xref: /linux/arch/um/drivers/vector_kern.c (revision 9052e9c95d908d6c3d7570aadc8898e1d871c8bb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 - 2019 Cambridge Greys Limited
4  * Copyright (C) 2011 - 2014 Cisco Systems Inc
5  * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
7  * James Leu (jleu@mindspring.net).
8  * Copyright (C) 2001 by various other people who didn't put their name here.
9  */
10 
11 #include <linux/memblock.h>
12 #include <linux/etherdevice.h>
13 #include <linux/ethtool.h>
14 #include <linux/inetdevice.h>
15 #include <linux/init.h>
16 #include <linux/list.h>
17 #include <linux/netdevice.h>
18 #include <linux/platform_device.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/skbuff.h>
21 #include <linux/slab.h>
22 #include <linux/interrupt.h>
23 #include <linux/firmware.h>
24 #include <linux/fs.h>
25 #include <uapi/linux/filter.h>
26 #include <init.h>
27 #include <irq_kern.h>
28 #include <irq_user.h>
29 #include <net_kern.h>
30 #include <os.h>
31 #include "mconsole_kern.h"
32 #include "vector_user.h"
33 #include "vector_kern.h"
34 
35 /*
36  * Adapted from network devices with the following major changes:
37  * All transports are static - simplifies the code significantly
38  * Multiple FDs/IRQs per device
39  * Vector IO optionally used for read/write, falling back to legacy
40  * based on configuration and/or availability
41  * Configuration is no longer positional - L2TPv3 and GRE require up to
42  * 10 parameters, passing this as positional is not fit for purpose.
43  * Only socket transports are supported
44  */
45 
46 
47 #define DRIVER_NAME "uml-vector"
48 struct vector_cmd_line_arg {
49 	struct list_head list;
50 	int unit;
51 	char *arguments;
52 };
53 
54 struct vector_device {
55 	struct list_head list;
56 	struct net_device *dev;
57 	struct platform_device pdev;
58 	int unit;
59 	int opened;
60 };
61 
62 static LIST_HEAD(vec_cmd_line);
63 
64 static DEFINE_SPINLOCK(vector_devices_lock);
65 static LIST_HEAD(vector_devices);
66 
67 static int driver_registered;
68 
69 static void vector_eth_configure(int n, struct arglist *def);
70 
71 /* Argument accessors to set variables (and/or set default values)
72  * mtu, buffer sizing, default headroom, etc
73  */
74 
75 #define DEFAULT_HEADROOM 2
76 #define SAFETY_MARGIN 32
77 #define DEFAULT_VECTOR_SIZE 64
78 #define TX_SMALL_PACKET 128
79 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
80 #define MAX_ITERATIONS 64
81 
82 static const struct {
83 	const char string[ETH_GSTRING_LEN];
84 } ethtool_stats_keys[] = {
85 	{ "rx_queue_max" },
86 	{ "rx_queue_running_average" },
87 	{ "tx_queue_max" },
88 	{ "tx_queue_running_average" },
89 	{ "rx_encaps_errors" },
90 	{ "tx_timeout_count" },
91 	{ "tx_restart_queue" },
92 	{ "tx_kicks" },
93 	{ "tx_flow_control_xon" },
94 	{ "tx_flow_control_xoff" },
95 	{ "rx_csum_offload_good" },
96 	{ "rx_csum_offload_errors"},
97 	{ "sg_ok"},
98 	{ "sg_linearized"},
99 };
100 
101 #define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
102 
103 static void vector_reset_stats(struct vector_private *vp)
104 {
105 	vp->estats.rx_queue_max = 0;
106 	vp->estats.rx_queue_running_average = 0;
107 	vp->estats.tx_queue_max = 0;
108 	vp->estats.tx_queue_running_average = 0;
109 	vp->estats.rx_encaps_errors = 0;
110 	vp->estats.tx_timeout_count = 0;
111 	vp->estats.tx_restart_queue = 0;
112 	vp->estats.tx_kicks = 0;
113 	vp->estats.tx_flow_control_xon = 0;
114 	vp->estats.tx_flow_control_xoff = 0;
115 	vp->estats.sg_ok = 0;
116 	vp->estats.sg_linearized = 0;
117 }
118 
119 static int get_mtu(struct arglist *def)
120 {
121 	char *mtu = uml_vector_fetch_arg(def, "mtu");
122 	long result;
123 
124 	if (mtu != NULL) {
125 		if (kstrtoul(mtu, 10, &result) == 0)
126 			if ((result < (1 << 16) - 1) && (result >= 576))
127 				return result;
128 	}
129 	return ETH_MAX_PACKET;
130 }
131 
132 static char *get_bpf_file(struct arglist *def)
133 {
134 	return uml_vector_fetch_arg(def, "bpffile");
135 }
136 
137 static bool get_bpf_flash(struct arglist *def)
138 {
139 	char *allow = uml_vector_fetch_arg(def, "bpfflash");
140 	long result;
141 
142 	if (allow != NULL) {
143 		if (kstrtoul(allow, 10, &result) == 0)
144 			return (allow > 0);
145 	}
146 	return false;
147 }
148 
149 static int get_depth(struct arglist *def)
150 {
151 	char *mtu = uml_vector_fetch_arg(def, "depth");
152 	long result;
153 
154 	if (mtu != NULL) {
155 		if (kstrtoul(mtu, 10, &result) == 0)
156 			return result;
157 	}
158 	return DEFAULT_VECTOR_SIZE;
159 }
160 
161 static int get_headroom(struct arglist *def)
162 {
163 	char *mtu = uml_vector_fetch_arg(def, "headroom");
164 	long result;
165 
166 	if (mtu != NULL) {
167 		if (kstrtoul(mtu, 10, &result) == 0)
168 			return result;
169 	}
170 	return DEFAULT_HEADROOM;
171 }
172 
173 static int get_req_size(struct arglist *def)
174 {
175 	char *gro = uml_vector_fetch_arg(def, "gro");
176 	long result;
177 
178 	if (gro != NULL) {
179 		if (kstrtoul(gro, 10, &result) == 0) {
180 			if (result > 0)
181 				return 65536;
182 		}
183 	}
184 	return get_mtu(def) + ETH_HEADER_OTHER +
185 		get_headroom(def) + SAFETY_MARGIN;
186 }
187 
188 
189 static int get_transport_options(struct arglist *def)
190 {
191 	char *transport = uml_vector_fetch_arg(def, "transport");
192 	char *vector = uml_vector_fetch_arg(def, "vec");
193 
194 	int vec_rx = VECTOR_RX;
195 	int vec_tx = VECTOR_TX;
196 	long parsed;
197 	int result = 0;
198 
199 	if (transport == NULL)
200 		return -EINVAL;
201 
202 	if (vector != NULL) {
203 		if (kstrtoul(vector, 10, &parsed) == 0) {
204 			if (parsed == 0) {
205 				vec_rx = 0;
206 				vec_tx = 0;
207 			}
208 		}
209 	}
210 
211 	if (get_bpf_flash(def))
212 		result = VECTOR_BPF_FLASH;
213 
214 	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
215 		return result;
216 	if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
217 		return (result | vec_rx | VECTOR_BPF);
218 	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
219 		return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
220 	return (result | vec_rx | vec_tx);
221 }
222 
223 
224 /* A mini-buffer for packet drop read
225  * All of our supported transports are datagram oriented and we always
226  * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
227  * than the packet size it still counts as full packet read and will
228  * clean the incoming stream to keep sigio/epoll happy
229  */
230 
231 #define DROP_BUFFER_SIZE 32
232 
233 static char *drop_buffer;
234 
235 /* Array backed queues optimized for bulk enqueue/dequeue and
236  * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
237  * For more details and full design rationale see
238  * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
239  */
240 
241 
242 /*
243  * Advance the mmsg queue head by n = advance. Resets the queue to
244  * maximum enqueue/dequeue-at-once capacity if possible. Called by
245  * dequeuers. Caller must hold the head_lock!
