xref: /linux/arch/um/drivers/vector_kern.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 - 2019 Cambridge Greys Limited
4  * Copyright (C) 2011 - 2014 Cisco Systems Inc
5  * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
7  * James Leu (jleu@mindspring.net).
8  * Copyright (C) 2001 by various other people who didn't put their name here.
9  */
10 
11 #include <linux/memblock.h>
12 #include <linux/etherdevice.h>
13 #include <linux/ethtool.h>
14 #include <linux/inetdevice.h>
15 #include <linux/init.h>
16 #include <linux/list.h>
17 #include <linux/netdevice.h>
18 #include <linux/platform_device.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/skbuff.h>
21 #include <linux/slab.h>
22 #include <linux/interrupt.h>
23 #include <linux/firmware.h>
24 #include <linux/fs.h>
25 #include <asm/atomic.h>
26 #include <uapi/linux/filter.h>
27 #include <init.h>
28 #include <irq_kern.h>
29 #include <irq_user.h>
30 #include <net_kern.h>
31 #include <os.h>
32 #include "mconsole_kern.h"
33 #include "vector_user.h"
34 #include "vector_kern.h"
35 
36 /*
37  * Adapted from network devices with the following major changes:
38  * All transports are static - simplifies the code significantly
39  * Multiple FDs/IRQs per device
40  * Vector IO optionally used for read/write, falling back to legacy
41  * based on configuration and/or availability
42  * Configuration is no longer positional - L2TPv3 and GRE require up to
43  * 10 parameters, passing this as positional is not fit for purpose.
44  * Only socket transports are supported
45  */
46 
47 
48 #define DRIVER_NAME "uml-vector"
49 struct vector_cmd_line_arg {
50 	struct list_head list;
51 	int unit;
52 	char *arguments;
53 };
54 
55 struct vector_device {
56 	struct list_head list;
57 	struct net_device *dev;
58 	struct platform_device pdev;
59 	int unit;
60 	int opened;
61 };
62 
63 static LIST_HEAD(vec_cmd_line);
64 
65 static DEFINE_SPINLOCK(vector_devices_lock);
66 static LIST_HEAD(vector_devices);
67 
68 static int driver_registered;
69 
70 static void vector_eth_configure(int n, struct arglist *def);
71 static int vector_mmsg_rx(struct vector_private *vp, int budget);
72 
73 /* Argument accessors to set variables (and/or set default values)
74  * mtu, buffer sizing, default headroom, etc
75  */
76 
77 #define DEFAULT_HEADROOM 2
78 #define SAFETY_MARGIN 32
79 #define DEFAULT_VECTOR_SIZE 64
80 #define TX_SMALL_PACKET 128
81 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
82 
83 static const struct {
84 	const char string[ETH_GSTRING_LEN];
85 } ethtool_stats_keys[] = {
86 	{ "rx_queue_max" },
87 	{ "rx_queue_running_average" },
88 	{ "tx_queue_max" },
89 	{ "tx_queue_running_average" },
90 	{ "rx_encaps_errors" },
91 	{ "tx_timeout_count" },
92 	{ "tx_restart_queue" },
93 	{ "tx_kicks" },
94 	{ "tx_flow_control_xon" },
95 	{ "tx_flow_control_xoff" },
96 	{ "rx_csum_offload_good" },
97 	{ "rx_csum_offload_errors"},
98 	{ "sg_ok"},
99 	{ "sg_linearized"},
100 };
101 
102 #define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
103 
104 static void vector_reset_stats(struct vector_private *vp)
105 {
106 	/* We reuse the existing queue locks for stats */
107 
108 	/* RX stats are modified with RX head_lock held
109 	 * in vector_poll.
110 	 */
111 
112 	spin_lock(&vp->rx_queue->head_lock);
113 	vp->estats.rx_queue_max = 0;
114 	vp->estats.rx_queue_running_average = 0;
115 	vp->estats.rx_encaps_errors = 0;
116 	vp->estats.sg_ok = 0;
117 	vp->estats.sg_linearized = 0;
118 	spin_unlock(&vp->rx_queue->head_lock);
119 
120 	/* TX stats are modified with TX head_lock held
121 	 * in vector_send.
122 	 */
123 
124 	spin_lock(&vp->tx_queue->head_lock);
125 	vp->estats.tx_timeout_count = 0;
126 	vp->estats.tx_restart_queue = 0;
127 	vp->estats.tx_kicks = 0;
128 	vp->estats.tx_flow_control_xon = 0;
129 	vp->estats.tx_flow_control_xoff = 0;
130 	vp->estats.tx_queue_max = 0;
131 	vp->estats.tx_queue_running_average = 0;
132 	spin_unlock(&vp->tx_queue->head_lock);
133 }
134 
135 static int get_mtu(struct arglist *def)
136 {
137 	char *mtu = uml_vector_fetch_arg(def, "mtu");
138 	long result;
139 
140 	if (mtu != NULL) {
141 		if (kstrtoul(mtu, 10, &result) == 0)
142 			if ((result < (1 << 16) - 1) && (result >= 576))
143 				return result;
144 	}
145 	return ETH_MAX_PACKET;
146 }
147 
148 static char *get_bpf_file(struct arglist *def)
149 {
150 	return uml_vector_fetch_arg(def, "bpffile");
151 }
152 
153 static bool get_bpf_flash(struct arglist *def)
154 {
155 	char *allow = uml_vector_fetch_arg(def, "bpfflash");
156 	long result;
157 
158 	if (allow != NULL) {
159 		if (kstrtoul(allow, 10, &result) == 0)
160 			return result > 0;
161 	}
162 	return false;
163 }
164 
165 static int get_depth(struct arglist *def)
166 {
167 	char *mtu = uml_vector_fetch_arg(def, "depth");
168 	long result;
169 
170 	if (mtu != NULL) {
171 		if (kstrtoul(mtu, 10, &result) == 0)
172 			return result;
173 	}
174 	return DEFAULT_VECTOR_SIZE;
175 }
176 
177 static int get_headroom(struct arglist *def)
178 {
179 	char *mtu = uml_vector_fetch_arg(def, "headroom");
180 	long result;
181 
182 	if (mtu != NULL) {
183 		if (kstrtoul(mtu, 10, &result) == 0)
184 			return result;
185 	}
186 	return DEFAULT_HEADROOM;
187 }
188 
189 static int get_req_size(struct arglist *def)
190 {
191 	char *gro = uml_vector_fetch_arg(def, "gro");
192 	long result;
193 
194 	if (gro != NULL) {
195 		if (kstrtoul(gro, 10, &result) == 0) {
196 			if (result > 0)
197 				return 65536;
198 		}
199 	}
200 	return get_mtu(def) + ETH_HEADER_OTHER +
201 		get_headroom(def) + SAFETY_MARGIN;
202 }
203 
204 
205 static int get_transport_options(struct arglist *def)
206 {
207 	char *transport = uml_vector_fetch_arg(def, "transport");
208 	char *vector = uml_vector_fetch_arg(def, "vec");
209 
210 	int vec_rx = VECTOR_RX;
211 	int vec_tx = VECTOR_TX;
212 	long parsed;
213 	int result = 0;
214 
215 	if (transport == NULL)
216 		return -EINVAL;
217 
218 	if (vector != NULL) {
219 		if (kstrtoul(vector, 10, &parsed) == 0) {
220 			if (parsed == 0) {
221 				vec_rx = 0;
222 				vec_tx = 0;
223 			}
224 		}
225 	}
226 
227 	if (get_bpf_flash(def))
228 		result = VECTOR_BPF_FLASH;
229 
230 	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
231 		return result;
232 	if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
233 		return (result | vec_rx | VECTOR_BPF);
234 	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
235 		return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
236 	return (result | vec_rx | vec_tx);
237 }
238 
239 
240 /* A mini-buffer for packet drop read
241  * All of our supported transports are datagram oriented and we always
242  * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
243  * than the packet size it still counts as full packet read and will
244  * clean the incoming stream to keep sigio/epoll happy
245  */
246 
247 #define DROP_BUFFER_SIZE 32
248 
249 static char *drop_buffer;
250 
251 
252 /*
253  * Advance the mmsg queue head by n = advance. Resets the queue to
254  * maximum enqueue/dequeue-at-once capacity if possible. Called by
255  * dequeuers. Caller must hold the head_lock!
