_t pte_mknewpage(pte_t pte)
227 {
228 	pte_set_bits(pte, _PAGE_NEWPAGE);
229 	return(pte);
230 }
231 
232 static inline void set_pte(pte_t *pteptr, pte_t pteval)
233 {
234 	pte_copy(*pteptr, pteval);
235 
236 	/* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
237 	 * fix_range knows to unmap it.  _PAGE_NEWPROT is specific to
238 	 * mapped pages.
239 	 */
240 
241 	*pteptr = pte_mknewpage(*pteptr);
242 	if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
243 }
244 
245 #define PFN_PTE_SHIFT		PAGE_SHIFT
246 
247 static inline void um_tlb_mark_sync(struct mm_struct *mm, unsigned long start,
248 				    unsigned long end)
249 {
250 	if (!mm->context.sync_tlb_range_to) {
251 		mm->context.sync_tlb_range_from = start;
252 		mm->context.sync_tlb_range_to = end;
253 	} else {
254 		if (start < mm->context.sync_tlb_range_from)
255 			mm->context.sync_tlb_range_from = start;
256 		if (end > mm->context.sync_tlb_range_to)
257 			mm->context.sync_tlb_range_to = end;
258 	}
259 }
260 
261 #define set_ptes set_ptes
262 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
263 			    pte_t *ptep, pte_t pte, int nr)
264 {
265 	/* Basically the default implementation */
266 	size_t length = nr * PAGE_SIZE;
267 
268 	for (;;) {
269 		set_pte(ptep, pte);
270 		if (--nr == 0)
271 			break;
272 		ptep++;
273 		pte = __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
274 	}
275 
276 	um_tlb_mark_sync(mm, addr, addr + length);
277 }
278 
279 #define __HAVE_ARCH_PTE_SAME
280 static inline int pte_same(pte_t pte_a, pte_t pte_b)
281 {
282 	return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
283 }
284 
285 /*
286  * Conversion functions: convert a page and protection to a page entry,
287  * and a page entry and page directory to the page they refer to.
288  */
289 
290 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
291 #define __virt_to_page(virt) phys_to_page(__pa(virt))
292 #define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
293 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
294 
295 #define mk_pte(page, pgprot) \
296 	({ pte_t pte;					\
297 							\
298 	pte_set_val(pte, page_to_phys(page), (pgprot));	\
299 	if (pte_present(pte))				\
300 		pte_mknewprot(pte_mknewpage(pte));	\
301 	pte;})
302 
303 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
304 {
305 	pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
306 	return pte;
307 }
308 
309 /*
310  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
311  *
312  * this macro returns the index of the entry in the pmd page which would
313  * control the given virtual address
314  */
315 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
316 
317 struct mm_struct;
318 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
319 
320 #define update_mmu_cache(vma,address,ptep) do {} while (0)
321 #define update_mmu_cache_range(vmf, vma, address, ptep, nr) do {} while (0)
322 
323 /*
324  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
325  * are !pte_none() && !pte_present().
326  *
327  * Format of swap PTEs:
328  *
329  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
330  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
331  *   <--------------- offset ----------------> E < type -> 0 0 0 1 0
332  *
333  *   E is the exclusive marker that is not stored in swap entries.
334  *   _PAGE_NEWPAGE (bit 1) is always set to 1 in set_pte().
335  */
336 #define __swp_type(x)			(((x).val >> 5) & 0x1f)
337 #define __swp_offset(x)			((x).val >> 11)
338 
339 #define __swp_entry(type, offset) \
340 	((swp_entry_t) { (((type) & 0x1f) << 5) | ((offset) << 11) })
341 #define __pte_to_swp_entry(pte) \
342 	((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
343 #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
344 
345 static inline int pte_swp_exclusive(pte_t pte)
346 {
347 	return pte_get_bits(pte, _PAGE_SWP_EXCLUSIVE);
348 }
349 
350 static inline pte_t pte_swp_mkexclusive(pte_t pte)
351 {
352 	pte_set_bits(pte, _PAGE_SWP_EXCLUSIVE);
353 	return pte;
354 }
355 
356 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
357 {
358 	pte_clear_bits(pte, _PAGE_SWP_EXCLUSIVE);
359 	return pte;
360 }
361 
362 /* Clear a kernel PTE and flush it from the TLB */
363 #define kpte_clear_flush(ptep, vaddr)		\
364 do {						\
365 	pte_clear(&init_mm, (vaddr), (ptep));	\
366 	__flush_tlb_one((vaddr));		\
367 } while (0)
368 
369 #endif
370