246  */
247 
248 static int vector_advancehead(struct vector_queue *qi, int advance)
249 {
250 	int queue_depth;
251 
252 	qi->head =
253 		(qi->head + advance)
254 			% qi->max_depth;
255 
256 
257 	spin_lock(&qi->tail_lock);
258 	qi->queue_depth -= advance;
259 
260 	/* we are at 0, use this to
261 	 * reset head and tail so we can use max size vectors
262 	 */
263 
264 	if (qi->queue_depth == 0) {
265 		qi->head = 0;
266 		qi->tail = 0;
267 	}
268 	queue_depth = qi->queue_depth;
269 	spin_unlock(&qi->tail_lock);
270 	return queue_depth;
271 }
272 
273 /*	Advance the queue tail by n = advance.
274  *	This is called by enqueuers which should hold the
275  *	head lock already
276  */
277 
278 static int vector_advancetail(struct vector_queue *qi, int advance)
279 {
280 	int queue_depth;
281 
282 	qi->tail =
283 		(qi->tail + advance)
284 			% qi->max_depth;
285 	spin_lock(&qi->head_lock);
286 	qi->queue_depth += advance;
287 	queue_depth = qi->queue_depth;
288 	spin_unlock(&qi->head_lock);
289 	return queue_depth;
290 }
291 
292 static int prep_msg(struct vector_private *vp,
293 	struct sk_buff *skb,
294 	struct iovec *iov)
295 {
296 	int iov_index = 0;
297 	int nr_frags, frag;
298 	skb_frag_t *skb_frag;
299 
300 	nr_frags = skb_shinfo(skb)->nr_frags;
301 	if (nr_frags > MAX_IOV_SIZE) {
302 		if (skb_linearize(skb) != 0)
303 			goto drop;
304 	}
305 	if (vp->header_size > 0) {
306 		iov[iov_index].iov_len = vp->header_size;
307 		vp->form_header(iov[iov_index].iov_base, skb, vp);
308 		iov_index++;
309 	}
310 	iov[iov_index].iov_base = skb->data;
311 	if (nr_frags > 0) {
312 		iov[iov_index].iov_len = skb->len - skb->data_len;
313 		vp->estats.sg_ok++;
314 	} else
315 		iov[iov_index].iov_len = skb->len;
316 	iov_index++;
317 	for (frag = 0; frag < nr_frags; frag++) {
318 		skb_frag = &skb_shinfo(skb)->frags[frag];
319 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
320 		iov[iov_index].iov_len = skb_frag_size(skb_frag);
321 		iov_index++;
322 	}
323 	return iov_index;
324 drop:
325 	return -1;
326 }
327 /*
328  * Generic vector enqueue with support for forming headers using transport
329  * specific callback. Allows GRE, L2TPv3, RAW and other transports
330  * to use a common enqueue procedure in vector mode
331  */
332 
333 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
334 {
335 	struct vector_private *vp = netdev_priv(qi->dev);
336 	int queue_depth;
337 	int packet_len;
338 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
339 	int iov_count;
340 
341 	spin_lock(&qi->tail_lock);
342 	spin_lock(&qi->head_lock);
343 	queue_depth = qi->queue_depth;
344 	spin_unlock(&qi->head_lock);
345 
346 	if (skb)
347 		packet_len = skb->len;
348 
349 	if (queue_depth < qi->max_depth) {
350 
351 		*(qi->skbuff_vector + qi->tail) = skb;
352 		mmsg_vector += qi->tail;
353 		iov_count = prep_msg(
354 			vp,
355 			skb,
356 			mmsg_vector->msg_hdr.msg_iov
357 		);
358 		if (iov_count < 1)
359 			goto drop;
360 		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
361 		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
362 		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
363 		queue_depth = vector_advancetail(qi, 1);
364 	} else
365 		goto drop;
366 	spin_unlock(&qi->tail_lock);
367 	return queue_depth;
368 drop:
369 	qi->dev->stats.tx_dropped++;
370 	if (skb != NULL) {
371 		packet_len = skb->len;
372 		dev_consume_skb_any(skb);
373 		netdev_completed_queue(qi->dev, 1, packet_len);
374 	}
375 	spin_unlock(&qi->tail_lock);
376 	return queue_depth;
377 }
378 
379 static int consume_vector_skbs(struct vector_queue *qi, int count)
380 {
381 	struct sk_buff *skb;
382 	int skb_index;
383 	int bytes_compl = 0;
384 
385 	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
386 		skb = *(qi->skbuff_vector + skb_index);
387 		/* mark as empty to ensure correct destruction if
388 		 * needed
389 		 */
390 		bytes_compl += skb->len;
391 		*(qi->skbuff_vector + skb_index) = NULL;
392 		dev_consume_skb_any(skb);
393 	}
394 	qi->dev->stats.tx_bytes += bytes_compl;
395 	qi->dev->stats.tx_packets += count;
396 	netdev_completed_queue(qi->dev, count, bytes_compl);
397 	return vector_advancehead(qi, count);
398 }
399 
400 /*
401  * Generic vector deque via sendmmsg with support for forming headers
402  * using transport specific callback. Allows GRE, L2TPv3, RAW and
403  * other transports to use a common dequeue procedure in vector mode
404  */
405 
406 
407 static int vector_send(struct vector_queue *qi)
408 {
409 	struct vector_private *vp = netdev_priv(qi->dev);
410 	struct mmsghdr *send_from;
411 	int result = 0, send_len, queue_depth = qi->max_depth;
412 
413 	if (spin_trylock(&qi->head_lock)) {
414 		if (spin_trylock(&qi->tail_lock)) {
415 			/* update queue_depth to current value */
416 			queue_depth = qi->queue_depth;
417 			spin_unlock(&qi->tail_lock);
418 			while (queue_depth > 0) {
419 				/* Calculate the start of the vector */
420 				send_len = queue_depth;
421 				send_from = qi->mmsg_vector;
422 				send_from += qi->head;
423 				/* Adjust vector size if wraparound */
424 				if (send_len + qi->head > qi->max_depth)
425 					send_len = qi->max_depth - qi->head;
426 				/* Try to TX as many packets as possible */
427 				if (send_len > 0) {
428 					result = uml_vector_sendmmsg(
429 						 vp->fds->tx_fd,
430 						 send_from,
431 						 send_len,
432 						 0
433 					);
434 					vp->in_write_poll =
435 						(result != send_len);
436 				}
437 				/* For some of the sendmmsg error scenarios
438 				 * we may end being unsure in the TX success
439 				 * for all packets. It is safer to declare
440 				 * them all TX-ed and blame the network.