256  */
257 
258 static int vector_advancehead(struct vector_queue *qi, int advance)
259 {
260 	qi->head =
261 		(qi->head + advance)
262 			% qi->max_depth;
263 
264 
265 	atomic_sub(advance, &qi->queue_depth);
266 	return atomic_read(&qi->queue_depth);
267 }
268 
269 /*	Advance the queue tail by n = advance.
270  *	This is called by enqueuers which should hold the
271  *	head lock already
272  */
273 
274 static int vector_advancetail(struct vector_queue *qi, int advance)
275 {
276 	qi->tail =
277 		(qi->tail + advance)
278 			% qi->max_depth;
279 	atomic_add(advance, &qi->queue_depth);
280 	return atomic_read(&qi->queue_depth);
281 }
282 
283 static int prep_msg(struct vector_private *vp,
284 	struct sk_buff *skb,
285 	struct iovec *iov)
286 {
287 	int iov_index = 0;
288 	int nr_frags, frag;
289 	skb_frag_t *skb_frag;
290 
291 	nr_frags = skb_shinfo(skb)->nr_frags;
292 	if (nr_frags > MAX_IOV_SIZE) {
293 		if (skb_linearize(skb) != 0)
294 			goto drop;
295 	}
296 	if (vp->header_size > 0) {
297 		iov[iov_index].iov_len = vp->header_size;
298 		vp->form_header(iov[iov_index].iov_base, skb, vp);
299 		iov_index++;
300 	}
301 	iov[iov_index].iov_base = skb->data;
302 	if (nr_frags > 0) {
303 		iov[iov_index].iov_len = skb->len - skb->data_len;
304 		vp->estats.sg_ok++;
305 	} else
306 		iov[iov_index].iov_len = skb->len;
307 	iov_index++;
308 	for (frag = 0; frag < nr_frags; frag++) {
309 		skb_frag = &skb_shinfo(skb)->frags[frag];
310 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
311 		iov[iov_index].iov_len = skb_frag_size(skb_frag);
312 		iov_index++;
313 	}
314 	return iov_index;
315 drop:
316 	return -1;
317 }
318 /*
319  * Generic vector enqueue with support for forming headers using transport
320  * specific callback. Allows GRE, L2TPv3, RAW and other transports
321  * to use a common enqueue procedure in vector mode
322  */
323 
324 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
325 {
326 	struct vector_private *vp = netdev_priv(qi->dev);
327 	int queue_depth;
328 	int packet_len;
329 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
330 	int iov_count;
331 
332 	spin_lock(&qi->tail_lock);
333 	queue_depth = atomic_read(&qi->queue_depth);
334 
335 	if (skb)
336 		packet_len = skb->len;
337 
338 	if (queue_depth < qi->max_depth) {
339 
340 		*(qi->skbuff_vector + qi->tail) = skb;
341 		mmsg_vector += qi->tail;
342 		iov_count = prep_msg(
343 			vp,
344 			skb,
345 			mmsg_vector->msg_hdr.msg_iov
346 		);
347 		if (iov_count < 1)
348 			goto drop;
349 		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
350 		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
351 		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
352 		wmb(); /* Make the packet visible to the NAPI poll thread */
353 		queue_depth = vector_advancetail(qi, 1);
354 	} else
355 		goto drop;
356 	spin_unlock(&qi->tail_lock);
357 	return queue_depth;
358 drop:
359 	qi->dev->stats.tx_dropped++;
360 	if (skb != NULL) {
361 		packet_len = skb->len;
362 		dev_consume_skb_any(skb);
363 		netdev_completed_queue(qi->dev, 1, packet_len);
364 	}
365 	spin_unlock(&qi->tail_lock);
366 	return queue_depth;
367 }
368 
369 static int consume_vector_skbs(struct vector_queue *qi, int count)
370 {
371 	struct sk_buff *skb;
372 	int skb_index;
373 	int bytes_compl = 0;
374 
375 	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
376 		skb = *(qi->skbuff_vector + skb_index);
377 		/* mark as empty to ensure correct destruction if
378 		 * needed
379 		 */
380 		bytes_compl += skb->len;
381 		*(qi->skbuff_vector + skb_index) = NULL;
382 		dev_consume_skb_any(skb);
383 	}
384 	qi->dev->stats.tx_bytes += bytes_compl;
385 	qi->dev->stats.tx_packets += count;
386 	netdev_completed_queue(qi->dev, count, bytes_compl);
387 	return vector_advancehead(qi, count);
388 }
389 
390 /*
391  * Generic vector dequeue via sendmmsg with support for forming headers
392  * using transport specific callback. Allows GRE, L2TPv3, RAW and
393  * other transports to use a common dequeue procedure in vector mode
394  */
395 
396 
397 static int vector_send(struct vector_queue *qi)
398 {
399 	struct vector_private *vp = netdev_priv(qi->dev);
400 	struct mmsghdr *send_from;
401 	int result = 0, send_len;
402 
403 	if (spin_trylock(&qi->head_lock)) {
404 		/* update queue_depth to current value */
405 		while (atomic_read(&qi->queue_depth) > 0) {
406 			/* Calculate the start of the vector */
407 			send_len = atomic_read(&qi->queue_depth);
408 			send_from = qi->mmsg_vector;
409 			send_from += qi->head;
410 			/* Adjust vector size if wraparound */
411 			if (send_len + qi->head > qi->max_depth)
412 				send_len = qi->max_depth - qi->head;
413 			/* Try to TX as many packets as possible */
414 			if (send_len > 0) {
415 				result = uml_vector_sendmmsg(
416 					 vp->fds->tx_fd,
417 					 send_from,
418 					 send_len,
419 					 0
420 				);
421 				vp->in_write_poll =
422 					(result != send_len);
423 			}
424 			/* For some of the sendmmsg error scenarios
425 			 * we may end being unsure in the TX success
426 			 * for all packets. It is safer to declare
427 			 * them all TX-ed and blame the network.
428 			 */
429 			if (result < 0) {
430 				if (net_ratelimit())
431 					netdev_err(vp->dev, "sendmmsg err=%i\n",
432 						result);
433 				vp->in_error = true;
434 				result = send_len;
435 			}
436 			if (result > 0) {
437 				consume_vector_skbs(qi, result);
438 				/* This is equivalent to an TX IRQ.
439 				 * Restart the upper layers to feed us
440 				 * more packets.