441 				 */
442 				if (result < 0) {
443 					if (net_ratelimit())
444 						netdev_err(vp->dev, "sendmmsg err=%i\n",
445 							result);
446 					vp->in_error = true;
447 					result = send_len;
448 				}
449 				if (result > 0) {
450 					queue_depth =
451 						consume_vector_skbs(qi, result);
452 					/* This is equivalent to an TX IRQ.
453 					 * Restart the upper layers to feed us
454 					 * more packets.
455 					 */
456 					if (result > vp->estats.tx_queue_max)
457 						vp->estats.tx_queue_max = result;
458 					vp->estats.tx_queue_running_average =
459 						(vp->estats.tx_queue_running_average + result) >> 1;
460 				}
461 				netif_trans_update(qi->dev);
462 				netif_wake_queue(qi->dev);
463 				/* if TX is busy, break out of the send loop,
464 				 *  poll write IRQ will reschedule xmit for us
465 				 */
466 				if (result != send_len) {
467 					vp->estats.tx_restart_queue++;
468 					break;
469 				}
470 			}
471 		}
472 		spin_unlock(&qi->head_lock);
473 	} else {
474 		tasklet_schedule(&vp->tx_poll);
475 	}
476 	return queue_depth;
477 }
478 
479 /* Queue destructor. Deliberately stateless so we can use
480  * it in queue cleanup if initialization fails.
481  */
482 
483 static void destroy_queue(struct vector_queue *qi)
484 {
485 	int i;
486 	struct iovec *iov;
487 	struct vector_private *vp = netdev_priv(qi->dev);
488 	struct mmsghdr *mmsg_vector;
489 
490 	if (qi == NULL)
491 		return;
492 	/* deallocate any skbuffs - we rely on any unused to be
493 	 * set to NULL.
494 	 */
495 	if (qi->skbuff_vector != NULL) {
496 		for (i = 0; i < qi->max_depth; i++) {
497 			if (*(qi->skbuff_vector + i) != NULL)
498 				dev_kfree_skb_any(*(qi->skbuff_vector + i));
499 		}
500 		kfree(qi->skbuff_vector);
501 	}
502 	/* deallocate matching IOV structures including header buffs */
503 	if (qi->mmsg_vector != NULL) {
504 		mmsg_vector = qi->mmsg_vector;
505 		for (i = 0; i < qi->max_depth; i++) {
506 			iov = mmsg_vector->msg_hdr.msg_iov;
507 			if (iov != NULL) {
508 				if ((vp->header_size > 0) &&
509 					(iov->iov_base != NULL))
510 					kfree(iov->iov_base);
511 				kfree(iov);
512 			}
513 			mmsg_vector++;
514 		}
515 		kfree(qi->mmsg_vector);
516 	}
517 	kfree(qi);
518 }
519 
520 /*
521  * Queue constructor. Create a queue with a given side.
522  */
523 static struct vector_queue *create_queue(
524 	struct vector_private *vp,
525 	int max_size,
526 	int header_size,
527 	int num_extra_frags)
528 {
529 	struct vector_queue *result;
530 	int i;
531 	struct iovec *iov;
532 	struct mmsghdr *mmsg_vector;
533 
534 	result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
535 	if (result == NULL)
536 		return NULL;
537 	result->max_depth = max_size;
538 	result->dev = vp->dev;
539 	result->mmsg_vector = kmalloc(
540 		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
541 	if (result->mmsg_vector == NULL)
542 		goto out_mmsg_fail;
543 	result->skbuff_vector = kmalloc(
544 		(sizeof(void *) * max_size), GFP_KERNEL);
545 	if (result->skbuff_vector == NULL)
546 		goto out_skb_fail;
547 
548 	/* further failures can be handled safely by destroy_queue*/
549 
550 	mmsg_vector = result->mmsg_vector;
551 	for (i = 0; i < max_size; i++) {
552 		/* Clear all pointers - we use non-NULL as marking on
553 		 * what to free on destruction
554 		 */
555 		*(result->skbuff_vector + i) = NULL;
556 		mmsg_vector->msg_hdr.msg_iov = NULL;
557 		mmsg_vector++;
558 	}
559 	mmsg_vector = result->mmsg_vector;
560 	result->max_iov_frags = num_extra_frags;
561 	for (i = 0; i < max_size; i++) {
562 		if (vp->header_size > 0)
563 			iov = kmalloc_array(3 + num_extra_frags,
564 					    sizeof(struct iovec),
565 					    GFP_KERNEL
566 			);
567 		else
568 			iov = kmalloc_array(2 + num_extra_frags,
569 					    sizeof(struct iovec),
570 					    GFP_KERNEL
571 			);
572 		if (iov == NULL)
573 			goto out_fail;
574 		mmsg_vector->msg_hdr.msg_iov = iov;
575 		mmsg_vector->msg_hdr.msg_iovlen = 1;
576 		mmsg_vector->msg_hdr.msg_control = NULL;
577 		mmsg_vector->msg_hdr.msg_controllen = 0;
578 		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
579 		mmsg_vector->msg_hdr.msg_name = NULL;
580 		mmsg_vector->msg_hdr.msg_namelen = 0;
581 		if (vp->header_size > 0) {
582 			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
583 			if (iov->iov_base == NULL)
584 				goto out_fail;
585 			iov->iov_len = header_size;
586 			mmsg_vector->msg_hdr.msg_iovlen = 2;
587 			iov++;
588 		}
589 		iov->iov_base = NULL;
590 		iov->iov_len = 0;
591 		mmsg_vector++;
592 	}
593 	spin_lock_init(&result->head_lock);
594 	spin_lock_init(&result->tail_lock);
595 	result->queue_depth = 0;
596 	result->head = 0;
597 	result->tail = 0;
598 	return result;
599 out_skb_fail:
600 	kfree(result->mmsg_vector);
601 out_mmsg_fail:
602 	kfree(result);
603 	return NULL;
604 out_fail:
605 	destroy_queue(result);
606 	return NULL;
607 }
608 
609 /*
610  * We do not use the RX queue as a proper wraparound queue for now
611  * This is not necessary because the consumption via netif_rx()
612  * happens in-line. While we can try using the return code of
613  * netif_rx() for flow control there are no drivers doing this today.
614  * For this RX specific use we ignore the tail/head locks and
615  * just read into a prepared queue filled with skbuffs.