441 				 */
442 				if (result > vp->estats.tx_queue_max)
443 					vp->estats.tx_queue_max = result;
444 				vp->estats.tx_queue_running_average =
445 					(vp->estats.tx_queue_running_average + result) >> 1;
446 			}
447 			netif_wake_queue(qi->dev);
448 			/* if TX is busy, break out of the send loop,
449 			 *  poll write IRQ will reschedule xmit for us.
450 			 */
451 			if (result != send_len) {
452 				vp->estats.tx_restart_queue++;
453 				break;
454 			}
455 		}
456 		spin_unlock(&qi->head_lock);
457 	}
458 	return atomic_read(&qi->queue_depth);
459 }
460 
461 /* Queue destructor. Deliberately stateless so we can use
462  * it in queue cleanup if initialization fails.
463  */
464 
465 static void destroy_queue(struct vector_queue *qi)
466 {
467 	int i;
468 	struct iovec *iov;
469 	struct vector_private *vp = netdev_priv(qi->dev);
470 	struct mmsghdr *mmsg_vector;
471 
472 	if (qi == NULL)
473 		return;
474 	/* deallocate any skbuffs - we rely on any unused to be
475 	 * set to NULL.
476 	 */
477 	if (qi->skbuff_vector != NULL) {
478 		for (i = 0; i < qi->max_depth; i++) {
479 			if (*(qi->skbuff_vector + i) != NULL)
480 				dev_kfree_skb_any(*(qi->skbuff_vector + i));
481 		}
482 		kfree(qi->skbuff_vector);
483 	}
484 	/* deallocate matching IOV structures including header buffs */
485 	if (qi->mmsg_vector != NULL) {
486 		mmsg_vector = qi->mmsg_vector;
487 		for (i = 0; i < qi->max_depth; i++) {
488 			iov = mmsg_vector->msg_hdr.msg_iov;
489 			if (iov != NULL) {
490 				if ((vp->header_size > 0) &&
491 					(iov->iov_base != NULL))
492 					kfree(iov->iov_base);
493 				kfree(iov);
494 			}
495 			mmsg_vector++;
496 		}
497 		kfree(qi->mmsg_vector);
498 	}
499 	kfree(qi);
500 }
501 
502 /*
503  * Queue constructor. Create a queue with a given side.
504  */
505 static struct vector_queue *create_queue(
506 	struct vector_private *vp,
507 	int max_size,
508 	int header_size,
509 	int num_extra_frags)
510 {
511 	struct vector_queue *result;
512 	int i;
513 	struct iovec *iov;
514 	struct mmsghdr *mmsg_vector;
515 
516 	result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
517 	if (result == NULL)
518 		return NULL;
519 	result->max_depth = max_size;
520 	result->dev = vp->dev;
521 	result->mmsg_vector = kmalloc(
522 		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
523 	if (result->mmsg_vector == NULL)
524 		goto out_mmsg_fail;
525 	result->skbuff_vector = kmalloc(
526 		(sizeof(void *) * max_size), GFP_KERNEL);
527 	if (result->skbuff_vector == NULL)
528 		goto out_skb_fail;
529 
530 	/* further failures can be handled safely by destroy_queue*/
531 
532 	mmsg_vector = result->mmsg_vector;
533 	for (i = 0; i < max_size; i++) {
534 		/* Clear all pointers - we use non-NULL as marking on
535 		 * what to free on destruction
536 		 */
537 		*(result->skbuff_vector + i) = NULL;
538 		mmsg_vector->msg_hdr.msg_iov = NULL;
539 		mmsg_vector++;
540 	}
541 	mmsg_vector = result->mmsg_vector;
542 	result->max_iov_frags = num_extra_frags;
543 	for (i = 0; i < max_size; i++) {
544 		if (vp->header_size > 0)
545 			iov = kmalloc_array(3 + num_extra_frags,
546 					    sizeof(struct iovec),
547 					    GFP_KERNEL
548 			);
549 		else
550 			iov = kmalloc_array(2 + num_extra_frags,
551 					    sizeof(struct iovec),
552 					    GFP_KERNEL
553 			);
554 		if (iov == NULL)
555 			goto out_fail;
556 		mmsg_vector->msg_hdr.msg_iov = iov;
557 		mmsg_vector->msg_hdr.msg_iovlen = 1;
558 		mmsg_vector->msg_hdr.msg_control = NULL;
559 		mmsg_vector->msg_hdr.msg_controllen = 0;
560 		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
561 		mmsg_vector->msg_hdr.msg_name = NULL;
562 		mmsg_vector->msg_hdr.msg_namelen = 0;
563 		if (vp->header_size > 0) {
564 			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
565 			if (iov->iov_base == NULL)
566 				goto out_fail;
567 			iov->iov_len = header_size;
568 			mmsg_vector->msg_hdr.msg_iovlen = 2;
569 			iov++;
570 		}
571 		iov->iov_base = NULL;
572 		iov->iov_len = 0;
573 		mmsg_vector++;
574 	}
575 	spin_lock_init(&result->head_lock);
576 	spin_lock_init(&result->tail_lock);
577 	atomic_set(&result->queue_depth, 0);
578 	result->head = 0;
579 	result->tail = 0;
580 	return result;
581 out_skb_fail:
582 	kfree(result->mmsg_vector);
583 out_mmsg_fail:
584 	kfree(result);
585 	return NULL;
586 out_fail:
587 	destroy_queue(result);
588 	return NULL;
589 }
590 
591 /*
592  * We do not use the RX queue as a proper wraparound queue for now
593  * This is not necessary because the consumption via napi_gro_receive()
594  * happens in-line. While we can try using the return code of
595  * netif_rx() for flow control there are no drivers doing this today.
596  * For this RX specific use we ignore the tail/head locks and
597  * just read into a prepared queue filled with skbuffs.
598  */
599 
600 static struct sk_buff *prep_skb(
601 	struct vector_private *vp,
602 	struct user_msghdr *msg)
603 {
604 	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
605 	struct sk_buff *result;
606 	int iov_index = 0, len;
607 	struct iovec *iov = msg->msg_iov;
608 	int err, nr_frags, frag;
609 	skb_frag_t *skb_frag;
610 
611 	if (vp->req_size <= linear)
612 		len = linear;
613 	else
614 		len = vp->req_size;
615 	result = alloc_skb_with_frags(
616 		linear,
617 		len - vp->max_packet,
618 		3,
619 		&err,
620 		GFP_ATOMIC
621 	);
622 	if (vp->header_size > 0)
623 		iov_index++;
624 	if (result == NULL) {
625 		iov[iov_index].iov_base = NULL;
626 		iov[iov_index].iov_len = 0;
627 		goto done;
628 	}
629 	skb_reserve(result, vp->headroom);
630 	result->dev = vp->dev;
631 	skb_put(result, vp->max_packet);
632 	result->data_len = len - vp->max_packet;
633 	result->len += len - vp->max_packet;
634 	skb_reset_mac_header(result);
635 	result->ip_summed = CHECKSUM_NONE;
636 	iov[iov_index].iov_base = result->data;
637 	iov[iov_index].iov_len = vp->max_packet;
638 	iov_index++;
639 
640 	nr_frags = skb_shinfo(result)->nr_frags;
641 	for (frag = 0; frag < nr_frags; frag++) {
642 		skb_frag = &skb_shinfo(result)->frags[frag];
643 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
644 		if (iov[iov_index].iov_base != NULL)
645 			iov[iov_index].iov_len = skb_frag_size(skb_frag);
646 		else
647 			iov[iov_index].iov_len = 0;
648 		iov_index++;
649 	}
650 done:
651 	msg->msg_iovlen = iov_index;
652 	return result;
653 }
654 
655 
656 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs */
657 
658 static void prep_queue_for_rx(struct vector_queue *qi)
659 {
660 	struct vector_private *vp = netdev_priv(qi->dev);
661 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
662 	void **skbuff_vector = qi->skbuff_vector;
663 	int i, queue_depth;
664 
665 	queue_depth = atomic_read(&qi->queue_depth);
666 
667 	if (queue_depth == 0)
668 		return;
669 
670 	/* RX is always emptied 100% during each cycle, so we do not
671 	 * have to do the tail wraparound math for it.