616  */
617 
618 static struct sk_buff *prep_skb(
619 	struct vector_private *vp,
620 	struct user_msghdr *msg)
621 {
622 	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
623 	struct sk_buff *result;
624 	int iov_index = 0, len;
625 	struct iovec *iov = msg->msg_iov;
626 	int err, nr_frags, frag;
627 	skb_frag_t *skb_frag;
628 
629 	if (vp->req_size <= linear)
630 		len = linear;
631 	else
632 		len = vp->req_size;
633 	result = alloc_skb_with_frags(
634 		linear,
635 		len - vp->max_packet,
636 		3,
637 		&err,
638 		GFP_ATOMIC
639 	);
640 	if (vp->header_size > 0)
641 		iov_index++;
642 	if (result == NULL) {
643 		iov[iov_index].iov_base = NULL;
644 		iov[iov_index].iov_len = 0;
645 		goto done;
646 	}
647 	skb_reserve(result, vp->headroom);
648 	result->dev = vp->dev;
649 	skb_put(result, vp->max_packet);
650 	result->data_len = len - vp->max_packet;
651 	result->len += len - vp->max_packet;
652 	skb_reset_mac_header(result);
653 	result->ip_summed = CHECKSUM_NONE;
654 	iov[iov_index].iov_base = result->data;
655 	iov[iov_index].iov_len = vp->max_packet;
656 	iov_index++;
657 
658 	nr_frags = skb_shinfo(result)->nr_frags;
659 	for (frag = 0; frag < nr_frags; frag++) {
660 		skb_frag = &skb_shinfo(result)->frags[frag];
661 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
662 		if (iov[iov_index].iov_base != NULL)
663 			iov[iov_index].iov_len = skb_frag_size(skb_frag);
664 		else
665 			iov[iov_index].iov_len = 0;
666 		iov_index++;
667 	}
668 done:
669 	msg->msg_iovlen = iov_index;
670 	return result;
671 }
672 
673 
674 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
675 
676 static void prep_queue_for_rx(struct vector_queue *qi)
677 {
678 	struct vector_private *vp = netdev_priv(qi->dev);
679 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
680 	void **skbuff_vector = qi->skbuff_vector;
681 	int i;
682 
683 	if (qi->queue_depth == 0)
684 		return;
685 	for (i = 0; i < qi->queue_depth; i++) {
686 		/* it is OK if allocation fails - recvmmsg with NULL data in
687 		 * iov argument still performs an RX, just drops the packet
688 		 * This allows us stop faffing around with a "drop buffer"
689 		 */
690 
691 		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
692 		skbuff_vector++;
693 		mmsg_vector++;
694 	}
695 	qi->queue_depth = 0;
696 }
697 
698 static struct vector_device *find_device(int n)
699 {
700 	struct vector_device *device;
701 	struct list_head *ele;
702 
703 	spin_lock(&vector_devices_lock);
704 	list_for_each(ele, &vector_devices) {
705 		device = list_entry(ele, struct vector_device, list);
706 		if (device->unit == n)
707 			goto out;
708 	}
709 	device = NULL;
710  out:
711 	spin_unlock(&vector_devices_lock);
712 	return device;
713 }
714 
715 static int vector_parse(char *str, int *index_out, char **str_out,
716 			char **error_out)
717 {
718 	int n, len, err;
719 	char *start = str;
720 
721 	len = strlen(str);
722 
723 	while ((*str != ':') && (strlen(str) > 1))
724 		str++;
725 	if (*str != ':') {
726 		*error_out = "Expected ':' after device number";
727 		return -EINVAL;
728 	}
729 	*str = '\0';
730 
731 	err = kstrtouint(start, 0, &n);
732 	if (err < 0) {
733 		*error_out = "Bad device number";
734 		return err;
735 	}
736 
737 	str++;
738 	if (find_device(n)) {
739 		*error_out = "Device already configured";
740 		return -EINVAL;
741 	}
742 
743 	*index_out = n;
744 	*str_out = str;
745 	return 0;
746 }
747 
748 static int vector_config(char *str, char **error_out)
749 {
750 	int err, n;
751 	char *params;
752 	struct arglist *parsed;
753 
754 	err = vector_parse(str, &n, &params, error_out);
755 	if (err != 0)
756 		return err;
757 
758 	/* This string is broken up and the pieces used by the underlying
759 	 * driver. We should copy it to make sure things do not go wrong
760 	 * later.
761 	 */
762 
763 	params = kstrdup(params, GFP_KERNEL);
764 	if (params == NULL) {
765 		*error_out = "vector_config failed to strdup string";
766 		return -ENOMEM;
767 	}
768 
769 	parsed = uml_parse_vector_ifspec(params);
770 
771 	if (parsed == NULL) {
772 		*error_out = "vector_config failed to parse parameters";
773 		return -EINVAL;
774 	}
775 
776 	vector_eth_configure(n, parsed);
777 	return 0;
778 }
779 
780 static int vector_id(char **str, int *start_out, int *end_out)
781 {
782 	char *end;
783 	int n;
784 
785 	n = simple_strtoul(*str, &end, 0);
786 	if ((*end != '\0') || (end == *str))
787 		return -1;
788 
789 	*start_out = n;
790 	*end_out = n;
791 	*str = end;
792 	return n;
793 }
794 
795 static int vector_remove(int n, char **error_out)
796 {
797 	struct vector_device *vec_d;
798 	struct net_device *dev;
799 	struct vector_private *vp;
800 
801 	vec_d = find_device(n);
802 	if (vec_d == NULL)
803 		return -ENODEV;
804 	dev = vec_d->dev;
805 	vp = netdev_priv(dev);
806 	if (vp->fds != NULL)
807 		return -EBUSY;
808 	unregister_netdev(dev);
809 	platform_device_unregister(&vec_d->pdev);
810 	return 0;
811 }
812 
813 /*
814  * There is no shared per-transport initialization code, so
815  * we will just initialize each interface one by one and
816  * add them to a list
817  */
818 
819 static struct platform_driver uml_net_driver = {
820 	.driver = {
821 		.name = DRIVER_NAME,
822 	},
823 };
824 
825 
826 static void vector_device_release(struct device *dev)
827 {
828 	struct vector_device *device = dev_get_drvdata(dev);
829 	struct net_device *netdev = device->dev;
830 
831 	list_del(&device->list);
832 	kfree(device);
833 	free_netdev(netdev);
834 }
835 
836 /* Bog standard recv using recvmsg - not used normally unless the user
837  * explicitly specifies not to use recvmmsg vector RX.
838  */
839 
840 static int vector_legacy_rx(struct vector_private *vp)
841 {
842 	int pkt_len;
843 	struct user_msghdr hdr;
844 	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
845 	int iovpos = 0;
846 	struct sk_buff *skb;
847 	int header_check;
848 
849 	hdr.msg_name = NULL;
850 	hdr.msg_namelen = 0;
851 	hdr.msg_iov = (struct iovec *) &iov;
852 	hdr.msg_control = NULL;
853 	hdr.msg_controllen = 0;
854 	hdr.msg_flags = 0;
855 
856 	if (vp->header_size > 0) {
857 		iov[0].iov_base = vp->header_rxbuffer;
858 		iov[0].iov_len = vp->header_size;
859 	}
860 
861 	skb = prep_skb(vp, &hdr);
862 
863 	if (skb == NULL) {
864 		/* Read a packet into drop_buffer and don't do
865 		 * anything with it.
866 		 */
867 		iov[iovpos].iov_base = drop_buffer;
868 		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
869 		hdr.msg_iovlen = 1;
870 		vp->dev->stats.rx_dropped++;
871 	}
872 
873 	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
874 	if (pkt_len < 0) {
875 		vp->in_error = true;
876 		return pkt_len;
877 	}
878 
879 	if (skb != NULL) {
880 		if (pkt_len > vp->header_size) {
881 			if (vp->header_size > 0) {
882 				header_check = vp->verify_header(
883 					vp->header_rxbuffer, skb, vp);
884 				if (header_check < 0) {
885 					dev_kfree_skb_irq(skb);
886 					vp->dev->stats.rx_dropped++;
887 					vp->estats.rx_encaps_errors++;
888 					return 0;
889 				}
890 				if (header_check > 0) {
891 					vp->estats.rx_csum_offload_good++;
892 					skb->ip_summed = CHECKSUM_UNNECESSARY;
893 				}
894 			}
895 			pskb_trim(skb, pkt_len - vp->rx_header_size);
896 			skb->protocol = eth_type_trans(skb, skb->dev);
897 			vp->dev->stats.rx_bytes += skb->len;
898 			vp->dev->stats.rx_packets++;
899 			netif_rx(skb);
900 		} else {
901 			dev_kfree_skb_irq(skb);
902 		}
903 	}
904 	return pkt_len;
905 }
906 
907 /*
908  * Packet at a time TX which falls back to vector TX if the
909  * underlying transport is busy.
910  */
911 
912 
913 
914 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
915 {
916 	struct iovec iov[3 + MAX_IOV_SIZE];
917 	int iov_count, pkt_len = 0;
918 
919 	iov[0].iov_base = vp->header_txbuffer;
920 	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
921 
922 	if (iov_count < 1)
923 		goto drop;
924 
925 	pkt_len = uml_vector_writev(
926 		vp->fds->tx_fd,
927 		(struct iovec *) &iov,
928 		iov_count
929 	);
930 
931 	if (pkt_len < 0)
932 		goto drop;
933 
934 	netif_trans_update(vp->dev);
935 	netif_wake_queue(vp->dev);
936 
937 	if (pkt_len > 0) {
938 		vp->dev->stats.tx_bytes += skb->len;
939 		vp->dev->stats.tx_packets++;
940 	} else {
941 		vp->dev->stats.tx_dropped++;
942 	}
943 	consume_skb(skb);
944 	return pkt_len;
945 drop:
946 	vp->dev->stats.tx_dropped++;
947 	consume_skb(skb);
948 	if (pkt_len < 0)
949 		vp->in_error = true;
950 	return pkt_len;
951 }
952 
953 /*
954  * Receive as many messages as we can in one call using the special
955  * mmsg vector matched to an skb vector which we prepared earlier.
956  */
957 
958 static int vector_mmsg_rx(struct vector_private *vp)
959 {
960 	int packet_count, i;
961 	struct vector_queue *qi = vp->rx_queue;
962 	struct sk_buff *skb;
963 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
964 	void **skbuff_vector = qi->skbuff_vector;
965 	int header_check;
966 
967 	/* Refresh the vector and make sure it is with new skbs and the
968 	 * iovs are updated to point to them.
969 	 */
970 
971 	prep_queue_for_rx(qi);
972 
973 	/* Fire the Lazy Gun - get as many packets as we can in one go. */
974 
975 	packet_count = uml_vector_recvmmsg(
976 		vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
977 
978 	if (packet_count < 0)
979 		vp->in_error = true;
980 
981 	if (packet_count <= 0)
982 		return packet_count;
983 
984 	/* We treat packet processing as enqueue, buffer refresh as dequeue
985 	 * The queue_depth tells us how many buffers have been used and how
986 	 * many do we need to prep the next time prep_queue_for_rx() is called.
987 	 */
988 
989 	qi->queue_depth = packet_count;
990 
991 	for (i = 0; i < packet_count; i++) {
992 		skb = (*skbuff_vector);
993 		if (mmsg_vector->msg_len > vp->header_size) {
994 			if (vp->header_size > 0) {
995 				header_check = vp->verify_header(
996 					mmsg_vector->msg_hdr.msg_iov->iov_base,
997 					skb,
998 					vp
999 				);
1000 				if (header_check < 0) {
1001 				/* Overlay header failed to verify - discard.
1002 				 * We can actually keep this skb and reuse it,
1003 				 * but that will make the prep logic too
1004 				 * complex.
1005 				 */
1006 					dev_kfree_skb_irq(skb);
1007 					vp->estats.rx_encaps_errors++;
1008 					continue;
1009 				}
1010 				if (header_check > 0) {
1011 					vp->estats.rx_csum_offload_good++;
1012 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1013 				}
1014 			}
1015 			pskb_trim(skb,
1016 				mmsg_vector->msg_len - vp->rx_header_size);
1017 			skb->protocol = eth_type_trans(skb, skb->dev);
1018 			/*
1019 			 * We do not need to lock on updating stats here
1020 			 * The interrupt loop is non-reentrant.
1021 			 */
1022 			vp->dev->stats.rx_bytes += skb->len;
1023 			vp->dev->stats.rx_packets++;
1024 			netif_rx(skb);
1025 		} else {
1026 			/* Overlay header too short to do anything - discard.
1027 			 * We can actually keep this skb and reuse it,
1028 			 * but that will make the prep logic too complex.
1029 			 */
1030 			if (skb != NULL)
1031 				dev_kfree_skb_irq(skb);
1032 		}
1033 		(*skbuff_vector) = NULL;
1034 		/* Move to the next buffer element */
1035 		mmsg_vector++;
1036 		skbuff_vector++;
1037 	}
1038 	if (packet_count > 0) {
1039 		if (vp->estats.rx_queue_max < packet_count)
1040 			vp->estats.rx_queue_max = packet_count;
1041 		vp->estats.rx_queue_running_average =
1042 			(vp->estats.rx_queue_running_average + packet_count) >> 1;
1043 	}
1044 	return packet_count;
1045 }
1046 
1047 static void vector_rx(struct vector_private *vp)
1048 {
1049 	int err;
1050 	int iter = 0;
1051 
1052 	if ((vp->options & VECTOR_RX) > 0)
1053 		while (((err = vector_mmsg_rx(vp)) > 0) && (iter < MAX_ITERATIONS))
1054 			iter++;
1055 	else
1056 		while (((err = vector_legacy_rx(vp)) > 0) && (iter < MAX_ITERATIONS))
1057 			iter++;
1058 	if ((err != 0) && net_ratelimit())
1059 		netdev_err(vp->dev, "vector_rx: error(%d)\n", err);
1060 	if (iter == MAX_ITERATIONS)
1061 		netdev_err(vp->dev, "vector_rx: device stuck, remote end may have closed the connection\n");
1062 }
1063 
1064 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1065 {
1066 	struct vector_private *vp = netdev_priv(dev);
1067 	int queue_depth = 0;
1068 
1069 	if (vp->in_error) {
1070 		deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1071 		if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1072 			deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1073 		return NETDEV_TX_BUSY;
1074 	}
1075 
1076 	if ((vp->options & VECTOR_TX) == 0) {
1077 		writev_tx(vp, skb);
1078 		return NETDEV_TX_OK;
1079 	}
1080 
1081 	/* We do BQL only in the vector path, no point doing it in
1082 	 * packet at a time mode as there is no device queue
1083 	 */
1084 
1085 	netdev_sent_queue(vp->dev, skb->len);
1086 	queue_depth = vector_enqueue(vp->tx_queue, skb);
1087 
1088 	/* if the device queue is full, stop the upper layers and
1089 	 * flush it.