672 	 */
673 
674 	qi->head = qi->tail = 0;
675 
676 	for (i = 0; i < queue_depth; i++) {
677 		/* it is OK if allocation fails - recvmmsg with NULL data in
678 		 * iov argument still performs an RX, just drops the packet
679 		 * This allows us stop faffing around with a "drop buffer"
680 		 */
681 
682 		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
683 		skbuff_vector++;
684 		mmsg_vector++;
685 	}
686 	atomic_set(&qi->queue_depth, 0);
687 }
688 
689 static struct vector_device *find_device(int n)
690 {
691 	struct vector_device *device;
692 	struct list_head *ele;
693 
694 	spin_lock(&vector_devices_lock);
695 	list_for_each(ele, &vector_devices) {
696 		device = list_entry(ele, struct vector_device, list);
697 		if (device->unit == n)
698 			goto out;
699 	}
700 	device = NULL;
701  out:
702 	spin_unlock(&vector_devices_lock);
703 	return device;
704 }
705 
706 static int vector_parse(char *str, int *index_out, char **str_out,
707 			char **error_out)
708 {
709 	int n, err;
710 	char *start = str;
711 
712 	while ((*str != ':') && (strlen(str) > 1))
713 		str++;
714 	if (*str != ':') {
715 		*error_out = "Expected ':' after device number";
716 		return -EINVAL;
717 	}
718 	*str = '\0';
719 
720 	err = kstrtouint(start, 0, &n);
721 	if (err < 0) {
722 		*error_out = "Bad device number";
723 		return err;
724 	}
725 
726 	str++;
727 	if (find_device(n)) {
728 		*error_out = "Device already configured";
729 		return -EINVAL;
730 	}
731 
732 	*index_out = n;
733 	*str_out = str;
734 	return 0;
735 }
736 
737 static int vector_config(char *str, char **error_out)
738 {
739 	int err, n;
740 	char *params;
741 	struct arglist *parsed;
742 
743 	err = vector_parse(str, &n, &params, error_out);
744 	if (err != 0)
745 		return err;
746 
747 	/* This string is broken up and the pieces used by the underlying
748 	 * driver. We should copy it to make sure things do not go wrong
749 	 * later.
750 	 */
751 
752 	params = kstrdup(params, GFP_KERNEL);
753 	if (params == NULL) {
754 		*error_out = "vector_config failed to strdup string";
755 		return -ENOMEM;
756 	}
757 
758 	parsed = uml_parse_vector_ifspec(params);
759 
760 	if (parsed == NULL) {
761 		*error_out = "vector_config failed to parse parameters";
762 		kfree(params);
763 		return -EINVAL;
764 	}
765 
766 	vector_eth_configure(n, parsed);
767 	return 0;
768 }
769 
770 static int vector_id(char **str, int *start_out, int *end_out)
771 {
772 	char *end;
773 	int n;
774 
775 	n = simple_strtoul(*str, &end, 0);
776 	if ((*end != '\0') || (end == *str))
777 		return -1;
778 
779 	*start_out = n;
780 	*end_out = n;
781 	*str = end;
782 	return n;
783 }
784 
785 static int vector_remove(int n, char **error_out)
786 {
787 	struct vector_device *vec_d;
788 	struct net_device *dev;
789 	struct vector_private *vp;
790 
791 	vec_d = find_device(n);
792 	if (vec_d == NULL)
793 		return -ENODEV;
794 	dev = vec_d->dev;
795 	vp = netdev_priv(dev);
796 	if (vp->fds != NULL)
797 		return -EBUSY;
798 	unregister_netdev(dev);
799 	platform_device_unregister(&vec_d->pdev);
800 	return 0;
801 }
802 
803 /*
804  * There is no shared per-transport initialization code, so
805  * we will just initialize each interface one by one and
806  * add them to a list
807  */
808 
809 static struct platform_driver uml_net_driver = {
810 	.driver = {
811 		.name = DRIVER_NAME,
812 	},
813 };
814 
815 
816 static void vector_device_release(struct device *dev)
817 {
818 	struct vector_device *device =
819 		container_of(dev, struct vector_device, pdev.dev);
820 	struct net_device *netdev = device->dev;
821 
822 	list_del(&device->list);
823 	kfree(device);
824 	free_netdev(netdev);
825 }
826 
827 /* Bog standard recv using recvmsg - not used normally unless the user
828  * explicitly specifies not to use recvmmsg vector RX.
829  */
830 
831 static int vector_legacy_rx(struct vector_private *vp)
832 {
833 	int pkt_len;
834 	struct user_msghdr hdr;
835 	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
836 	int iovpos = 0;
837 	struct sk_buff *skb;
838 	int header_check;
839 
840 	hdr.msg_name = NULL;
841 	hdr.msg_namelen = 0;
842 	hdr.msg_iov = (struct iovec *) &iov;
843 	hdr.msg_control = NULL;
844 	hdr.msg_controllen = 0;
845 	hdr.msg_flags = 0;
846 
847 	if (vp->header_size > 0) {
848 		iov[0].iov_base = vp->header_rxbuffer;
849 		iov[0].iov_len = vp->header_size;
850 	}
851 
852 	skb = prep_skb(vp, &hdr);
853 
854 	if (skb == NULL) {
855 		/* Read a packet into drop_buffer and don't do
856 		 * anything with it.
857 		 */
858 		iov[iovpos].iov_base = drop_buffer;
859 		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
860 		hdr.msg_iovlen = 1;
861 		vp->dev->stats.rx_dropped++;
862 	}
863 
864 	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
865 	if (pkt_len < 0) {
866 		vp->in_error = true;
867 		return pkt_len;
868 	}
869 
870 	if (skb != NULL) {
871 		if (pkt_len > vp->header_size) {
872 			if (vp->header_size > 0) {
873 				header_check = vp->verify_header(
874 					vp->header_rxbuffer, skb, vp);
875 				if (header_check < 0) {
876 					dev_kfree_skb_irq(skb);
877 					vp->dev->stats.rx_dropped++;
878 					vp->estats.rx_encaps_errors++;
879 					return 0;
880 				}
881 				if (header_check > 0) {
882 					vp->estats.rx_csum_offload_good++;
883 					skb->ip_summed = CHECKSUM_UNNECESSARY;
884 				}
885 			}
886 			pskb_trim(skb, pkt_len - vp->rx_header_size);
887 			skb->protocol = eth_type_trans(skb, skb->dev);
888 			vp->dev->stats.rx_bytes += skb->len;
889 			vp->dev->stats.rx_packets++;
890 			napi_gro_receive(&vp->napi, skb);
891 		} else {
892 			dev_kfree_skb_irq(skb);
893 		}
894 	}
895 	return pkt_len;
896 }
897 
898 /*
899  * Packet at a time TX which falls back to vector TX if the
900  * underlying transport is busy.