1090 	 */
1091 
1092 	if (queue_depth >= vp->tx_queue->max_depth - 1) {
1093 		vp->estats.tx_kicks++;
1094 		netif_stop_queue(dev);
1095 		vector_send(vp->tx_queue);
1096 		return NETDEV_TX_OK;
1097 	}
1098 	if (netdev_xmit_more()) {
1099 		mod_timer(&vp->tl, vp->coalesce);
1100 		return NETDEV_TX_OK;
1101 	}
1102 	if (skb->len < TX_SMALL_PACKET) {
1103 		vp->estats.tx_kicks++;
1104 		vector_send(vp->tx_queue);
1105 	} else
1106 		tasklet_schedule(&vp->tx_poll);
1107 	return NETDEV_TX_OK;
1108 }
1109 
1110 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1111 {
1112 	struct net_device *dev = dev_id;
1113 	struct vector_private *vp = netdev_priv(dev);
1114 
1115 	if (!netif_running(dev))
1116 		return IRQ_NONE;
1117 	vector_rx(vp);
1118 	return IRQ_HANDLED;
1119 
1120 }
1121 
1122 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1123 {
1124 	struct net_device *dev = dev_id;
1125 	struct vector_private *vp = netdev_priv(dev);
1126 
1127 	if (!netif_running(dev))
1128 		return IRQ_NONE;
1129 	/* We need to pay attention to it only if we got
1130 	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1131 	 * we ignore it. In the future, it may be worth
1132 	 * it to improve the IRQ controller a bit to make
1133 	 * tweaking the IRQ mask less costly
1134 	 */
1135 
1136 	if (vp->in_write_poll)
1137 		tasklet_schedule(&vp->tx_poll);
1138 	return IRQ_HANDLED;
1139 
1140 }
1141 
1142 static int irq_rr;
1143 
1144 static int vector_net_close(struct net_device *dev)
1145 {
1146 	struct vector_private *vp = netdev_priv(dev);
1147 	unsigned long flags;
1148 
1149 	netif_stop_queue(dev);
1150 	del_timer(&vp->tl);
1151 
1152 	if (vp->fds == NULL)
1153 		return 0;
1154 
1155 	/* Disable and free all IRQS */
1156 	if (vp->rx_irq > 0) {
1157 		um_free_irq(vp->rx_irq, dev);
1158 		vp->rx_irq = 0;
1159 	}
1160 	if (vp->tx_irq > 0) {
1161 		um_free_irq(vp->tx_irq, dev);
1162 		vp->tx_irq = 0;
1163 	}
1164 	tasklet_kill(&vp->tx_poll);
1165 	if (vp->fds->rx_fd > 0) {
1166 		if (vp->bpf)
1167 			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1168 		os_close_file(vp->fds->rx_fd);
1169 		vp->fds->rx_fd = -1;
1170 	}
1171 	if (vp->fds->tx_fd > 0) {
1172 		os_close_file(vp->fds->tx_fd);
1173 		vp->fds->tx_fd = -1;
1174 	}
1175 	if (vp->bpf != NULL)
1176 		kfree(vp->bpf->filter);
1177 	kfree(vp->bpf);
1178 	vp->bpf = NULL;
1179 	kfree(vp->fds->remote_addr);
1180 	kfree(vp->transport_data);
1181 	kfree(vp->header_rxbuffer);
1182 	kfree(vp->header_txbuffer);
1183 	if (vp->rx_queue != NULL)
1184 		destroy_queue(vp->rx_queue);
1185 	if (vp->tx_queue != NULL)
1186 		destroy_queue(vp->tx_queue);
1187 	kfree(vp->fds);
1188 	vp->fds = NULL;
1189 	spin_lock_irqsave(&vp->lock, flags);
1190 	vp->opened = false;
1191 	vp->in_error = false;
1192 	spin_unlock_irqrestore(&vp->lock, flags);
1193 	return 0;
1194 }
1195 
1196 /* TX tasklet */
1197 
1198 static void vector_tx_poll(struct tasklet_struct *t)
1199 {
1200 	struct vector_private *vp = from_tasklet(vp, t, tx_poll);
1201 
1202 	vp->estats.tx_kicks++;
1203 	vector_send(vp->tx_queue);
1204 }
1205 static void vector_reset_tx(struct work_struct *work)
1206 {
1207 	struct vector_private *vp =
1208 		container_of(work, struct vector_private, reset_tx);
1209 	netdev_reset_queue(vp->dev);
1210 	netif_start_queue(vp->dev);
1211 	netif_wake_queue(vp->dev);
1212 }
1213 
1214 static int vector_net_open(struct net_device *dev)
1215 {
1216 	struct vector_private *vp = netdev_priv(dev);
1217 	unsigned long flags;
1218 	int err = -EINVAL;
1219 	struct vector_device *vdevice;
1220 
1221 	spin_lock_irqsave(&vp->lock, flags);
1222 	if (vp->opened) {
1223 		spin_unlock_irqrestore(&vp->lock, flags);
1224 		return -ENXIO;
1225 	}
1226 	vp->opened = true;
1227 	spin_unlock_irqrestore(&vp->lock, flags);
1228 
1229 	vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1230 
1231 	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1232 
1233 	if (vp->fds == NULL)
1234 		goto out_close;
1235 
1236 	if (build_transport_data(vp) < 0)
1237 		goto out_close;
1238 
1239 	if ((vp->options & VECTOR_RX) > 0) {
1240 		vp->rx_queue = create_queue(
1241 			vp,
1242 			get_depth(vp->parsed),
1243 			vp->rx_header_size,
1244 			MAX_IOV_SIZE
1245 		);
1246 		vp->rx_queue->queue_depth = get_depth(vp->parsed);
1247 	} else {
1248 		vp->header_rxbuffer = kmalloc(
1249 			vp->rx_header_size,
1250 			GFP_KERNEL
1251 		);
1252 		if (vp->header_rxbuffer == NULL)
1253 			goto out_close;
1254 	}
1255 	if ((vp->options & VECTOR_TX) > 0) {
1256 		vp->tx_queue = create_queue(
1257 			vp,
1258 			get_depth(vp->parsed),
1259 			vp->header_size,
1260 			MAX_IOV_SIZE
1261 		);
1262 	} else {
1263 		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1264 		if (vp->header_txbuffer == NULL)
1265 			goto out_close;
1266 	}
1267 
1268 	/* READ IRQ */
1269 	err = um_request_irq(
1270 		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1271 			IRQ_READ, vector_rx_interrupt,
1272 			IRQF_SHARED, dev->name, dev);
1273 	if (err < 0) {
1274 		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1275 		err = -ENETUNREACH;
1276 		goto out_close;
1277 	}
1278 	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1279 	dev->irq = irq_rr + VECTOR_BASE_IRQ;
1280 	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1281 
1282 	/* WRITE IRQ - we need it only if we have vector TX */
1283 	if ((vp->options & VECTOR_TX) > 0) {
1284 		err = um_request_irq(
1285 			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1286 				IRQ_WRITE, vector_tx_interrupt,
1287 				IRQF_SHARED, dev->name, dev);
1288 		if (err < 0) {
1289 			netdev_err(dev,
1290 				"vector_open: failed to get tx irq(%d)\n", err);
1291 			err = -ENETUNREACH;
1292 			goto out_close;
1293 		}
1294 		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1295 		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1296 	}
1297 
1298 	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1299 		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1300 			vp->options |= VECTOR_BPF;
1301 	}
1302 	if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1303 		vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1304 
1305 	if (vp->bpf != NULL)
1306 		uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1307 
1308 	netif_start_queue(dev);
1309 
1310 	/* clear buffer - it can happen that the host side of the interface
1311 	 * is full when we get here. In this case, new data is never queued,
1312 	 * SIGIOs never arrive, and the net never works.