901  */
902 
903 
904 
905 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
906 {
907 	struct iovec iov[3 + MAX_IOV_SIZE];
908 	int iov_count, pkt_len = 0;
909 
910 	iov[0].iov_base = vp->header_txbuffer;
911 	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
912 
913 	if (iov_count < 1)
914 		goto drop;
915 
916 	pkt_len = uml_vector_writev(
917 		vp->fds->tx_fd,
918 		(struct iovec *) &iov,
919 		iov_count
920 	);
921 
922 	if (pkt_len < 0)
923 		goto drop;
924 
925 	netif_trans_update(vp->dev);
926 	netif_wake_queue(vp->dev);
927 
928 	if (pkt_len > 0) {
929 		vp->dev->stats.tx_bytes += skb->len;
930 		vp->dev->stats.tx_packets++;
931 	} else {
932 		vp->dev->stats.tx_dropped++;
933 	}
934 	consume_skb(skb);
935 	return pkt_len;
936 drop:
937 	vp->dev->stats.tx_dropped++;
938 	consume_skb(skb);
939 	if (pkt_len < 0)
940 		vp->in_error = true;
941 	return pkt_len;
942 }
943 
944 /*
945  * Receive as many messages as we can in one call using the special
946  * mmsg vector matched to an skb vector which we prepared earlier.
947  */
948 
949 static int vector_mmsg_rx(struct vector_private *vp, int budget)
950 {
951 	int packet_count, i;
952 	struct vector_queue *qi = vp->rx_queue;
953 	struct sk_buff *skb;
954 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
955 	void **skbuff_vector = qi->skbuff_vector;
956 	int header_check;
957 
958 	/* Refresh the vector and make sure it is with new skbs and the
959 	 * iovs are updated to point to them.
960 	 */
961 
962 	prep_queue_for_rx(qi);
963 
964 	/* Fire the Lazy Gun - get as many packets as we can in one go. */
965 
966 	if (budget > qi->max_depth)
967 		budget = qi->max_depth;
968 
969 	packet_count = uml_vector_recvmmsg(
970 		vp->fds->rx_fd, qi->mmsg_vector, budget, 0);
971 
972 	if (packet_count < 0)
973 		vp->in_error = true;
974 
975 	if (packet_count <= 0)
976 		return packet_count;
977 
978 	/* We treat packet processing as enqueue, buffer refresh as dequeue
979 	 * The queue_depth tells us how many buffers have been used and how
980 	 * many do we need to prep the next time prep_queue_for_rx() is called.
981 	 */
982 
983 	atomic_add(packet_count, &qi->queue_depth);
984 
985 	for (i = 0; i < packet_count; i++) {
986 		skb = (*skbuff_vector);
987 		if (mmsg_vector->msg_len > vp->header_size) {
988 			if (vp->header_size > 0) {
989 				header_check = vp->verify_header(
990 					mmsg_vector->msg_hdr.msg_iov->iov_base,
991 					skb,
992 					vp
993 				);
994 				if (header_check < 0) {
995 				/* Overlay header failed to verify - discard.
996 				 * We can actually keep this skb and reuse it,
997 				 * but that will make the prep logic too
998 				 * complex.
999 				 */
1000 					dev_kfree_skb_irq(skb);
1001 					vp->estats.rx_encaps_errors++;
1002 					continue;
1003 				}
1004 				if (header_check > 0) {
1005 					vp->estats.rx_csum_offload_good++;
1006 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1007 				}
1008 			}
1009 			pskb_trim(skb,
1010 				mmsg_vector->msg_len - vp->rx_header_size);
1011 			skb->protocol = eth_type_trans(skb, skb->dev);
1012 			/*
1013 			 * We do not need to lock on updating stats here
1014 			 * The interrupt loop is non-reentrant.
1015 			 */
1016 			vp->dev->stats.rx_bytes += skb->len;
1017 			vp->dev->stats.rx_packets++;
1018 			napi_gro_receive(&vp->napi, skb);
1019 		} else {
1020 			/* Overlay header too short to do anything - discard.
1021 			 * We can actually keep this skb and reuse it,
1022 			 * but that will make the prep logic too complex.
1023 			 */
1024 			if (skb != NULL)
1025 				dev_kfree_skb_irq(skb);
1026 		}
1027 		(*skbuff_vector) = NULL;
1028 		/* Move to the next buffer element */
1029 		mmsg_vector++;
1030 		skbuff_vector++;
1031 	}
1032 	if (packet_count > 0) {
1033 		if (vp->estats.rx_queue_max < packet_count)
1034 			vp->estats.rx_queue_max = packet_count;
1035 		vp->estats.rx_queue_running_average =
1036 			(vp->estats.rx_queue_running_average + packet_count) >> 1;
1037 	}
1038 	return packet_count;
1039 }
1040 
1041 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1042 {
1043 	struct vector_private *vp = netdev_priv(dev);
1044 	int queue_depth = 0;
1045 
1046 	if (vp->in_error) {
1047 		deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1048 		if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1049 			deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1050 		return NETDEV_TX_BUSY;
1051 	}
1052 
1053 	if ((vp->options & VECTOR_TX) == 0) {
1054 		writev_tx(vp, skb);
1055 		return NETDEV_TX_OK;
1056 	}
1057 
1058 	/* We do BQL only in the vector path, no point doing it in
1059 	 * packet at a time mode as there is no device queue
1060 	 */
1061 
1062 	netdev_sent_queue(vp->dev, skb->len);
1063 	queue_depth = vector_enqueue(vp->tx_queue, skb);
1064 
1065 	if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
1066 		mod_timer(&vp->tl, vp->coalesce);
1067 		return NETDEV_TX_OK;
1068 	} else {
1069 		queue_depth = vector_send(vp->tx_queue);
1070 		if (queue_depth > 0)
1071 			napi_schedule(&vp->napi);
1072 	}
1073 
1074 	return NETDEV_TX_OK;
1075 }
1076 
1077 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1078 {
1079 	struct net_device *dev = dev_id;
1080 	struct vector_private *vp = netdev_priv(dev);
1081 
1082 	if (!netif_running(dev))
1083 		return IRQ_NONE;
1084 	napi_schedule(&vp->napi);
1085 	return IRQ_HANDLED;
1086 
1087 }
1088 
1089 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1090 {
1091 	struct net_device *dev = dev_id;
1092 	struct vector_private *vp = netdev_priv(dev);
1093 
1094 	if (!netif_running(dev))
1095 		return IRQ_NONE;
1096 	/* We need to pay attention to it only if we got
1097 	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1098 	 * we ignore it. In the future, it may be worth
1099 	 * it to improve the IRQ controller a bit to make
1100 	 * tweaking the IRQ mask less costly
1101 	 */
1102 
1103 	napi_schedule(&vp->napi);
1104 	return IRQ_HANDLED;
1105 
1106 }
1107 
1108 static int irq_rr;
1109 
1110 static int vector_net_close(struct net_device *dev)
1111 {
1112 	struct vector_private *vp = netdev_priv(dev);
1113 
1114 	netif_stop_queue(dev);
1115 	del_timer(&vp->tl);
1116 
1117 	vp->opened = false;
1118 
1119 	if (vp->fds == NULL)
1120 		return 0;
1121 
1122 	/* Disable and free all IRQS */
1123 	if (vp->rx_irq > 0) {
1124 		um_free_irq(vp->rx_irq, dev);
1125 		vp->rx_irq = 0;
1126 	}
1127 	if (vp->tx_irq > 0) {
1128 		um_free_irq(vp->tx_irq, dev);
1129 		vp->tx_irq = 0;
1130 	}
1131 	napi_disable(&vp->napi);
1132 	netif_napi_del(&vp->napi);
1133 	if (vp->fds->rx_fd > 0) {
1134 		if (vp->bpf)
1135 			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1136 		os_close_file(vp->fds->rx_fd);
1137 		vp->fds->rx_fd = -1;
1138 	}
1139 	if (vp->fds->tx_fd > 0) {
1140 		os_close_file(vp->fds->tx_fd);
1141 		vp->fds->tx_fd = -1;
1142 	}
1143 	if (vp->bpf != NULL)
1144 		kfree(vp->bpf->filter);
1145 	kfree(vp->bpf);
1146 	vp->bpf = NULL;
1147 	kfree(vp->fds->remote_addr);
1148 	kfree(vp->transport_data);
1149 	kfree(vp->header_rxbuffer);
1150 	kfree(vp->header_txbuffer);
1151 	if (vp->rx_queue != NULL)
1152 		destroy_queue(vp->rx_queue);
1153 	if (vp->tx_queue != NULL)
1154 		destroy_queue(vp->tx_queue);
1155 	kfree(vp->fds);
1156 	vp->fds = NULL;
1157 	vp->in_error = false;
1158 	return 0;
1159 }
1160 
1161 static int vector_poll(struct napi_struct *napi, int budget)
1162 {
1163 	struct vector_private *vp = container_of(napi, struct vector_private, napi);
1164 	int work_done = 0;
1165 	int err;
1166 	bool tx_enqueued = false;
1167 
1168 	if ((vp->options & VECTOR_TX) != 0)
1169 		tx_enqueued = (vector_send(vp->tx_queue) > 0);
1170 	spin_lock(&vp->rx_queue->head_lock);
1171 	if ((vp->options & VECTOR_RX) > 0)
1172 		err = vector_mmsg_rx(vp, budget);
1173 	else {
1174 		err = vector_legacy_rx(vp);
1175 		if (err > 0)
1176 			err = 1;
1177 	}
1178 	spin_unlock(&vp->rx_queue->head_lock);
1179 	if (err > 0)
1180 		work_done += err;
1181 
1182 	if (tx_enqueued || err > 0)
1183 		napi_schedule(napi);
1184 	if (work_done <= budget)
1185 		napi_complete_done(napi, work_done);
1186 	return work_done;
1187 }
1188 
1189 static void vector_reset_tx(struct work_struct *work)
1190 {
1191 	struct vector_private *vp =
1192 		container_of(work, struct vector_private, reset_tx);
1193 	netdev_reset_queue(vp->dev);
1194 	netif_start_queue(vp->dev);
1195 	netif_wake_queue(vp->dev);
1196 }
1197 
1198 static int vector_net_open(struct net_device *dev)
1199 {
1200 	struct vector_private *vp = netdev_priv(dev);
1201 	int err = -EINVAL;
1202 	struct vector_device *vdevice;
1203 
1204 	if (vp->opened)
1205 		return -ENXIO;
1206 	vp->opened = true;
1207 
1208 	vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1209 
1210 	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1211 
1212 	if (vp->fds == NULL)
1213 		goto out_close;
1214 
1215 	if (build_transport_data(vp) < 0)
1216 		goto out_close;
1217 
1218 	if ((vp->options & VECTOR_RX) > 0) {
1219 		vp->rx_queue = create_queue(
1220 			vp,
1221 			get_depth(vp->parsed),
1222 			vp->rx_header_size,
1223 			MAX_IOV_SIZE
1224 		);
1225 		atomic_set(&vp->rx_queue->queue_depth, get_depth(vp->parsed));
1226 	} else {
1227 		vp->header_rxbuffer = kmalloc(
1228 			vp->rx_header_size,
1229 			GFP_KERNEL
1230 		);
1231 		if (vp->header_rxbuffer == NULL)
1232 			goto out_close;
1233 	}
1234 	if ((vp->options & VECTOR_TX) > 0) {
1235 		vp->tx_queue = create_queue(
1236 			vp,
1237 			get_depth(vp->parsed),
1238 			vp->header_size,
1239 			MAX_IOV_SIZE
1240 		);
1241 	} else {
1242 		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1243 		if (vp->header_txbuffer == NULL)
1244 			goto out_close;
1245 	}
1246 
1247 	netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
1248 			      get_depth(vp->parsed));
1249 	napi_enable(&vp->napi);
1250 
1251 	/* READ IRQ */
1252 	err = um_request_irq(
1253 		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1254 			IRQ_READ, vector_rx_interrupt,
1255 			IRQF_SHARED, dev->name, dev);
1256 	if (err < 0) {
1257 		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1258 		err = -ENETUNREACH;
1259 		goto out_close;
1260 	}
1261 	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1262 	dev->irq = irq_rr + VECTOR_BASE_IRQ;
1263 	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1264 
1265 	/* WRITE IRQ - we need it only if we have vector TX */
1266 	if ((vp->options & VECTOR_TX) > 0) {
1267 		err = um_request_irq(
1268 			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1269 				IRQ_WRITE, vector_tx_interrupt,
1270 				IRQF_SHARED, dev->name, dev);
1271 		if (err < 0) {
1272 			netdev_err(dev,
1273 				"vector_open: failed to get tx irq(%d)\n", err);
1274 			err = -ENETUNREACH;
1275 			goto out_close;
1276 		}
1277 		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1278 		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1279 	}
1280 
1281 	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1282 		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1283 			vp->options |= VECTOR_BPF;
1284 	}
1285 	if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1286 		vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1287 
1288 	if (vp->bpf != NULL)
1289 		uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1290 
1291 	netif_start_queue(dev);
1292 	vector_reset_stats(vp);
1293 
1294 	/* clear buffer - it can happen that the host side of the interface
1295 	 * is full when we get here. In this case, new data is never queued,
1296 	 * SIGIOs never arrive, and the net never works.
1297 	 */
1298 
1299 	napi_schedule(&vp->napi);
1300 
1301 	vdevice = find_device(vp->unit);
1302 	vdevice->opened = 1;
1303 
1304 	if ((vp->options & VECTOR_TX) != 0)
1305 		add_timer(&vp->tl);
1306 	return 0;
1307 out_close:
1308 	vector_net_close(dev);
1309 	return err;
1310 }
1311 
1312 
1313 static void vector_net_set_multicast_list(struct net_device *dev)
1314 {
1315 	/* TODO: - we can do some BPF games here */
1316 	return;
1317 }
1318 
1319 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1320 {
1321 	struct vector_private *vp = netdev_priv(dev);
1322 
1323 	vp->estats.tx_timeout_count++;
1324 	netif_trans_update(dev);
1325 	schedule_work(&vp->reset_tx);
1326 }
1327 
1328 static netdev_features_t vector_fix_features(struct net_device *dev,
1329 	netdev_features_t features)
1330 {
1331 	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1332 	return features;
1333 }
1334 
1335 static int vector_set_features(struct net_device *dev,
1336 	netdev_features_t features)
1337 {
1338 	struct vector_private *vp = netdev_priv(dev);
1339 	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1340 	 * no way to negotiate it on raw sockets, so we can change
1341 	 * only our side.