1313 	 */
1314 
1315 	vector_rx(vp);
1316 
1317 	vector_reset_stats(vp);
1318 	vdevice = find_device(vp->unit);
1319 	vdevice->opened = 1;
1320 
1321 	if ((vp->options & VECTOR_TX) != 0)
1322 		add_timer(&vp->tl);
1323 	return 0;
1324 out_close:
1325 	vector_net_close(dev);
1326 	return err;
1327 }
1328 
1329 
1330 static void vector_net_set_multicast_list(struct net_device *dev)
1331 {
1332 	/* TODO: - we can do some BPF games here */
1333 	return;
1334 }
1335 
1336 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1337 {
1338 	struct vector_private *vp = netdev_priv(dev);
1339 
1340 	vp->estats.tx_timeout_count++;
1341 	netif_trans_update(dev);
1342 	schedule_work(&vp->reset_tx);
1343 }
1344 
1345 static netdev_features_t vector_fix_features(struct net_device *dev,
1346 	netdev_features_t features)
1347 {
1348 	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1349 	return features;
1350 }
1351 
1352 static int vector_set_features(struct net_device *dev,
1353 	netdev_features_t features)
1354 {
1355 	struct vector_private *vp = netdev_priv(dev);
1356 	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1357 	 * no way to negotiate it on raw sockets, so we can change
1358 	 * only our side.
1359 	 */
1360 	if (features & NETIF_F_GRO)
1361 		/* All new frame buffers will be GRO-sized */
1362 		vp->req_size = 65536;
1363 	else
1364 		/* All new frame buffers will be normal sized */
1365 		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1366 	return 0;
1367 }
1368 
1369 #ifdef CONFIG_NET_POLL_CONTROLLER
1370 static void vector_net_poll_controller(struct net_device *dev)
1371 {
1372 	disable_irq(dev->irq);
1373 	vector_rx_interrupt(dev->irq, dev);
1374 	enable_irq(dev->irq);
1375 }
1376 #endif
1377 
1378 static void vector_net_get_drvinfo(struct net_device *dev,
1379 				struct ethtool_drvinfo *info)
1380 {
1381 	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1382 }
1383 
1384 static int vector_net_load_bpf_flash(struct net_device *dev,
1385 				struct ethtool_flash *efl)
1386 {
1387 	struct vector_private *vp = netdev_priv(dev);
1388 	struct vector_device *vdevice;
1389 	const struct firmware *fw;
1390 	int result = 0;
1391 
1392 	if (!(vp->options & VECTOR_BPF_FLASH)) {
1393 		netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1394 		return -1;
1395 	}
1396 
1397 	spin_lock(&vp->lock);
1398 
1399 	if (vp->bpf != NULL) {
1400 		if (vp->opened)
1401 			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1402 		kfree(vp->bpf->filter);
1403 		vp->bpf->filter = NULL;
1404 	} else {
1405 		vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1406 		if (vp->bpf == NULL) {
1407 			netdev_err(dev, "failed to allocate memory for firmware\n");
1408 			goto flash_fail;
1409 		}
1410 	}
1411 
1412 	vdevice = find_device(vp->unit);
1413 
1414 	if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1415 		goto flash_fail;
1416 
1417 	vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1418 	if (!vp->bpf->filter)
1419 		goto free_buffer;
1420 
1421 	vp->bpf->len = fw->size / sizeof(struct sock_filter);
1422 	release_firmware(fw);
1423 
1424 	if (vp->opened)
1425 		result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1426 
1427 	spin_unlock(&vp->lock);
1428 
1429 	return result;
1430 
1431 free_buffer:
1432 	release_firmware(fw);
1433 
1434 flash_fail:
1435 	spin_unlock(&vp->lock);
1436 	if (vp->bpf != NULL)
1437 		kfree(vp->bpf->filter);
1438 	kfree(vp->bpf);
1439 	vp->bpf = NULL;
1440 	return -1;
1441 }
1442 
1443 static void vector_get_ringparam(struct net_device *netdev,
1444 				struct ethtool_ringparam *ring)
1445 {
1446 	struct vector_private *vp = netdev_priv(netdev);
1447 
1448 	ring->rx_max_pending = vp->rx_queue->max_depth;
1449 	ring->tx_max_pending = vp->tx_queue->max_depth;
1450 	ring->rx_pending = vp->rx_queue->max_depth;
1451 	ring->tx_pending = vp->tx_queue->max_depth;
1452 }
1453 
1454 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1455 {
1456 	switch (stringset) {
1457 	case ETH_SS_TEST:
1458 		*buf = '\0';
1459 		break;
1460 	case ETH_SS_STATS:
1461 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1462 		break;
1463 	default:
1464 		WARN_ON(1);
1465 		break;
1466 	}
1467 }
1468 
1469 static int vector_get_sset_count(struct net_device *dev, int sset)
1470 {
1471 	switch (sset) {
1472 	case ETH_SS_TEST:
1473 		return 0;
1474 	case ETH_SS_STATS:
1475 		return VECTOR_NUM_STATS;
1476 	default:
1477 		return -EOPNOTSUPP;
1478 	}
1479 }
1480 
1481 static void vector_get_ethtool_stats(struct net_device *dev,
1482 	struct ethtool_stats *estats,
1483 	u64 *tmp_stats)
1484 {
1485 	struct vector_private *vp = netdev_priv(dev);
1486 
1487 	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1488 }
1489 
1490 static int vector_get_coalesce(struct net_device *netdev,
1491 			       struct ethtool_coalesce *ec,
1492 			       struct kernel_ethtool_coalesce *kernel_coal,
1493 			       struct netlink_ext_ack *extack)
1494 {
1495 	struct vector_private *vp = netdev_priv(netdev);
1496 
1497 	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1498 	return 0;
1499 }
1500 
1501 static int vector_set_coalesce(struct net_device *netdev,
1502 			       struct ethtool_coalesce *ec,
1503 			       struct kernel_ethtool_coalesce *kernel_coal,
1504 			       struct netlink_ext_ack *extack)
1505 {
1506 	struct vector_private *vp = netdev_priv(netdev);
1507 
1508 	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1509 	if (vp->coalesce == 0)
1510 		vp->coalesce = 1;
1511 	return 0;
1512 }
1513 
1514 static const struct ethtool_ops vector_net_ethtool_ops = {
1515 	.supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1516 	.get_drvinfo	= vector_net_get_drvinfo,
1517 	.get_link	= ethtool_op_get_link,
1518 	.get_ts_info	= ethtool_op_get_ts_info,
1519 	.get_ringparam	= vector_get_ringparam,
1520 	.get_strings	= vector_get_strings,
1521 	.get_sset_count	= vector_get_sset_count,
1522 	.get_ethtool_stats = vector_get_ethtool_stats,
1523 	.get_coalesce	= vector_get_coalesce,
1524 	.set_coalesce	= vector_set_coalesce,
1525 	.flash_device	= vector_net_load_bpf_flash,
1526 };
1527 
1528 
1529 static const struct net_device_ops vector_netdev_ops = {
1530 	.ndo_open		= vector_net_open,
1531 	.ndo_stop		= vector_net_close,
1532 	.ndo_start_xmit		= vector_net_start_xmit,
1533 	.ndo_set_rx_mode	= vector_net_set_multicast_list,
1534 	.ndo_tx_timeout		= vector_net_tx_timeout,
1535 	.ndo_set_mac_address	= eth_mac_addr,
1536 	.ndo_validate_addr	= eth_validate_addr,
1537 	.ndo_fix_features	= vector_fix_features,
1538 	.ndo_set_features	= vector_set_features,
1539 #ifdef CONFIG_NET_POLL_CONTROLLER
1540 	.ndo_poll_controller = vector_net_poll_controller,
1541 #endif
1542 };
1543 
1544 
1545 static void vector_timer_expire(struct timer_list *t)
1546 {
1547 	struct vector_private *vp = from_timer(vp, t, tl);
1548 
1549 	vp->estats.tx_kicks++;
1550 	vector_send(vp->tx_queue);
1551 }
1552 
1553 static void vector_eth_configure(
1554 		int n,
1555 		struct arglist *def
1556 	)
1557 {
1558 	struct vector_device *device;
1559 	struct net_device *dev;
1560 	struct vector_private *vp;
1561 	int err;
1562 
1563 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1564 	if (device == NULL) {
1565 		printk(KERN_ERR "eth_configure failed to allocate struct "
1566 				 "vector_device\n");
1567 		return;
1568 	}
1569 	dev = alloc_etherdev(sizeof(struct vector_private));
1570 	if (dev == NULL) {
1571 		printk(KERN_ERR "eth_configure: failed to allocate struct "
1572 				 "net_device for vec%d\n", n);
1573 		goto out_free_device;
1574 	}
1575 
1576 	dev->mtu = get_mtu(def);
1577 
1578 	INIT_LIST_HEAD(&device->list);
1579 	device->unit = n;
1580 
1581 	/* If this name ends up conflicting with an existing registered
1582 	 * netdevice, that is OK, register_netdev{,ice}() will notice this
1583 	 * and fail.