1342 	 */
1343 	if (features & NETIF_F_GRO)
1344 		/* All new frame buffers will be GRO-sized */
1345 		vp->req_size = 65536;
1346 	else
1347 		/* All new frame buffers will be normal sized */
1348 		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1349 	return 0;
1350 }
1351 
1352 #ifdef CONFIG_NET_POLL_CONTROLLER
1353 static void vector_net_poll_controller(struct net_device *dev)
1354 {
1355 	disable_irq(dev->irq);
1356 	vector_rx_interrupt(dev->irq, dev);
1357 	enable_irq(dev->irq);
1358 }
1359 #endif
1360 
1361 static void vector_net_get_drvinfo(struct net_device *dev,
1362 				struct ethtool_drvinfo *info)
1363 {
1364 	strscpy(info->driver, DRIVER_NAME);
1365 }
1366 
1367 static int vector_net_load_bpf_flash(struct net_device *dev,
1368 				struct ethtool_flash *efl)
1369 {
1370 	struct vector_private *vp = netdev_priv(dev);
1371 	struct vector_device *vdevice;
1372 	const struct firmware *fw;
1373 	int result = 0;
1374 
1375 	if (!(vp->options & VECTOR_BPF_FLASH)) {
1376 		netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1377 		return -1;
1378 	}
1379 
1380 	if (vp->bpf != NULL) {
1381 		if (vp->opened)
1382 			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1383 		kfree(vp->bpf->filter);
1384 		vp->bpf->filter = NULL;
1385 	} else {
1386 		vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1387 		if (vp->bpf == NULL) {
1388 			netdev_err(dev, "failed to allocate memory for firmware\n");
1389 			goto flash_fail;
1390 		}
1391 	}
1392 
1393 	vdevice = find_device(vp->unit);
1394 
1395 	if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1396 		goto flash_fail;
1397 
1398 	vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1399 	if (!vp->bpf->filter)
1400 		goto free_buffer;
1401 
1402 	vp->bpf->len = fw->size / sizeof(struct sock_filter);
1403 	release_firmware(fw);
1404 
1405 	if (vp->opened)
1406 		result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1407 
1408 	return result;
1409 
1410 free_buffer:
1411 	release_firmware(fw);
1412 
1413 flash_fail:
1414 	if (vp->bpf != NULL)
1415 		kfree(vp->bpf->filter);
1416 	kfree(vp->bpf);
1417 	vp->bpf = NULL;
1418 	return -1;
1419 }
1420 
1421 static void vector_get_ringparam(struct net_device *netdev,
1422 				 struct ethtool_ringparam *ring,
1423 				 struct kernel_ethtool_ringparam *kernel_ring,
1424 				 struct netlink_ext_ack *extack)
1425 {
1426 	struct vector_private *vp = netdev_priv(netdev);
1427 
1428 	ring->rx_max_pending = vp->rx_queue->max_depth;
1429 	ring->tx_max_pending = vp->tx_queue->max_depth;
1430 	ring->rx_pending = vp->rx_queue->max_depth;
1431 	ring->tx_pending = vp->tx_queue->max_depth;
1432 }
1433 
1434 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1435 {
1436 	switch (stringset) {
1437 	case ETH_SS_TEST:
1438 		*buf = '\0';
1439 		break;
1440 	case ETH_SS_STATS:
1441 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1442 		break;
1443 	default:
1444 		WARN_ON(1);
1445 		break;
1446 	}
1447 }
1448 
1449 static int vector_get_sset_count(struct net_device *dev, int sset)
1450 {
1451 	switch (sset) {
1452 	case ETH_SS_TEST:
1453 		return 0;
1454 	case ETH_SS_STATS:
1455 		return VECTOR_NUM_STATS;
1456 	default:
1457 		return -EOPNOTSUPP;
1458 	}
1459 }
1460 
1461 static void vector_get_ethtool_stats(struct net_device *dev,
1462 	struct ethtool_stats *estats,
1463 	u64 *tmp_stats)
1464 {
1465 	struct vector_private *vp = netdev_priv(dev);
1466 
1467 	/* Stats are modified in the dequeue portions of
1468 	 * rx/tx which are protected by the head locks
1469 	 * grabbing these locks here ensures they are up
1470 	 * to date.
1471 	 */
1472 
1473 	spin_lock(&vp->tx_queue->head_lock);
1474 	spin_lock(&vp->rx_queue->head_lock);
1475 	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1476 	spin_unlock(&vp->rx_queue->head_lock);
1477 	spin_unlock(&vp->tx_queue->head_lock);
1478 }
1479 
1480 static int vector_get_coalesce(struct net_device *netdev,
1481 			       struct ethtool_coalesce *ec,
1482 			       struct kernel_ethtool_coalesce *kernel_coal,
1483 			       struct netlink_ext_ack *extack)
1484 {
1485 	struct vector_private *vp = netdev_priv(netdev);
1486 
1487 	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1488 	return 0;
1489 }
1490 
1491 static int vector_set_coalesce(struct net_device *netdev,
1492 			       struct ethtool_coalesce *ec,
1493 			       struct kernel_ethtool_coalesce *kernel_coal,
1494 			       struct netlink_ext_ack *extack)
1495 {
1496 	struct vector_private *vp = netdev_priv(netdev);
1497 
1498 	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1499 	if (vp->coalesce == 0)
1500 		vp->coalesce = 1;
1501 	return 0;
1502 }
1503 
1504 static const struct ethtool_ops vector_net_ethtool_ops = {
1505 	.supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1506 	.get_drvinfo	= vector_net_get_drvinfo,
1507 	.get_link	= ethtool_op_get_link,
1508 	.get_ts_info	= ethtool_op_get_ts_info,
1509 	.get_ringparam	= vector_get_ringparam,
1510 	.get_strings	= vector_get_strings,
1511 	.get_sset_count	= vector_get_sset_count,
1512 	.get_ethtool_stats = vector_get_ethtool_stats,
1513 	.get_coalesce	= vector_get_coalesce,
1514 	.set_coalesce	= vector_set_coalesce,
1515 	.flash_device	= vector_net_load_bpf_flash,
1516 };
1517 
1518 
1519 static const struct net_device_ops vector_netdev_ops = {
1520 	.ndo_open		= vector_net_open,
1521 	.ndo_stop		= vector_net_close,
1522 	.ndo_start_xmit		= vector_net_start_xmit,
1523 	.ndo_set_rx_mode	= vector_net_set_multicast_list,
1524 	.ndo_tx_timeout		= vector_net_tx_timeout,
1525 	.ndo_set_mac_address	= eth_mac_addr,
1526 	.ndo_validate_addr	= eth_validate_addr,
1527 	.ndo_fix_features	= vector_fix_features,
1528 	.ndo_set_features	= vector_set_features,
1529 #ifdef CONFIG_NET_POLL_CONTROLLER
1530 	.ndo_poll_controller = vector_net_poll_controller,
1531 #endif
1532 };
1533 
1534 static void vector_timer_expire(struct timer_list *t)
1535 {
1536 	struct vector_private *vp = from_timer(vp, t, tl);
1537 
1538 	vp->estats.tx_kicks++;
1539 	napi_schedule(&vp->napi);
1540 }
1541 
1542 
1543 
1544 static void vector_eth_configure(
1545 		int n,
1546 		struct arglist *def
1547 	)
1548 {
1549 	struct vector_device *device;
1550 	struct net_device *dev;
1551 	struct vector_private *vp;
1552 	int err;
1553 
1554 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1555 	if (device == NULL) {
1556 		printk(KERN_ERR "eth_configure failed to allocate struct "
1557 				 "vector_device\n");
1558 		return;
1559 	}
1560 	dev = alloc_etherdev(sizeof(struct vector_private));
1561 	if (dev == NULL) {
1562 		printk(KERN_ERR "eth_configure: failed to allocate struct "
1563 				 "net_device for vec%d\n", n);
1564 		goto out_free_device;
1565 	}
1566 
1567 	dev->mtu = get_mtu(def);
1568 
1569 	INIT_LIST_HEAD(&device->list);
1570 	device->unit = n;
1571 
1572 	/* If this name ends up conflicting with an existing registered
1573 	 * netdevice, that is OK, register_netdev{,ice}() will notice this
1574 	 * and fail.