1584 	 */
1585 	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1586 	uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1587 	vp = netdev_priv(dev);
1588 
1589 	/* sysfs register */
1590 	if (!driver_registered) {
1591 		platform_driver_register(&uml_net_driver);
1592 		driver_registered = 1;
1593 	}
1594 	device->pdev.id = n;
1595 	device->pdev.name = DRIVER_NAME;
1596 	device->pdev.dev.release = vector_device_release;
1597 	dev_set_drvdata(&device->pdev.dev, device);
1598 	if (platform_device_register(&device->pdev))
1599 		goto out_free_netdev;
1600 	SET_NETDEV_DEV(dev, &device->pdev.dev);
1601 
1602 	device->dev = dev;
1603 
1604 	*vp = ((struct vector_private)
1605 		{
1606 		.list			= LIST_HEAD_INIT(vp->list),
1607 		.dev			= dev,
1608 		.unit			= n,
1609 		.options		= get_transport_options(def),
1610 		.rx_irq			= 0,
1611 		.tx_irq			= 0,
1612 		.parsed			= def,
1613 		.max_packet		= get_mtu(def) + ETH_HEADER_OTHER,
1614 		/* TODO - we need to calculate headroom so that ip header
1615 		 * is 16 byte aligned all the time
1616 		 */
1617 		.headroom		= get_headroom(def),
1618 		.form_header		= NULL,
1619 		.verify_header		= NULL,
1620 		.header_rxbuffer	= NULL,
1621 		.header_txbuffer	= NULL,
1622 		.header_size		= 0,
1623 		.rx_header_size		= 0,
1624 		.rexmit_scheduled	= false,
1625 		.opened			= false,
1626 		.transport_data		= NULL,
1627 		.in_write_poll		= false,
1628 		.coalesce		= 2,
1629 		.req_size		= get_req_size(def),
1630 		.in_error		= false,
1631 		.bpf			= NULL
1632 	});
1633 
1634 	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1635 	tasklet_setup(&vp->tx_poll, vector_tx_poll);
1636 	INIT_WORK(&vp->reset_tx, vector_reset_tx);
1637 
1638 	timer_setup(&vp->tl, vector_timer_expire, 0);
1639 	spin_lock_init(&vp->lock);
1640 
1641 	/* FIXME */
1642 	dev->netdev_ops = &vector_netdev_ops;
1643 	dev->ethtool_ops = &vector_net_ethtool_ops;
1644 	dev->watchdog_timeo = (HZ >> 1);
1645 	/* primary IRQ - fixme */
1646 	dev->irq = 0; /* we will adjust this once opened */
1647 
1648 	rtnl_lock();
1649 	err = register_netdevice(dev);
1650 	rtnl_unlock();
1651 	if (err)
1652 		goto out_undo_user_init;
1653 
1654 	spin_lock(&vector_devices_lock);
1655 	list_add(&device->list, &vector_devices);
1656 	spin_unlock(&vector_devices_lock);
1657 
1658 	return;
1659 
1660 out_undo_user_init:
1661 	return;
1662 out_free_netdev:
1663 	free_netdev(dev);
1664 out_free_device:
1665 	kfree(device);
1666 }
1667 
1668 
1669 
1670 
1671 /*
1672  * Invoked late in the init
1673  */
1674 
1675 static int __init vector_init(void)
1676 {
1677 	struct list_head *ele;
1678 	struct vector_cmd_line_arg *def;
1679 	struct arglist *parsed;
1680 
1681 	list_for_each(ele, &vec_cmd_line) {
1682 		def = list_entry(ele, struct vector_cmd_line_arg, list);
1683 		parsed = uml_parse_vector_ifspec(def->arguments);
1684 		if (parsed != NULL)
1685 			vector_eth_configure(def->unit, parsed);
1686 	}
1687 	return 0;
1688 }
1689 
1690 
1691 /* Invoked at initial argument parsing, only stores
1692  * arguments until a proper vector_init is called
1693  * later
1694  */
1695 
1696 static int __init vector_setup(char *str)
1697 {
1698 	char *error;
1699 	int n, err;
1700 	struct vector_cmd_line_arg *new;
1701 
1702 	err = vector_parse(str, &n, &str, &error);
1703 	if (err) {
1704 		printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1705 				 str, error);
1706 		return 1;
1707 	}
1708 	new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1709 	if (!new)
1710 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1711 		      sizeof(*new));
1712 	INIT_LIST_HEAD(&new->list);
1713 	new->unit = n;
1714 	new->arguments = str;
1715 	list_add_tail(&new->list, &vec_cmd_line);
1716 	return 1;
1717 }
1718 
1719 __setup("vec", vector_setup);
1720 __uml_help(vector_setup,
1721 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1722 "	 Configure a vector io network device.\n\n"
1723 );
1724 
1725 late_initcall(vector_init);
1726 
1727 static struct mc_device vector_mc = {
1728 	.list		= LIST_HEAD_INIT(vector_mc.list),
1729 	.name		= "vec",
1730 	.config		= vector_config,
1731 	.get_config	= NULL,
1732 	.id		= vector_id,
1733 	.remove		= vector_remove,
1734 };
1735 
1736 #ifdef CONFIG_INET
1737 static int vector_inetaddr_event(
1738 	struct notifier_block *this,
1739 	unsigned long event,
1740 	void *ptr)
1741 {
1742 	return NOTIFY_DONE;
1743 }
1744 
1745 static struct notifier_block vector_inetaddr_notifier = {
1746 	.notifier_call		= vector_inetaddr_event,
1747 };
1748 
1749 static void inet_register(void)
1750 {
1751 	register_inetaddr_notifier(&vector_inetaddr_notifier);
1752 }
1753 #else
1754 static inline void inet_register(void)
1755 {
1756 }
1757 #endif
1758 
1759 static int vector_net_init(void)
1760 {
1761 	mconsole_register_dev(&vector_mc);
1762 	inet_register();
1763 	return 0;
1764 }
1765 
1766 __initcall(vector_net_init);
1767 
1768 
1769 
1770