1575 	 */
1576 	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1577 	uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1578 	vp = netdev_priv(dev);
1579 
1580 	/* sysfs register */
1581 	if (!driver_registered) {
1582 		platform_driver_register(&uml_net_driver);
1583 		driver_registered = 1;
1584 	}
1585 	device->pdev.id = n;
1586 	device->pdev.name = DRIVER_NAME;
1587 	device->pdev.dev.release = vector_device_release;
1588 	dev_set_drvdata(&device->pdev.dev, device);
1589 	if (platform_device_register(&device->pdev))
1590 		goto out_free_netdev;
1591 	SET_NETDEV_DEV(dev, &device->pdev.dev);
1592 
1593 	device->dev = dev;
1594 
1595 	*vp = ((struct vector_private)
1596 		{
1597 		.list			= LIST_HEAD_INIT(vp->list),
1598 		.dev			= dev,
1599 		.unit			= n,
1600 		.options		= get_transport_options(def),
1601 		.rx_irq			= 0,
1602 		.tx_irq			= 0,
1603 		.parsed			= def,
1604 		.max_packet		= get_mtu(def) + ETH_HEADER_OTHER,
1605 		/* TODO - we need to calculate headroom so that ip header
1606 		 * is 16 byte aligned all the time
1607 		 */
1608 		.headroom		= get_headroom(def),
1609 		.form_header		= NULL,
1610 		.verify_header		= NULL,
1611 		.header_rxbuffer	= NULL,
1612 		.header_txbuffer	= NULL,
1613 		.header_size		= 0,
1614 		.rx_header_size		= 0,
1615 		.rexmit_scheduled	= false,
1616 		.opened			= false,
1617 		.transport_data		= NULL,
1618 		.in_write_poll		= false,
1619 		.coalesce		= 2,
1620 		.req_size		= get_req_size(def),
1621 		.in_error		= false,
1622 		.bpf			= NULL
1623 	});
1624 
1625 	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1626 	INIT_WORK(&vp->reset_tx, vector_reset_tx);
1627 
1628 	timer_setup(&vp->tl, vector_timer_expire, 0);
1629 
1630 	/* FIXME */
1631 	dev->netdev_ops = &vector_netdev_ops;
1632 	dev->ethtool_ops = &vector_net_ethtool_ops;
1633 	dev->watchdog_timeo = (HZ >> 1);
1634 	/* primary IRQ - fixme */
1635 	dev->irq = 0; /* we will adjust this once opened */
1636 
1637 	rtnl_lock();
1638 	err = register_netdevice(dev);
1639 	rtnl_unlock();
1640 	if (err)
1641 		goto out_undo_user_init;
1642 
1643 	spin_lock(&vector_devices_lock);
1644 	list_add(&device->list, &vector_devices);
1645 	spin_unlock(&vector_devices_lock);
1646 
1647 	return;
1648 
1649 out_undo_user_init:
1650 	return;
1651 out_free_netdev:
1652 	free_netdev(dev);
1653 out_free_device:
1654 	kfree(device);
1655 }
1656 
1657 
1658 
1659 
1660 /*
1661  * Invoked late in the init
1662  */
1663 
1664 static int __init vector_init(void)
1665 {
1666 	struct list_head *ele;
1667 	struct vector_cmd_line_arg *def;
1668 	struct arglist *parsed;
1669 
1670 	list_for_each(ele, &vec_cmd_line) {
1671 		def = list_entry(ele, struct vector_cmd_line_arg, list);
1672 		parsed = uml_parse_vector_ifspec(def->arguments);
1673 		if (parsed != NULL)
1674 			vector_eth_configure(def->unit, parsed);
1675 	}
1676 	return 0;
1677 }
1678 
1679 
1680 /* Invoked at initial argument parsing, only stores
1681  * arguments until a proper vector_init is called
1682  * later
1683  */
1684 
1685 static int __init vector_setup(char *str)
1686 {
1687 	char *error;
1688 	int n, err;
1689 	struct vector_cmd_line_arg *new;
1690 
1691 	err = vector_parse(str, &n, &str, &error);
1692 	if (err) {
1693 		printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1694 				 str, error);
1695 		return 1;
1696 	}
1697 	new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1698 	if (!new)
1699 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1700 		      sizeof(*new));
1701 	INIT_LIST_HEAD(&new->list);
1702 	new->unit = n;
1703 	new->arguments = str;
1704 	list_add_tail(&new->list, &vec_cmd_line);
1705 	return 1;
1706 }
1707 
1708 __setup("vec", vector_setup);
1709 __uml_help(vector_setup,
1710 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1711 "	 Configure a vector io network device.\n\n"
1712 );
1713 
1714 late_initcall(vector_init);
1715 
1716 static struct mc_device vector_mc = {
1717 	.list		= LIST_HEAD_INIT(vector_mc.list),
1718 	.name		= "vec",
1719 	.config		= vector_config,
1720 	.get_config	= NULL,
1721 	.id		= vector_id,
1722 	.remove		= vector_remove,
1723 };
1724 
1725 #ifdef CONFIG_INET
1726 static int vector_inetaddr_event(
1727 	struct notifier_block *this,
1728 	unsigned long event,
1729 	void *ptr)
1730 {
1731 	return NOTIFY_DONE;
1732 }
1733 
1734 static struct notifier_block vector_inetaddr_notifier = {
1735 	.notifier_call		= vector_inetaddr_event,
1736 };
1737 
1738 static void inet_register(void)
1739 {
1740 	register_inetaddr_notifier(&vector_inetaddr_notifier);
1741 }
1742 #else
1743 static inline void inet_register(void)
1744 {
1745 }
1746 #endif
1747 
1748 static int vector_net_init(void)
1749 {
1750 	mconsole_register_dev(&vector_mc);
1751 	inet_register();
1752 	return 0;
1753 }
1754 
1755 __initcall(vector_net_init);
1756 
1757 
1758 
1759